Supporting Materials

Ring-closing Metathesis Approaches Towards the Total Synthesis of Rhizoxins

Marc Liniger, Christian M. Neuhaus, Karl-Heinz Altmann ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 4, HCI H405, 8093 Zürich, Switzerland

Synthesis protocols and analytical data. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of new compounds.

General Methods

All non-aqueous manipulations were conducted under nitrogen or argon atmosphere in flame-dried glassware, using standard Schlenk-, syringe/septa- and/or glovebox techniques (MBraun Labmaster 130).
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from CaH ; THF, $\mathrm{Et}_{2} \mathrm{O}$, benzene, toluene were distilled from Na /benzophenone. All other absolute solvents were purchased from Fluka (absolute over molecular sieves). Commercial chemicals were used without further purification, unless otherwise noted.

Solvents for extractions, column chromatography and thin layer chromatography (TLC) were purchased as commercial grade and distilled prior to use. TLC was performed on Merck TLC aluminum sheets (silica gel 60, F254). Spots were visualized with UV light ($\lambda=$ 254 nm) or through staining with $\mathrm{KMnO}_{4} / \mathrm{K}_{2} \mathrm{CO}_{3}$ or vanillin/ $\mathrm{H}_{2} \mathrm{SO}_{4}$. Chromatographic purification of products was performed by flash chromatography (FC) using Fluka silica gel 60 for preparative column chromatography (particle size 40-63 $\mu \mathrm{m}$).
NMR spectra were recorded on a Bruker AV-400 400 MHz or a Bruker AV-500 500 MHz NMR spectrometer at 298 K. NMR spectra are referenced to the residual solvent peak $\left({ }^{1} \mathrm{H}\right.$ 7.26 ppm, ${ }^{13} \mathrm{C} 77.0 \mathrm{ppm}$ for $\mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H} 7.36 \mathrm{ppm},{ }^{13} \mathrm{C} 128.37 \mathrm{ppm}$ for $\mathrm{C}_{6} \mathrm{D}_{6}$). All ${ }^{13} \mathrm{C}$ spectra were measured with complete proton decoupling. Spin multiplicities are reported as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint = quintet, sext = sextet, $\mathrm{m}=$ multiplet, $\mathrm{m}_{\mathrm{c}}=$ centered multiplet, $\mathrm{br}=$ broad signal; $J=$ coupling constant in Hz .
Infrared spectra (IR) were recorded on a Jasco FT/IR-6200 instrument. Resonance frequencies are given as wavenumbers in cm^{-1}.

Optical rotations were measured on a Jasco P-1020 polarimeter and are reported as follows $[\alpha] \mathrm{D}^{24}$: concentration ($\mathrm{g} / 100 \mathrm{~mL}$) and solvent.
High resolution mass spectra (HRMS) were recorded by the ETH Zürich MS service on a Varian IonSpec Ultima (ESI) or a Waters Micromass Autospec Ultima spectrometer (EI). For analytical and semipreparative HPLC the following combination of devices by VWR HITACHI was used: column oven L-2350, diode array detector L-2455, autosampler L2200, pump L-2130. A Waters Symmetry C18, $3.5 \mu \mathrm{~m}, 4.6 \times 100 \mathrm{~mm}$ column was used for analytical purposes (oven at $40^{\circ} \mathrm{C}$). For semipreparative HPLC a Waters Symmetry C18, $5 \mu \mathrm{~m}, 7.8 \times 100 \mathrm{~mm}$ column was used (room temperature). For preparative HPLC a device by Gilson equipped with a Waters SymmetryPrep C18, $5 \mu \mathrm{~m}, 19 \mathrm{x} 100 \mathrm{~mm}$ column was used (room temperature).

Diastereomeric ratios $(d r)$ are based on intensity ratios of relevant signals in the ${ }^{1} \mathrm{H}-$ NMR spectrum of the diastereomeric mixture.

When products could not be (fully) separated from specific known impurities or contained significant amounts of solvent, yields were approximated from the w / w ratio of product $v s$ impurity/solvent based on the intensity ratio(s) of signals in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum.

Diethyl 2-(diiodomethyl)-2-methylmalonate (S2): To a suspension of NaH (5.51 g 60% dispersion in mineral oil, $138 \mathrm{mmol}, 1.20 \mathrm{eq}$) in $\mathrm{Et}_{2} \mathrm{O}(70 \mathrm{~mL})$ was added a solution of diethyl methylmalonate ($\mathbf{S 1}$) ($19.8 \mathrm{~mL}, 115 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{~mL})$ over 1 h with mechanical stirring. Gas evolution could be observed and a grayish slurry was formed over time. After another 40 min at rt , the mixture was heated to reflux (bath. temp. $45^{\circ} \mathrm{C}$) for 3 h . Then it was cooled to rt in a water bath and $\mathrm{CHI}_{3}(45.2 \mathrm{~g}, 115 \mathrm{mmol}, 1.00 \mathrm{eq}$) was added over ca. 10 min , whereupon the suspension turned less viscuous. The yellow reaction mixture was heated to reflux for 24 h . The yellow colour faded slowly over time and became beige in the end. The suspension was cooled to $0^{\circ} \mathrm{C}, 2 \mathrm{~m} \mathrm{HCl}(100 \mathrm{~mL})$ was added and the orange solution was stirred at rt for ca. 30 min . Then the layers were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. Crude S2 (50.5 g, dark brown liquid) was used without purification.

