

Supplementary Material **Target-Guided Isolation of O-tigloylcyclovirobuxeine** -B from Buxus sempervirens L. by Centrifugal Partition Chromatography

Lara U. Szabó¹ and Thomas J. Schmidt^{1,*}

- ¹ Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Münster, Pharma Campus Correnstraße 48, D-48149 Münster, Germany; lszabo@uni-muenster.de
- * Correspondence: thomschm@uni-muenster.de; Tel.: +49-251-83-33378

Hexane / EtOH : H₂O (6 : 5 : 1)

3)

r		
Solvent system	Observation	_
Chloroform : MeOH : PrOH : H2O : NH4OH (35 : 65 : 40 : 5 : 1)	No phase separation	
Chloroform : MeOH : PrOH : H2O : NH4OH (35 : 65 : 5 : 40 : 1)	Emulsification	
Hexane / ACN : DCM (10 : 7 : 3)	Enrichment in lower phase (TLC)	

Enrichment in lower phase (TLC)

value determination by LC/MS

Table S1. Solvent system selection process for the alkaloid fraction (ALOF).

Hexane : EtOAc / MeOH : H₂O (7 : 3 : 7 : Equal distribution between the two phases (TLC) \rightarrow K

Figure S1. Determination of a suitable phase system for the fractionation by TLC. TLC plate of ALOF, O-tigloylcyclovirobuxeine-B (1) and fraction 2 (F2) visualized with Liebermann–Burchard spray reagents (366 nm). Note that these TLC separations were performed in order to check for equal distribution of ALOF and fraction 2 between the two phase, not for an optimal separation of these samples.

Figure S2. Determination of a suitable phase system for the fractionation of fraction 2 by UHPLC/+ESI-QqTOF-MS. Base peak chromatogram of m/z 200-1000 (black), Extracted ion chromatogram of m/z 497 [M + H]⁺ (pink); (**A**) upper phase; (**B**) lower phase.

Figure S3. ¹H NMR spectrum of O-tigloylcyclovirobuxeine-B (1) (CDCl₃, 600 MHz). The assignment of the signals between -0.5 and 3 ppm can be found in the expanded region shown in Figure S4.

Figure S4. Detail of the ¹H NMR spectrum of O-tigloylcyclovirobuxeine-B (1) (CDCl₃, 600 MHz).

Figure S5. ¹³C NMR spectrum of O-tigloylcyclovirobuxeine-B (1) (CDCl₃, 150 MHz). The assignment of the signals between 10 and 60 ppm can be found in the expanded region shown in Figure S6.

Figure S6. Detail of the ¹³C NMR spectrum of O-tigloylcyclovirobuxeine-B (1) (CDCl₃, 150 MHz).

Figure S7. +ESI/QqTOF mass spectrum (full scan) of O-tigloylcyclovirobuxeine-B (1).

Figure S8. +ESI/QqTOF MS/MS spectrum of the [M + H]⁺ ion of O-tigloylcyclovirobuxeine-B (1). An expanded region of this spectrum is shown in Figure 5A of the main manuscript.

Figure S9. Calibration line for the quantitively determination of O-tigloylcyclovirobuxeine-B (1). Data were obtained by integration of LC/MS chromatograms (extracted ion chromatograms of the most stable ion, [M+2H]²⁺). Each point represents the mean of three analyses with error bars showing the standard deviation.