

Supporting Information for Publication

Inter- vs. Intramolecular Hydrogen Bond Patterns and Proton Dynamics in Nitrophthalic Acid Associates

Kinga Jóźwiak ¹, Aneta Jezierska ¹, Jarosław J. Panek ¹, Eugene A. Goremychkin ², Peter M. Tolstoy ³, Ilya G. Shenderovich ^{4,*} and Aleksander Filarowski ^{1,*}

- ¹ Faculty of Chemistry, University of Wrocław 14 F. Joliot-Curie str., 50-383 Wrocław, Poland; <u>kin.joz@o2.pl</u>, <u>aneta.jezierska@chem.uni.wroc.pl</u>, <u>jaroslaw.panek@chem.uni.wroc.pl</u>, <u>aleksander.filarowski@chem.uni.wroc.pl</u>
- ² Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research 6 F. Joliot-Curie str., 141980 Dubna, Russia; <u>goremychkin@jinr.ru</u>
- ³ Institute of Chemistry, St. Petersburg State University, Universitetskij pr. 26, 198504 St. Petersburg, Russia; <u>peter.tolstoy@spbu.ru</u>
- ⁴ Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany; <u>Ilya.Shenderovich@chemie.uni-regensburg.de</u>
- * Correspondence: <u>aleksander.filarowski@chem.uni.wroc.pl</u>; Tel.: +48-71-375-7229 (A.F.) <u>Ilya.Shenderovich@chemie.uni-regensburg.de</u> (I.G.S.)

Figure S1. The dimeric forms of compounds 3 and 4 and relative energy values (in kcal/mol) obtained at B3LYP/6-311+G(d,p) level of theory.

Figure S2. Structures and atoms numbering of studied compounds 3 and 4.

Figure S3. Calculated potential energy curves for the gradual nitro group rotation of conformers **3(I)** (solid line) and **4(II)** (dashed line).

Figure S4. Calculated (B3LYP/6-311+G(d,p), PCM approach for acetonitrile (**a**) and gas phase (**b**)) potential energy functions by the gradual displacement of one proton for compounds **3** (solid lines) and **4** (dashed lines) whereas the remaining parameters were optimized: in the intramolecular hydrogen bond of monomers (black lines), in the intermolecular hydrogen bond of dimers (green lines) and in the intermolecular hydrogen bond of dimers for fixed adjacent bridged proton (blue lines).

Figure S5. Time evolution of the metric parameters of two symmetric hydrogen bridges. The CPMD gas phase simulations of the dimers of **3** and **4**. Red: donor-proton distance, green: proton-acceptor distance, blue: donor-acceptor distance.

Mean chemical shift of	Et ₃ N	Water	compound 3	Estimated mean chemical
mobile protons/ ppm	mole fraction	mole fraction	mole fraction	shift of the mobile protons
				of compound 3 / ppm
3.3	35	1	0	-
13.0	35	1	8.7	14.1
13.4	35	1	15.1	14.1
13.4	70	1	15.1	14.1

Table S1. ¹H NMR data for compound 3 in CDCl₃ in the presence of N,N-diethylethanamine (Et₃N).

 Table S2. 1H NMR data for compound 4 in CDCl3 in the presence of N,N-diethylethanamine (Et3N).

Mean chemical shift of	Et ₃ N	Water	compound 4	Estimated mean chemical
mobile protons/ ppm	mole fraction	mole fraction	mole fraction	shift of the mobile protons
				of compound 4/ ppm
3.3	35	1	0	-
8.9	35	1	1.2	13.6
11.9	35	1	4.0	14.1
13.0	35	1	8.7	14.1
13.3	35	1	13.2	14.1
13.1	70	1	13.2	13.8

Table S3. ¹ H NMR of	data for compound 4 in	CDCl ₃ in the presence of	N,N-dimethylpyridin-4-ai	mine (DMAP).
	1	1	, , , , , , , , , , , , , , , , , , , ,	()

Mean chemical shift of mobile protons/ ppm	DMAP mole fraction	Water mole fraction	compound 4	Estimated mean chemical shift of the mobile protons
mobile protons, ppm	more machon	more naction	more machon	of compound 4/ ppm
4.58	260	1	0	-
11.38	260	1	1.04	17.9
13.31	260	1	1.75	18.3
14.63	260	1	2.44	18.7
15.31	260	1	3.23	18.6
15.84	260	1	3.85	18.8

Table S4. Experimental IR, Raman, IINS and calculated DFT (B3LYP/6-311+G(d,p)) spectral data of compound **3** and its mono deuterated (OH \rightarrow OD) derivative.