S3
(E)-3-Iodo-2-methylacrylic acid (S3): The crude diester S2 (50.5 g, ca. 0.115 mol) was dissolved in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ ($320 \mathrm{~mL}, 3: 1$) and $\mathrm{KOH}(16.7 \mathrm{~g}, 0.298 \mathrm{~mol}, \mathrm{ca} .2 .6 \mathrm{eq})$ was added. The mixture was heated to reflux (bath temp. $=97^{\circ} \mathrm{C}$) for 24 h . After cooling to rt, ethanol was removed under reduced pressure. The so obtained suspension was diluted with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (sat. aq.). The basic solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. Then it was acidified ($\mathrm{pH} \leq 1$) with conc. HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The brown crude was purified by column chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 40: 1 \rightarrow 15: 1$) to afford the desired vinyl iodide S3 (17.5 g, 72\% over two steps) as an amber liquid.
$\left.{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=8.02\left(\mathrm{~m}_{\mathrm{c}}, \mathrm{CH}=\mathrm{C}\right), 2.06(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH})^{2}\right)$.

102
(E)-3-Iodo-2-methylprop-2-en-1-ol (102): To a solution of the acid S3 (17.5 g, $82.6 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{Et}_{2} \mathrm{O}(160 \mathrm{~mL})$ was added LiAlH_{4} ($3.13 \mathrm{~g} 95 \%$ as $\mathrm{LAH}, 82.5 \mathrm{mmol}$, $1.00 \mathrm{eq})$ portionwise at $0^{\circ} \mathrm{C}$. Vigorous gas evolution was observed. The suspension was stirred at $0^{\circ} \mathrm{C}$ for 1 h 15 min and was then allowed to warm to rt . After 1 h 35 min , the gray suspension was recooled to $0^{\circ} \mathrm{C}$, the reaction was quenched with water (some $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (s) added before) and acidified with $\mathrm{H}_{2} \mathrm{SO}_{4}(2 \mathrm{~m}, 100 \mathrm{~mL}$). The layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 40 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude was purified by column chromatography (pent:Et2 O $2: 1 \rightarrow 1: 1)$ to afford the desired alcohol $102(14.3 \mathrm{~g}, 87 \%)$ as a nearly colourless liquid.

TLC (SiO_{2}, pent:Et ${ }_{2} \mathrm{O}$ 4:1): $\mathrm{R}_{f}=0.27$ (smears)
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.29\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.13(\mathrm{bs}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H})$.

14
(R)-4-Benzyl-3-propionyloxazolidin-2-one (14): To a solution of the commercially available oxazolidinone $\mathbf{S 4}(5.00 \mathrm{~g}, 28.2 \mathrm{mmol}, 1.00 \mathrm{eq})$ in THF (120 mL) was added n BuLi (19.4 mL 1.6 m in Hexanes, $31.0 \mathrm{mmol}, 1.10 \mathrm{eq}$) dropwise at $-78^{\circ} \mathrm{C}$. The resulting dark orange solution was aged at $-78^{\circ} \mathrm{C}$ for 35 min . Then propionyl chloride (4.93 mL , $56.4 \mathrm{mmol}, 2.00 \mathrm{eq}$) was added at $-78^{\circ} \mathrm{C}$. The dark colour discharged rapidly. The mixture was stirred for further 2 h 20 min at $-78{ }^{\circ} \mathrm{C}$. Then $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (sat. aq., 30 mL) was added to quench the remaining propionyl chloride and the mixture was diluted with NaCl (sat. aq., 15 mL) and EtOAc (20 mL). The layers were separated and the aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$:acetone $\left.15: 1\right)$ to afford the title compound as a yellow oil, which crystallised in a freezer ($-18^{\circ} \mathrm{C}$). The material was recrystallysed from hex:EtOAc (ca. 10:1, some hexane added). The yellow mother liquour was discarded and the crystals were washed with cold hexane to afford the title compound 14 ($5.97 \mathrm{~g}, 91 \%$) in colourless needles

TLC ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$:acetone 15:1): $\mathrm{R}_{f}=0.70$
${ }^{1} \mathbf{H}$-NMR ($\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}$): $\delta=7.38-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 2 \mathrm{H}), 4.68\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.25-$ $4.12(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{dd}, J=3.3 \mathrm{~Hz}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=7.3 \mathrm{~Hz}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.96$ $\left(\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.77(\mathrm{dd}, J=9.6 \mathrm{~Hz}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

(R)-4-Benzyl-3-((2R,3R,E)-3-hydroxy-5-iodo-2,4-dimethylpent-4-enoyl)-

 oxazolidin-2-one (15):Preparation of the aldehyde: To a solution of the allylic alcohol 102 ($7.51 \mathrm{~g}, 37.9 \mathrm{mmol}$, 1.00 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(140 \mathrm{~mL})$ were added $3 \AA$ Å molecular sieves beads and activated MnO_{2} ($66.0 \mathrm{~g}, 759 \mathrm{mmol}, 20.0 \mathrm{eq}$) at rt. The suspension was stirred for ca. 2 h at the same temperature. Then it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a pad of Celite, topped with a few mm of basic alox. The filter was washed thoroughly with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrates were concentrated under reduced pressure to a volume of ca. 55 mL and the crude aldehyde 13 was used directly in the following reaction.

