Supplementary material

The inhibition of NLRP3 inflammasome and IL-6 by *Hibiscus noldeae Baker f.* derived constituents provides a link to its antiinflammatory therapeutic potentials

Jean Claude Didelot Tomani^{1,2}, Vedaste Kagisha^{1,3}, Alembert Tchinda⁴, Olivia Jansen, Allison Ledoux³, Luc Vanhamme², Michel Frederich^{3,§}, Raymond Muganga^{1,§}, Jacob Souopgui^{2,§,*}

¹University of Rwanda, College of Medicine and Health Sciences, School of Medicine and Pharmacy, Kigali, Rwanda

²Université Libre de Bruxelles, Institute for Molecular Biology and Medicine, Department of Molecular Biology, Gosselies, Belgium.

³University of Liège, Centre for Interdisciplinary Research on Medicines (CIRM), Laboratory of Pharmacognosy, Liège, Belgium

⁴Laboratory of Phytochemistry, Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon.

§Equal contribution

*Correspondence to: Laboratory of Embryology & Biotechnology, DBM-IBMM/ULB, Rue des Professeurs Jeener et Brachet, 12, 6041 Gosselies, Belgium. *E-mail address:* jsouopgu@ulb.ac.be (J. Souopgui).

HO HO V B C HO V C C C C C C C C C C C C C		HO HO HO Caffeic acid		HO HO HO Caffeoyl-hydrocitric acid	
Chemical shifts	Protons	δ_{H} (ppm), Chemical	Protons	Chemical shifts	Protons
(ppm)		shifts (ppm)		(ppm)	
12.64 (1H, s)	OH-5	12.15 (1H, s)	H-8	13.3-12.35 (3H, s)	H-9, 11, 13
10.86 (1H, s)	OH-7	9.52 (1H, s)	H-3	9.64 (1H, s)	OH-2
9.72 (1H, s)	OH-3'	9.12 (1H, s)	H-2	9.18 (1H, s)	OH-3
9.15 (1H, s)	OH-4'	7.41 (1H, d)	H-6	7.57 (1H, d)	H-6
7.67 (1H, dd)	H-2′	7.02 (1H, d)	H-1	7.07 (1H, d)	H-1
7.52 (1H, d)	H-6′	6.96 (1H, dd)	H-5	7.03 (1H, dd)	H-5
6.81 (1H, d)	H-5′	6.75 (1H, d)	H-4	6.78 (1H, d)	H-4
6.40 (1H, d)	H-8	6.16 (1H, d)	H-7	6.31 (1H, d)	H-7
6.20 (1H, d)	H-6			5.24 (1H, s)	H-8
5.38 (1H, d)	H-1″			3.17 (2H, s)	H-12
5.12 (1H, s)	OH-3″				
4.84 (1H, s)	OH-4"				
4.42 (2H, s)	OH-6"				
3.65 (1H, s)	Н-6"а				
3.57 (1H, m)	H-6"b				

Table S.1: The ¹H NMR chemical shifts for the 3 purified compounds from H. noldeae (DMSO-d₆, 500 MHz).

Figure S.1: ¹H –NMR spectrum of Quercetin-3-0-glucoside (Isoquercetin) (DMSO-d₆, 500 MHz)

Figure S.2: ¹³C spectrum of Quercetin-3-O-glucoside (Isoquercetin) (DMSO-d₆, 500 MHz)

Figure S.3: 1H, 13C HMB of Quercetin-3-O-Glucoside (Isoquercetin) (DMSO-d₆, 500 MHz)

Figure S.4: Effect of different *H. noldeae*'s constituents on the THP-1 cell viability. Human leukemia THP-1 monocytes were cultured in RPMI 1640 supplemented with 10% heat-inactivated Fetal Bovine Serum (FBS), 1% glutamine and 1% of penicillin-streptomycin and maintained at 37 °C under 5% CO₂ in a humidified atmosphere. Cells were passaged at least 5 times before any experiment. Cells were then incubated with different compounds at given concentrations for 24 h at 37°C, 5%CO₂ in a humidified atmosphere. The cell viability was then evaluated by celltiter glo luminescent cell viability assay (Promega) according to the manufacturer instructions. Viability (%) = [RLU (treated cells)/ RLU (control cells)] x 100.

Compound concentrations (µg/ml)

Compound concentrations (µg/ml)

Figure S.5: Effect of different *H. noldeae*'s constituents on the RAW264.7 cell viability. RAW264.7 murine cells were cultured in DMEM supplemented with 10% heat-inactivated FBS, 1% glutamine, 1% penicillin-streptomycin and 1% Sodium pyruvate and maintained at 37 °C under 5% CO₂ in a humidified atmosphere. Cells were passaged at least 5 times, and allowed to acclimate for 24h, before any experiment. Cells were then incubated with different compounds at given concentrations for 24 h at 37°C, 5%CO₂ in a humidified atmosphere. The cell viability was then evaluated by celltiter-glo luminescent cell viability assay (Promega) according to the manufacturer instructions. Viability (%) = [RLU (treated cells)/ RLU (control cells)] x 100.

Compound concentrations (µg/ml)

Figure S.6: Crude extract and the ethylacetate fraction as well as the caffeic acid and semi-purified fractions (ER 2.4 and ER 2.7), thereof exhibited significant inhibition of pyroptosis in THP-1 derived macrophages. PMA-differentiated cells were pretreated by corresponding compounds for 1, and then primed by LPS (1µg/ml) for 3h. Cells were then stimulated by ATP (5mM) for additional 1 h. Samples(5µl) were collected and frozen in LDH Storage Buffer at 1:20 dilution. Samples were thawed, further diluted 5-fold and 50µl of diluted samples were added to 50µl LDH Detection Reagent. Luminescence was recorded after 60 min incubation at room temperature. The % Cytotoxicity = 100 X (Experimental LDH Release – Medium Background)/(Maximum LDH Release Control-Medium Background).