2 3

1

N⁰	IR(OH),	IR(OD),	R(OH)	R(OD)	IINS (OH),	IINS (OD)	DFT	Int.	Potential energy distribution (%)
	cm ⁻¹	cm ⁻¹	cm-1	cm-1	cm ⁻¹	cm ⁻¹	[cm ⁻¹]	[km/mol]
1					20	~14			
2					44	42	32.15	0.5	τ(C8OO) 47; τ(C7OO) 25; τ(NO ₂) 19
3	55,4	55,4			60	62	53.08	0.29	τ(NO ₂) 40; τ(CCC) 25; τ(C7OO) 22
4	80,0	80,0			94	92,5	78.67	1.6	γ(C2-C8) 31; ϱ(C8OO) 26; τ(CCC) 10
5	104,1	104,1			106	107			
6	109,9	109,9			114	115			
7	132,6	132,6							
8	140,3	140,3			140	141	144.92	1.63	τ(C8OO) 76
9							164.17	1.36	γ(C1-C7 + C2-C8 – C3-N) 47; _Q (C1-C7 + C3-N + C8OO) 28
10							168.05	1.74	γ(C1-C7 + C2-C8 – C3-N) 43; ϱ(C1-C7 + C3-N + C8OO) 31
11							175.37	2.68	Q(C2-C8 + C3-N) 69; ω(C8OO) 9
12	187,6	187,6 w					180.51	0.95	τ(CCC) 39; γ(C1-C7 + C3-N + C4-H) 32
13	195,3	193,3			194	195			
14	211,7 w	208,8 w			206	206			
15					224	221			
16		221,7		227					
17	223,2		231		240	239 w			
18							280.46	1.41	Q(C1-C7 + C2-C8 – C3-N) 50; Q(NO ₂ – C7OO) 28; ω(C8OO) 10
19			294	292	294	295	289.6	2.09	δ(CCC) 37; ν _{asym} (C2-C8 – C3-N – C1-C7) 31
20	311,5	309,1	316	314	314	312			
21			327	325			350.37	1.06	τ(CCC) 40; γ(C1-C7 – C3-N) 23; ϱ(C8OO) 15

www.mdpi.com/journal/molecules

Molecules 2020, 25, x FOR PEER REVIEW

22	374,1	373			378	378	379.61	3.01	Q(NO ₂ + C7OO) 22; τ(CCC) 19; ν(C2-C8) 9
23			385	381					
24		392,0							
25	408,9				390	-			
26	408,9	406,9	418	418	412	420	403.59	2.35	δ(CCC) 40; v _{asym} (C3-N – C1-C7) 31
27	451,3	453,7	446	446	459	457	441.61	5.02	τ(CCC) 43; γ(C1-C7 + C3-N) 36
28		514,9					509.91	16.25	τ(C8-O4-H) 31; ϱ(C1-C7 + C7OO) 31; ω(C8OO) 10
29	548,2	544,8	542	537	555	-	541.59	38.23	Q(NO ₂ + C7OO) 33; τ _{sym} (C7OO + C8OO) 17; δ(C8OO) 6
30							570.15	30.91	τ(CCC) 57; τ _{asym} (C7OO – C8OO) 19
31							588.76	33.18	δ _{asym} (C7OO – C8OO) 23; τ(CCC) 20; ϱ(C8OO) 18
32		565,6 w							
33	568,5		570		572	572	599.23	76.68	τ(C-O-H) 46; γ(C1-C7 + C3-N) 12; ϱ(NO ₂) 11
34		580,0				-			
35		626,8				-			
36		640 sh				637			
37	657,7			659			640.01	45.75	δ _{asym} (C7OO – C8OO) 55; δ(CCC) 25
39	664,5	661,6			668				
40		683,7	684	681			674.77	68.45	δ _{sym} (C7OO + C8OO) 43; δ(CCC) 23
41	690,5		699						
42	702,1	707,3		704	715				
43			714 w	714			714.01	30.66	τ(CCC) 38; ω(NO ₂) 18; γ(C2-C8) 10; ω(C7OO) 9
44		732,2		734 w			746.86	54.85	ω(C8OO) 31; ω(NO ₂) 10; ϱ(C2-C8) 9; δ(CCC) 8
45	752,2		756				767.36	15.81	γ(C2-C8 + C3-N + C5-H) 35; τ(CCC) 22; ω(NO ₂) 10; ω(C8OO) 8
46		755,1		766	760	766	778.25	14.24	δ(NO ₂ + C8OO) 21; δ(CCC) 16; ν(C2-C8) 12
47	778,3	780,2		782			785.93	48.72	γ(C1-C7 – C5-H – C6-H) 39; ω(C7OO) 28; ω(NO ₂) 9
48	795,6	800,4 w	793		778	-			
49				800 w	795	791,2			