Evans Aldol: To a solution of the Evans oxazolidinone 14 ($5.90 \mathrm{~g}, 25.3 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) was added Bu2BOTf (29.0 mL 1.0 m in hexanes, $29.0 \mathrm{mmol}, 1.15 \mathrm{eq}$) portionwise over ca. 30 min at $0^{\circ} \mathrm{C}$. The resulting brownish solution was aged for 5 10 min , then $\mathrm{NEt}_{3}(4.57 \mathrm{~mL}, 32.9 \mathrm{mmol}, 1.30 \mathrm{eq})$ was added dropwise over ca. 5 min . The brown colour faded and the mixture turned pale yellow (nearly colourless). The mixture was aged for $5-10 \mathrm{~min}$ and then cooled to $-78{ }^{\circ} \mathrm{C}$. After a few minutes stirring at $-78{ }^{\circ} \mathrm{C}$, a precooled ($-78^{\circ} \mathrm{C}$) solution of the aldehyde 13 (ca. $37.9 \mathrm{mmol}, 1.50 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. 55 mL) was added via cannula in several portions. The resulting pale yellow solution was stirred at the same temperature for 2 h and for 45 min at $0^{\circ} \mathrm{C}$, the yellow colour darkening, before it was quenched by the addition of pH 7 buffer. Afterwards the mixture was stored in a freezer over the weekend. Subsequently, $\mathrm{MeOH}\left(60 \mathrm{~mL}\right.$) and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}: \mathrm{MeOH} 1: 3$ (60 mL) were added at $0^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for 1 h . The organic solvents were removed at the rotavap. The dark brown residue was diluted with water (120 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and the layers were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (sat. aq., discoloured the brown layer on shaking), and brine, dried over MgSO_{4} and concentrated at the rotavap. The crude was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{Et}_{2} \mathrm{O} 20: 1 \rightarrow 10: 1\right)$ to afford the desired product 15 as amber crystals ($9.94 \mathrm{~g}, 92 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=7.38-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{bs}, 1 \mathrm{H}), 4.70$ ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}$), $4.51(\mathrm{bs}, 1 \mathrm{H}), 4.31-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.00\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.26(\mathrm{dd}, J=3.3 \mathrm{~Hz}, J=13.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.14(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=9.4 \mathrm{~Hz}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

Methyl (2R,3R,E)-3-hydroxy-5-iodo-2,4-dimethylpent-4-enoate (16): To a solution of the Evans aldol adduct 15 ($711 \mathrm{mg}, 1.66 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added $\mathrm{NaOMe}\left(4.56 \mathrm{~mL} 0.4 \mathrm{~m}\right.$ in $\mathrm{MeOH}, 1.82 \mathrm{mmol}, 1.10 \mathrm{eq}$) over 12 min at $0^{\circ} \mathrm{C}$. The mixture was aged for 13 min , then the reaction was quenched into ice cold $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq.). The layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 15 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{Et}_{2} \mathrm{O} 20: 1\right)$ to afford the desired ester 16 ($487 \mathrm{mg}, 92 \% \mathrm{wt} / \mathrm{wt}$ along with $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 446 \mathrm{mg}, 95 \%$) as a pale yellow liquid.

TLC (Hex:EtOAc 10:1): $\mathrm{R}_{f}=0.17$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.39\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.49\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{qd}$, $J=7.2 \mathrm{~Hz}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.79\left(\mathrm{~m}_{\mathrm{c}}, 3 \mathrm{H}\right), 1.12(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): \delta=175.8,145.9,79.3,75.8,52.1,42.2,21.1,10.5$.

ppm (t1)

ppm (t1)

Methyl (2R,3R,E)-5-iodo-3-methoxy-2,4-dimethylpent-4-enoate (S5): To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the alcohol $16(55.0 \mathrm{mg}, 0.194 \mathrm{mmol}, 1.00 \mathrm{eq})$ and $\mathrm{MeI}(0.121 \mathrm{~mL}$, $1.94 \mathrm{mmol}, 10.0 \mathrm{eq}$) in THF/DMF (3:1, 2 mL) was added $\mathrm{NaH}(7.00 \mathrm{mg}, 0.291 \mathrm{mmol}$, 1.50 eq). A pale yellow precipitate formed instantaneously. The slurry was stirred for 1 h 10 min at $0^{\circ} \mathrm{C}$. Then the reaction was quenched with pH 7 phosphate buffer (3 Pasteur pipettes). $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the layers were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude was purified by column chromatography (hex:Et ${ }_{2} \mathrm{O}$ 15:1) to afford the desired product $\mathbf{S 5}$ ($54.0 \mathrm{mg}, 94 \%$) as a colourless liquid.

TLC (hex:EtOAc 10:1): $\mathrm{R}_{f}=0.56$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.22\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.22$ $(\mathrm{s}, 3 \mathrm{H}), 2.68(\mathrm{qd}, J=6.9 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

(2S,3R,E)-5-Iodo-3-methoxy-2,4-dimethylpent-4-en-1-ol (S6): To a solution of the ester $\mathbf{S 5}(50 \mathrm{mg}, 0.168 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$ was added DIBAL (0.352 mL 1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.352 \mathrm{mmol}, 2.10 \mathrm{eq}$) dropwise at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 20 min at the same temperature and was then allowed to warm to $0^{\circ} \mathrm{C}$. After 1 h the reaction was quenched by successive addition of $\mathrm{MeOH}(0.1 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.30 \mathrm{~mL}), 10 \%$ aq NaOH (0.30 mL) and $\mathrm{H}_{2} \mathrm{O}(0.90 \mathrm{~mL})$. The aqueous phase was diluted with water, the layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude was filtered through a pad of silica ($\mathrm{Etz}_{2} \mathrm{O}$ as eluent) and concentrated again to afford the desired alcohol S6 ($44.1 \mathrm{mg}, 97 \%$) as a colourless oil which was used for the next step without purification.

TLC (Hex:EtOAc 5:1): $\mathrm{R}_{f}=0.20$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.20\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.67(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.53\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 3.24$
$(\mathrm{s}, 3 \mathrm{H}), 1.87\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.77(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.71(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

10
(2R,3R,E)-5-Iodo-3-methoxy-2,4-dimethylpent-4-enal (10): To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the alcohol $\mathbf{S 6}(41.7 \mathrm{mg}, 0.154 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ were added NaHCO_{3} ($16.9 \mathrm{mg}, 0.201 \mathrm{mmol}, 1.30 \mathrm{eq}$) and Dess-Martin periodinane (42.6 mg , $0.100 \mathrm{mmol}, 0.65 \mathrm{eq})$. The suspension was allowed to warm to rt. After 25 min , the mixture was re-cooled to $0^{\circ} \mathrm{C}$ again and more DMP ($42.6 \mathrm{mg}, 0.100 \mathrm{mmol}, 0.65 \mathrm{eq}$) was added. The cooling was removed again and the reaction was stirred at rt for a further 45 min . Since there was still little starting material left, more DMP (0.2 eq) and NaHCO_{3} (small spatula) were added. After another 20 min stirring at rt , the reaction was quenched with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (sat. aq.) and NaHCO_{3} (sat. aq.). The layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The combined organic extracts were washed with NaHCO_{3} (sat. aq., $3 \times$) and with brine, dried over MgSO_{4} and concentrated under reduced pressure. The residue was taken up in pentane and the resulting suspension was filtered through celite in a pipette. The filtrate was evaporated under reduced pressure to afford the desired aldehyde $\mathbf{1 0}$ ($42.7 \mathrm{mg},>100 \%, \mathrm{dr}=25 / 1$) as a brownish liquid, which was used in the next step without further purification.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=9.66(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.29\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.00(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.55\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.77(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

Methyl 2-(triphenyl-15-phosphaneylidene)propanoate (17): A mixture of methyl-2bromopropionate (S7) ($2.00 \mathrm{~mL}, 17.9 \mathrm{mmol}, 1.10 \mathrm{eq}$) and triphenylphosphine (4.27 g , $16.3 \mathrm{mmol}, 1.00 \mathrm{eq})$ in water (18.0 mL) was stirred at $70^{\circ} \mathrm{C}$ for 2.5 h . Both the aqueous and the organic layer still contained PPh_{3}. The temperature was raised to $80^{\circ} \mathrm{C}$ and the mixture was stirred for further 2 h . According to TLC, there was still a considerable amount of PPh_{3}. Therefore, the mixture was stirred at $75^{\circ} \mathrm{C}$ overnight. After totally 23 h the mixture was allowed to cool to rt. Afterwards aqueous $\mathrm{NaOH}(38 \mathrm{~mL} 1 \mathrm{~m}, 2.3 \mathrm{eq}$) was added, which led to the immediate precipitation of a yellow solid. The suspension was stirred for 5 min , then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added and the layers were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$, washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude was obtained as a yellow oil, which turned into a solid upon addition of pentane. The solid was washed with hexane $(3 \times 20 \mathrm{~mL})$ and dried in vacuo to afford phosphonium ylide 17 ($5.48 \mathrm{~g}, 97 \%$) as a slightly yellow powder.

19

Methyl (E)-2-methylpenta-2,4-dienoate (19): To a solution of the phosphonium ylide 17 ($62.1 \mathrm{~g}, 178 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(230 \mathrm{~mL})$ was added acrolein (18) (11.9 mL , $178 \mathrm{mmol}, 1.00 \mathrm{eq})$ dropwise at rt. The addition was ceased from time to time due to excessive boiling of the mixture. After the addition, the yellow solution was heated $\left(47^{\circ} \mathrm{C}\right.$ oil bath) to maintain a gentle reflux. After 3 h , the mixture was allowed to cool to rt and stored overnight. Then it was concentrated under reduced pressure (Vigreux, short path distillation, "Hausvakuum", $55^{\circ} \mathrm{C}$ oil bath), which took several hours. The concentrate was then cooled to $0^{\circ} \mathrm{C}$, pentane was added, the resulting suspension was filtered and the filter cake was washed with pentane. The combined filtrates were concentrated (Vigreux, short
path distillation, $50^{\circ} \mathrm{C}$ oil bath) and the crude was purified by distillation ($75-77^{\circ}$ oil bath, $20 \mathrm{mbar}, \mathrm{bp}=59-60^{\circ} \mathrm{C}$) to afford 19 as a colourless liquid (70\%).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=7.17\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 6.66$ (ddd, $J=10.1 \mathrm{~Hz}, J=11.3 \mathrm{~Hz}$, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.56\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.45\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.96\left(\mathrm{~m}_{\mathrm{c}}, 3 \mathrm{H}\right)$.