50	818,8		817	812 w	826	-			
51	835,2	835,2 w		839	845		813.81	0.73	δ(CCC) 32; δ(NO ₂) 23; ν(C1-C7) 10
52						845	847.65	2.51	γ(C1-C7 – C3-N + C4-H + C5-H) 40; τ(CCC) 29
53	875,7	-			875				
54						885			
55				906	895				
56	911,3	903,6	913	913sh	926	916 w	913.57	27.25	ν _{asym} (C3-N – C1-C7 – C7-O2) 39; δ(NO ₂) 29; δ(CCC) 10
57	948,5	948,5			960	966	969.13	0.5	γ(C-H) 86; τ(CCC) 7
58	995,2	995,2							
59	1010,6 w	1010,6 w			1007	1007	1015.78	1.48	γ(C-H) 80; τ(CCC) 13
60		1029,0 sh							
61		1032,8		1032					
62				1051					
63	1068,5	1071,4	1075	1076			1079.53	71.9	$\delta(CCC)$ 33; $\nu_{asym}(C8-O4 - C7-O2)$ 20; $\nu_{sym}(C4-C5 + C5-C6)$ 20
64	1120,6	1119,6	1127	1129			1126.33	195.42	v(C7-O2) 32; v _{asym} (C3-N – C4-C5 – C5-C6) 28
65							1133.3	118.8	ν(C8-O4) 31; ϱ(C-H) 22; ν _{sym} (C4-C5 + C7-O2) 12
66	1154,4	1153,4	1156	1154			1183.76	69.17	ϱ(C5-H) 28; ν(C4-C5) 10; δ(CCC) 9; δ(C7-O2-H) 8
67			1164	1164			1198.76	105.96	δ(C7-O2-H) 26; ϱ(C4-H – C5-H) 25; ν _{asym} (C1-C7 – C7-O2) 21
68	1214,1	1214,1	1214	1214			1210.5	177.78	δ(C8-O4-H) 40; v _{asym} (C2-C8 – C8-O4 – C3-C4) 31
69	1249,8	1249,9	1248 sh				1236.6	11.03	Q(C-H) 43; ν _{asym} (C3-C4 – C1-C6) 18; Q(C2-C8) 10
70			1256	1254					
71	1302,9	1302,9 w	1303	1302					
72	1321,2	1321,2 w	1320				1333.31	7	$v_{asym}(C1-C2 - C2-C3 + C3-C4 - C4-C5 + C5-C6 - C1-C6) 86$
73		1344,3					1361.76	109.07	δ(C-O-H) 25; ν(C7-O2 + C8-O4) 16; ν(C1-C7) 4
74	1356,9	1354,9	1351	1351			1364.36	51.51	δ(C-O-H) 28; ν(C7-O2 + C8-O4) 20; ν(C1-C7) 12
75	1395,4	1398,3 w					1377.95	228.62	ν _{sym} (ONO) 62; δ(NO ₂) 16; ν(C3-N) 13
76	1409,0	1404,1 w	1400	1405 w					

77			1468	1468	1471.58 9.25	Q(C-H) 46; vasym(C2-C3 + C3-C4 - C5-C5 - C1-C6) 35
78	1473,6	1471,6			1491.56 28.94	Q(C-H) 35; ν _{asym} (C1-C2 + C2-C3 – C3-C4) 29; ν(C1-C7) 6
79	1540,1	1540,1	1542	1542		
80	1570,0	1570,0	1571	1571	1596.99 174.93	ν _{asym} (ONO) 65; ν(C5-C6) 10
81	1612,4	1612,4	1616	1615	1608.15 82.23	ν _{sym} (C1-C2 + C4-C5) 43; ϱ(C-H) 13
82	1665,5	1656,8 w				
83	1682,8	1675,1	1687	1676	1649.83 47.82	vasym(C2-C3 - C3-C4 + C5-C6 - C1-C6) 52; vasym(ONO) 16
84	1719,5	1719,5			1803.36 270.39	v(C7=O1) 79
85	1739,9	1739,9			1818.91 387.01	v(C8=O3) 84
86		2300		2341		v(O-D)
87				2610		v(O-D)
88			2617		3753.14 109.04	v(O4-H) 100
89	2950		2700		3767.78 125.98	ν(O2-H) 100
90			3084	3084		
91			3095	3094	3193.53 3.43	vasym(C-H) 95
92	3114		3118	3119	3219.99 3.74	vasym(C-H) 99
93		3150,6	3144	3145	3222.77 0.96	v _{sym} (C-H) 100

4 5

v - stretching vibration; δ - scissoring vibration; ρ - rocking; ω - wagging; γ – out-of-plane; τ - twisting and torsional vibration; sh - shoulder and w – weak (small intensity).