11
(E)-3-Methylhexa-3,5-dien-2-one (11): To a suspension (nearly a solution) of the ester $19(100 \mathrm{mg}, 0.793 \mathrm{mmol}, 1.00 \mathrm{eq})$ and N, O-dimethylhydroxylamine hydrochloride ($116 \mathrm{mg}, 1.19 \mathrm{mmol}, 1.50 \mathrm{eq}$) in THF (8 mL) was added MeMgCl (0.66 mL 3 m in THF, $1.98 \mathrm{mmol}, 2.50 \mathrm{eq}$) over 15 min (syringe pump) at $-15^{\circ} \mathrm{C}$. The mixture was aged for 10 min at the same temperature, warmed to $0^{\circ} \mathrm{C}$ and more $\mathrm{MeMgCl}(0.66 \mathrm{~mL} 3 \mathrm{~m}$ in THF, $1.98 \mathrm{mmol}, 2.50 \mathrm{eq}$) was added over 15 min . A reaction control by TLC showed clean conversion to two new spots, both more polar than the starting material. MS-Analysis indicated the presence of the Weinreb amide, whereas the ketone could not be identified. The mixture was stirred overnight, allowing the cooling bath to thaw. TLC and MS appeared unchanged. Therefore, the mixture was re-cooled to $0^{\circ} \mathrm{C}$ and more MeMgCl (0.396 mL 3 m in THF, $1.19 \mathrm{mmol}, 1.50 \mathrm{eq}$) was added over 15 min . After 20 min stirring at $0^{\circ} \mathrm{C}$, the mixture was allowed to warm to rt and stirred for further 2 h . Shortly after the addition, the TLC-spot presumably corresponding to the Weinreb amide had weakened, but even after 2 h it had not completely disappeared. Nevertheless, the reaction was quenched into $\mathrm{HCl}(20 \mathrm{~mL} 1 \mathrm{~m})$ under rapid stirring. The layers were separated and the aqueous phase was extracted with ether ($2 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with water and concentrated under reduced pressure. The crude was purified by column chromatography (pent:Et ${ }_{2} \mathrm{O}$ 10:1) to afford the desired ketone 11 ($45.0 \mathrm{mg}, 51 \%$) as a colourless liquid.

TLC (Hex:EtOAc 10:1): $\mathrm{R}_{f}=0.35$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=7.01(\mathrm{bd}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ (ddd, $J=10.1 \mathrm{~Hz}$, $J=10.9 \mathrm{~Hz}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{mc}, 1 \mathrm{H}), 5.51(\mathrm{mc}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.90\left(\mathrm{~m}_{\mathrm{c}}, 3 \mathrm{H}\right)$.

11
(\boldsymbol{E})-3-Methylhexa-3,5-dien-2-one (11): To a solution of the ester 19 (100 mg, $0.793 \mathrm{mmol}, 1.00 \mathrm{eq}$) was added LiHMDS (1.59 mL 1.0 m in THF/Ethylbenzene, 1.59 mmol , 2.00 mmol) at $-78^{\circ} \mathrm{C}$. After $15 \mathrm{~min}, \mathrm{MeMgCl}(0.396 \mathrm{~mL} 3 \mathrm{~m}$ in THF, $1.20 \mathrm{mmol}, 1.50 \mathrm{eq})$ was added slowly at the same temperature. The mixture was aged for 2.5 h at $-78^{\circ} \mathrm{C}$. TLC showed only very little conversion of ester 19 to ketone 11. Therefore, the cooling bath was allowed to warm to $+10^{\circ} \mathrm{C}$ over a period of 1.5 h . TLC then indicated high conversion. The mixture was recooled to $0^{\circ} \mathrm{C}$ and more $\mathrm{MeMgCl}(0.132 \mathrm{~mL} 3 \mathrm{~m}$ in THF, 0.396 mmol , $0.50 \mathrm{eq})$ was added dropwise. After 1 h at $0^{\circ} \mathrm{C}$ (TLC looked about the same as before, but seemingly some side product had formed) the reaction was quenched into ice cold HCl (20 mL 1 m). The layers were separated and the aqueous phase was extracted with ether $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. TLC of the crude revealed, that most probably some overaddition had taken place and that other side products were present. The crude was purified by column chromatography (pent:Etz2 10:1) to afford the desired ketone 11 ($30.6 \mathrm{mg}, 35 \%$). The material was identical to the ketone obtained by Weinreb ketone synthesis (vide supra).

1-Bromobutan-2-one (21a): To a solution of 2-butanone (20) ($18.6 \mathrm{~mL}, 208 \mathrm{mmol}$, 1.00 eq) and glacial acetic acid ($11.9 \mathrm{~mL}, 208 \mathrm{mmol}, 1.00 \mathrm{eq}$) in water (50 mL) was added bromine ($10.7 \mathrm{~mL}, 208 \mathrm{mmol}, 1.00 \mathrm{eq}$) dropwise at $65^{\circ} \mathrm{C}$ (oil bath at $75^{\circ} \mathrm{C}$) over 1 h 50 min . The first few drops of Br_{2} coloured the mixture deep orange and the colour persisted for several minutes before it suddenly faded. The colour of the following drops then discharged quickly. During the addition the solution turned into a biphasic mixture, the pale orange organic phase being at the bottom. After the addition, the mixture was stirred for further 30 min at $65^{\circ} \mathrm{C}$ and was then allowed to cool to rt . Cold water was
added and the mixture was neutralized with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (ca. 25 g). The layers were separated and the organic phase was dried over MgSO_{4}. The crude was purified by distillation (bath temp.: $100-135^{\circ} \mathrm{C}, \mathrm{p}=100 \mathrm{mbar}$) to afford the desired product 21a in a ca. 11:1 mixture with its regioisoner 21b (as an almost colourless liquid ($12.8 \mathrm{~g}, 41 \%$, bp $68-69^{\circ} \mathrm{C}$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=4.39(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 H)$.

3-(Triphenyl-15-phosphaneylidene)butan-2-one (22): To a solution of $\mathrm{PPh}_{3}(6.51 \mathrm{~g}$, $24.8 \mathrm{mmol}, 1.25 \mathrm{eq})$ in $\mathrm{MeCN}(40 \mathrm{~mL})$ was added the α-bromoketone 21a (3.00 g , $19.9 \mathrm{mmol}, 1.00 \mathrm{eq}$) at rt and the mixture was heated to $70^{\circ} \mathrm{C}$ for 19 h . The nearly colourless solution was allowed to cool to rt. Then phenolphthalein (5 mg) was added and $\mathrm{NaOH}(4 \mathrm{~m})$ was added until a pink colour persisted. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added and the layers were separated (organic layer was on top of the aqueous layer). The pink aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure, yielding a pale yellow solid $\left(7.74 \mathrm{~g}\right.$, ca. $70 \% \mathrm{wt} / \mathrm{wt}$ ylid along with $\mathrm{PPh}_{3}, 5.45 \mathrm{~g}, 82 \%, 4$ peaks in ${ }^{31} \mathrm{P}$ NMR!). The crude was transferred to a glas filter, triturated with hexane and dried in vacuo to afford 22 as a pale yellow solid (6.64 g , ca. $79 \% \mathrm{wt} / \mathrm{wt}$ along with PPh_{3} and an unknown impurity, 5.22 g, 79\%).
${ }^{31} \mathbf{P}-\mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): ~} \delta=29.0(?), 17.6$ (main peak), $14.8(?),-5.4\left(\mathrm{PPh}_{3}\right) .{ }^{\mathbf{1} \mathbf{H}-\mathrm{NMR}}$ $\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=7.72-7.37(\mathrm{~m}, 15 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.66\left(\mathrm{~d},{ }^{3}{ }_{\mathrm{H}}^{\mathrm{HP}}=15.5 \mathrm{~Hz}, 3 \mathrm{H}\right)$.

W.

11
(\boldsymbol{E})-3-Methylhexa-3,5-dien-2-one (11): To a solution of the phosphonium ylide 22 ($5.22 \mathrm{~g}, 15.7 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added acrolein (18) (1.10 mL , $16.5 \mathrm{mmol}, 1.05 \mathrm{eq}$) dropwise at rt. The temperature increased only $2-3^{\circ} \mathrm{C}$. After the addition, the yellow solution was stirred at rt for 5 min before it was heated to reflux (bath temp. $47^{\circ} \mathrm{C}$). After 3 h 45 min , the main spot on TLC was the desired product. However, the ylid was still present in the mixture referring to ESI-MS. Therefore, the mixture was refluxed overnight. ESI-MS and TLC appeared unchanged. Nevertheless, the mixture was allowed to cool to rt, transferred to a round bottom flask and ca. 15 mL of the solvent were removed on a rotary evaporator (800 mbar). The remaining yellow liquid was cooled to $0^{\circ} \mathrm{C}$, pentane (75 mL) was added and the suspension was stored in a fridge overnight. The precipitate was filtered off and washed with pentane. The combined filtrates were concentrated at the rotary evaporator. The crude was then purified by kugelrohr distillation to afford the dienone $\mathbf{1 1}$ (993 mg, 57\%) as a pale green liquid. For analytical data, see above.

23
(E)-Trimethyl((3-methylhexa-1,3,5-trien-2-yl)oxy)silane (23): To a solution of the methyl ketone 11 ($100 \mathrm{mg}, 0.908 \mathrm{mmol}, 1.00 \mathrm{eq}$), NEt_{3} ($0.189 \mathrm{~mL}, 1.36 \mathrm{mmol}, 1.50 \mathrm{eq}$) and TMS-Cl ($0.173 \mathrm{~mL}, 1.36 \mathrm{mmol}, 1.50 \mathrm{eq}$) in MeCN (0.4 mL) was added a solution of NaI ($204 \mathrm{mg}, 1.36 \mathrm{mmol}, 1.50 \mathrm{eq}$) in $\mathrm{MeCN}(1.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The cooling was removed, the pale yellow suspension was allowed to warm to rt and then stirred at $90^{\circ} \mathrm{C}$ overnight. The colour had changed to orange. After 18 h stirring at the same temperature, the mixture was re-cooled to $0^{\circ} \mathrm{C}$. Then cold pentane and ice water were added successively. The layers were separated and the aqueous phase was extracted with pentane ($2 \times 2 \mathrm{~mL}$). The combined organic extracts were washed with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq., $2 \times 2 \mathrm{~mL}$), dried over MgSO_{4} and concentrated under reduced pressure. The crude silyl enolether 23 ($145 \mathrm{mg}, 98 \%$ $\mathrm{wt} / \mathrm{wt}$ along with s.m. and pentane, $142 \mathrm{mg}, 86 \%$) was used without purification. \backslash
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.67(\mathrm{ddd}, J=10.0 \mathrm{~Hz}, J=11.3 \mathrm{~Hz}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.54$ $(\mathrm{bd}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=1.9 \mathrm{~Hz}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=1.7 \mathrm{~Hz}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.56(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{bs}, 1 \mathrm{H}), 1.88(\mathrm{bs}, 3 \mathrm{H}), 0.23(\mathrm{bs}, 9 \mathrm{H})$.