IR(OD), R(OH) IINS(OH), IINS(OD), Potential energy distribution, % № IR(OH), R(OD) x DFT, Intensity cm⁻¹ cm⁻¹ cm⁻¹ cm⁻¹ cm⁻¹ cm⁻¹ cm⁻¹ [km/mol] τ(C7OO – C8OO) 91 1 21 23.37 0.5 2 41 39.54 0.09 τ(NO₂) 77; τ(CCC) 10; τ(C8OO) 8 3 53 69.69 3.03 τ(CCC) 41; γ(1-C7) 17; τ(C7OO + C8OO) 14 86 4 5 122 106 97.72 1.3 τ(C7OO + C8OO) 50; ρ(C1-C7 + C2-C8) 29 6 142,7 148131 141.71 1.05 γ(C2-C8 + C4-N) 43; ϱ(C2-C8) 8 150,9 7 160 w 162 162 149.67 2.9 ρ(C4-N + C1-C7 – C2-C8) 63; γ(C2-C8) 8 8 179,8 173 182 180 164.8 1.76 ρ(C1-C7 + C2-C8) 65; ω(C7OO) 10 9 196 196 196 209.09 5.92 γ(C1-C7) 37; ϱ(C7OO) 18; γ(C4-N) 17 10 236 208 11 244,4 244 sh 243 251 248 12 263,7 273 263,7 261 w 270 13 285,4 289 280.5 1.12 δ(CCC) 30; v_{sym}(C1-C7 + C4-N) 21; ρ(C4-N) 12; ρ(C7OO – NO₂) 12 14 306,2 296 302 300 296.09 0.44o(C2-C8 - C1-C7 + C4-N) 36; o(C8OO + NO2) 26 15 307,1 309 306 16 316,8 315 325 17 326 331 18 357,3 357,3 366 355 364 361 351.38 2.4 vsym(C2-C8 + C4-N) 33; δ(CCC) 22; δ(C8OO) 13 τ(CCC) 35; γ(C2-C8 – C4-N) 26; ϱ(C7OO + C8OO) 20 19 378,0 386 375 sh 388 382 379.44 0.17 20 403,0 401,1 408 408 21 434 22 432,0 439,7 438 415.24 7.51 τ(CCC) 57; γ(C2-C8) 14 23 446 446

Table S5. Experimental IR, Raman, IINS and calculated DFT (B3LYP/6-311+G(d,p)) spectral data of compound 4 and its mono deuterated (OH \rightarrow OD) derivative.

Molecules 2020, 25, x FOR PEER REVIEW

24	458,5		459 w		463		456.68	2.63	τ(CCC) 23; γ(C2-C8) 15
25	,	469.6				478			
26									
27	522,6	524,1	524	520	528	523	519.7	15.03	o(NO ₂ + C7OO) 53; o(C4-N) 10
28		560,2	566	558			539.83	15.98	τ(CCC) 46; γ(C4-N) 17
29	575,7 sh				569	563	567.4	36.04	τ(C-O-H) 33; τ(CCC) 33
30	589,2	586,3	592		599	597	594.11	92.97	τ(С-О-Н) 74
31		628,0 w					604.97	75.3	τ(C-O-H) 23; ϱ(C2-C8 + C4-N) 16; δ(CCC) 11
32		638,8 w							
33		653,8 w							
34	655		655	655	659		651.86	34.58	δ(C8OO) 42; δ(CCC) 29
35									
36	694,0	690 sh	689	684 w			669.95	15.67	δ _{asym} (C7OO – C8OO) 34; δ(CCC) 25
37	701,0	703,0	714 w		704	704 w	702.64	13.34	τ(CCC) 47; γ(C1-C7) 13
38	740,6	740,6	744	743			727.02	27.5	ω(NO2) 53; τ(CCC) 18; γ(C4-N) 16
39		749,3 sh							
40	763,8		767		766	754	752.13	28.64	v_{sym} (C1-C2 + C1-C7 + C2-C8) 26; δ_{sym} (C7OO + C8OO) 17; δ (CCC) 14
41		783,1	780				783.16	53.08	ω(C7OO + C8OO) 56; ϱ(C1-C7) 9
42	790,0	798,5	792	799	800		806.74	21.65	γ(C1-C7 + C2-C8) 30; ω(C8OO) 28
43	812,0	810,0	809	810 w		809	815.98	31.75	δ(NO2) 40; δ(CCC) 19
44	835,0			827 w					
45		857,3							
46	862,2		861		870		873.23	27.74	γ(C-H) 70; τ(CCC) 9
47		870,2				880			
48	896,9								
49	910,4 w	913,3	913	911					
50	931,6	924,8 sh	928		938	921	920.13	26.21	vasym(C4-N – C2-C8) 32; δ(NO2) 23; δ(CCC) 12