24
($3 E, 7 S, 8 S, 9 R, 10 E$)-7-Hydroxy-11-iodo-9-methoxy-4,8,10-trimethylundeca-1,3,10-
trien-5-one (24): A solution of the aldehyde $\mathbf{1 1}$ ($41.4 \mathrm{mg}, 0.154 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.5 \mathrm{~mL})$ was dried over molecular sieves ($3-4$ pellets, $3 \AA$) for a few minutes. Then TiCl_{4} (0.154 mL 1 m in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.154 \mathrm{mmol}, 1.00 \mathrm{eq}$) was added dropwise at $-78{ }^{\circ} \mathrm{C}$. The deep yellow solution was aged for 3 min before a solution of the TMS enolether 23 (56.3 mg , $0.309 \mathrm{mmol}, 2.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL}$, dried over molecular sieves, flask rinsed with 0.2 mL) was added dropwise at $-78^{\circ} \mathrm{C}$. The colour immediately turned dark red to brown. The solution was stirred for 20 min at the same temperature. Then $\mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{~mL}), 1 \mathrm{~m}$ $\mathrm{NaOH}(0.3 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.9 \mathrm{~mL})$ were added subsequently, and the layers were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude was purified by column chromatography (hex:EtOAc 10:1), which afforded the desired product 24 ($7.2 \mathrm{mg}, \mathrm{dr}=4: 1,12 \%$) as a nearly colourless oil along with some parent aldehyde ($9.2 \mathrm{mg}, \mathrm{dr}=10: 1,22 \%$).

TLC (hex:EtOAc 5:1): $\mathrm{R}_{f}=0.24$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=7.03(\mathrm{bd}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{mc}, 1 \mathrm{H}), 6.25(\mathrm{bs}, 1 \mathrm{H})$, $5.65(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{ddd}, J=2.4 \mathrm{~Hz}, J=5.7 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}$, 1 H), 3.79 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.24(\mathrm{~s}, 3 \mathrm{H}), 3.19$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.91 (dd, $J=8.9 \mathrm{~Hz}$, $J=17.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.77(\mathrm{dd}, J=3.5 \mathrm{~Hz}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.74$ (d, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.70\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 0.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

S8
(2R,3R,E)-3-Hydroxy-5-iodo-N-methoxy-N,2,4-trimethylpent-4-enamide (S8): To a suspension of N, O-dimethylhydroxylamine hydrochloride ($136 \mathrm{mg}, 1.40 \mathrm{mmol}, 3.00 \mathrm{eq}$) in THF (2.3 mL) was added AlMe3 (0.687 mL 2 m in heptanes, $1.37 \mathrm{mmol}, 2.95 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$. After 10-15 min the gas evolution had almost ceased and the cooling was removed. The colourless solution was aged for 1 h and then cooled to $-40^{\circ} \mathrm{C}$ (MeCN/dry ice). Afterwards a solution of the oxazolidinone 15 ($200 \mathrm{mg}, 0.466 \mathrm{mmol}, 1.00 \mathrm{eq}$) in THF (1 mL , rinsed with $2 \times 0.2 \mathrm{~mL}$) was added and the cooling was removed. After 2 h 25 min the reaction was quenched with Rochelle's salt (ca. 3 Pasteur pipettes) at $-10^{\circ} \mathrm{C}$ (ice $/ \mathrm{NaCl}$). The suspension was allowed to warm to rt and then stirred for another $2.5 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) was added and the layers were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated at under reduced pressure. The crude was then purified by column chromatography (hex:EtOAc 1:1) to afford the desired Weinreb amide S8 (140 mg, 96\%) as a colourless crystalline solid, along with recovered Evans oxazolidinone S4 ($80.5 \mathrm{mg}, 98 \%$) as a colourless solid.

TLC (hex:EtOAc 1:1): $\mathrm{R}_{f}=0.36$
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.43\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.42(\mathrm{bs}, 1 \mathrm{H}), 4.24(\mathrm{bs}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, 3.21 (s, 3H), 3.10 (d, J=6.5 Hz, 1H), 1.79 ($\mathrm{s}, 3 \mathrm{H}$), 1.08 (d, J=7.1 Hz, 3H).

S9
(2R,3R,E)-5-Iodo-N,3-dimethoxy-N,2,4-trimethylpent-4-enamide (S9): To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the alcohol $\mathbf{S 8}(1.43 \mathrm{~g}, 4.55 \mathrm{mmol}, 1.00 \mathrm{eq})$ and MeI ($2.84 \mathrm{~mL}, 45.6 \mathrm{mmol}$, 10.0 eq) in THF:DMF (3:1, 44 mL) was added NaH ($273 \mathrm{mg} 60 \%$ dispersion in mineral oil, $6.84 \mathrm{mmol}, 1.50 \mathrm{eq})$. A white precipitate formed with a short delay. The white suspension was stirred for 2 h at $0^{\circ} \mathrm{C}$. Then the reaction was quenched with pH 7 phosphate buffer. Water (100 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were added and the layers were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with water (50 mL) and brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude was purified by column chromatography (hex:EtOAc 2:1) to afford the desired methyl ether S9 (1.42 g, 95\%) as a nearly colourless liquid.