51							953.03	12.2	γ(C-H) 73; τ(CCC) 13
52	980,8 w	975 w	977 w		989	1001	999.47	0.35	γ(C-H) 84; τ(CCC) 12
53		995,2		994					
54		1013,6		1009 w					
55	1062,7	1065,0	1062	1064 w	1078	1084	1067.19	83.35	δ(CCC) 35; vasym(C8-O4 - C7-O2) 23; vsym(C3-C4 + C4-C5) 18
56	1120,6	1120,6 w	1120	1123			1118.49	145.27	ν(C7-O2) 40; ν _{sym} (C1-C2 + C1-C6) 13; ν(C8-O4) 7
57							1126.71	107.93	v_{sym} (C3-C4 + C4-C5 + C5-C6) 24; v (C4-N) 19; v (C8-O4) 18; δ (CCC) 11
58		1140,8	1153						
59	1146,0	1150,5	1157	1158	1156	1155	1157.31	19.53	Q(C-H) 51; ν(C5-C6) 16; ν(C8-O4) 10
							1197.4	173.44	δ(C-O-H) 39; v _{asym} (C1-C7 – C2-C8) 16; δ(CCC) 15
60	1236,3	1231,5	1249	1353 sh			1211.25	192.16	δ(C-O-H) 44; v _{asym} (C1-C7 – C2-C3 + C2-C8) 23
61	1269,1	1299,0 br	1270			1275	1285.18	4.81	Q(C-H) 64; ν(C1-C6) 12
62	1309,6	1312,5							
63							1342.61	0.96	$v_{asym}(C1-C2 - C1-C6 - C2-C3 + C3-C4 - C4-C5 + C5-C6) 82$
							1360.3	104.64	δ(C-O-H) 24; ν(C7-O2) 14; ν(C1-C7) 11
64	1351,0	1353,0	1353	1358			1365.7	300.9	ν _{sym} (ONO) 23; δ(C-O-H) 9; ν(C8-O4) 8
65	1388.0						1377.0	127.14	ν _{sym} (ONO) 42; ν(C4-N) 12; δ(NO ₂) 11
66	1419,6			1406					
67	1430,2	1425,3	1425						
68	1439,0		1454				1432.9	10.95	v _{asym} (C1-C6 – C2-C3 – C3-C4 + C5-C6) 44; _Q (C-H) 18; _v (C2-C8) 7
69			1488						
70	1496,7	1491,9	1495	1491			1512.91	16.95	$Q(C-H)$ 45; $v_{asym}(C1-C2 + C1-C6 - C3-C4 - C4-C5)$ 34; $v(C1-C7)$ 5
71	1536,0	1532,4	1522						
72			1543	1539					
73	1599,9	1590,3	1593	1591			1584.07	146.88	vasym(ONO) 66; vsym(C1-C2 + C4-C5) 14
74	1610,5	1610,5	1611	1614			1626.04	37.22	v _{asym} (C1-C2 - C2-C3 + C4-C5 - C5-C6) 57
75			1630				1649.2	92.87	vasym(C1-C6 + C3-C4 - C4-C5) 42; vasym(ONO) 16

8 of 14	
---------	--

76				1649				
76	1683,0			1690				
77		1715,6 br		1713				
78				1724				
78	1732,0		1732			1799.68	324.15	v(C8=O3) 77
79			1737 sh			1811.11	376.15	v(C7=O1) 81
80	1952							
81		2066		2054				
82		2548		2249				
83		2637		2618				
84	2590		2620		:	3750.15	106.89	ν(O2-H) 100
85	2725		2698		:	3765.65	123.32	v(O4-H) 100
86	2867		2864					
87			2974					
88				2958				
89	3091,0	3112	3087		:	3197.99	0.68	v(C6-H) 94
90			3099	3097	:	3224.56	4.68	v(C5-H) 94
91				3112	ć	3238.32	12.44	v(C3-H) 99

9 10

v - stretching vibration; δ - scissoring vibration; ρ - rocking; ω - wagging; γ – out-of-plane; τ - twisting and torsional vibration; sh - shoulder and w – weak (small intensity).

11