TLC (hex:EtOAc 1:1): $\mathrm{R}_{f}=0.57$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.22(\mathrm{bs}, 1 \mathrm{H}), 3.80(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.27-$ $3.06(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

(3R,4R,E)-6-Iodo-4-methoxy-3,5-dimethylhex-5-en-2-one (27): To a cooled solution (ca. $-20^{\circ} \mathrm{C}$, ice $/ \mathrm{NaCl}$) of the Weinreb amide $\mathbf{S} 9(1.42 \mathrm{~g}, 4.34 \mathrm{mmol}, 1.00 \mathrm{eq})$ in THF (55 mL) was added MeMgBr (5.79 mL 2.7 m in $\mathrm{Et} 2 \mathrm{O}^{\mathrm{O}}, 15.6 \mathrm{mmol}, 3.60 \mathrm{eq}$) over $<5 \mathrm{~min}$. The reaction mixture was stirred for 2.5 h , allowing for the cooling bath to thaw (it was still at ca. $-5^{\circ} \mathrm{C}$). Afterwards the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq.). Water (100 mL) was added, the mixture was shaken and the layers were separated. The aqueous phase was extracted with ether ($3 \times 30 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated at the rotavap. The crude was purified by column chromatography (hex:EtOAc 10:1) to afford the desired ketone 27 ($1.135 \mathrm{~g}, 93 \%$) as a pale yellow liquid.

TLC (Hex:EtOAc 5:1): $\mathrm{R}_{f}=0.42$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.22\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.86(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{p}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (CDCl3, 100.6 MHz): $\delta=209.9,145.3,86.4,80.2,57.0,50.1,29.3,20.0,12.2$.

(3R,4R,E)-6-Iodo-4-methoxy-3,5-dimethylhex-5-en-2-one (27): To a suspension (almost a solution) of the ester 19 ($100 \mathrm{mg}, 0.335 \mathrm{mmol}, 1.00 \mathrm{eq})$ and the hydroxylamine salt ($40.8 \mathrm{mg}, 0.418 \mathrm{mmol}, 1.25 \mathrm{eq}$) in THF (4 mL) was added $\mathrm{MeMgCl}(0.738 \mathrm{~mL} 3 \mathrm{~m}$ in THF, $2.21 \mathrm{mmol}, 6.60 \mathrm{eq}$) dropwise at $-10^{\circ} \mathrm{C}$ (ice $/ \mathrm{NaCl}$). The mixture was stirred for 2 h , allowing the cooling bath to thaw. Then the cooling was removed and the reaction was stirred at rt for another 3 h 25 min . The colour turned yellow. Afterwards the solution was poured into $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq.). The layers were separated and the aqueous phase was extracted with ether ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude was purified by column chromatography (hex:EtOAc 10:1) to afford the desired ketone 27 ($68.4 \mathrm{mg}, 72 \%$) as a colourless oil.

(E)-2-Methylpenta-2,4-dienal (26):

Reduction: To a cooled ($0^{\circ} \mathrm{C}$) solution of the ester $19(1.00 \mathrm{~g}, 7.93 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{Et}_{2} \mathrm{O}$ (40 mL) was added $\mathrm{LiAlH}_{4}(602 \mathrm{mg}, 15.9 \mathrm{mmol}, 2.00 \mathrm{eq}$) in one portion. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . Afterwards the reaction was quenched with water (8 mL), followed by $1 \mathrm{~m} \mathrm{NaOH}(8 \mathrm{~mL})$ and more water (24 mL). The layers were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. As the substance turned out to be very volatile, not all of the solvent was removed and the crude allylic alcohol 25 was directly used in the next step.

Oxidation: To a solution of the allylic alcohol 25 (estimated $778 \mathrm{mg}, 7.93 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ were added molecular sieves ($3 \AA$, beads) and activated $\mathrm{MnO}_{2}(13.8 \mathrm{~g}$, $159 \mathrm{mmol}, 20.0 \mathrm{eq})$ at rt. A slight warming was observed. The suspension was stirred for 3 h at the same temperature. Afterwards it was filtered through a pad of celite, topped with a few mm of silica. The filter was washed thoroughly with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}$. The combined filtrates were concentrated under reduced pressure and the crude aldehyde 26 ($840 \mathrm{mg}, 71 \% \mathrm{wt} / \mathrm{wt}$ along with $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 597 \mathrm{mg}, 78 \%$ over two steps) was used directly for the next step.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=9.48(\mathrm{~s}, 1 \mathrm{H}), 6.90-6.77(\mathrm{~m}, 2 \mathrm{H}), 5.77-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.65-$ $5.56(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H})$.

28
(1E,3R,4R,7S,8E)-7-Hydroxy-1-iodo-3-methoxy-2,4,8-trimethylundeca-1,8,10-
trien-5-one (28): To a cooled ($-78^{\circ} \mathrm{C}$) solution of (+)-DIP-Cl ($1.19 \mathrm{~g}, 3.71 \mathrm{mmol}, 2.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added $\mathrm{NEt}_{3}(0.618 \mathrm{~mL}, 4.45 \mathrm{mmol}, 2.40 \mathrm{eq})$ followed by a solution of the ketone 27 (523 mg , $1.85 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL , rinsed with $2 \times 2 \mathrm{~mL}$). Ca. 15 min after the addition of 27, a white precipitate formed. The thick suspension was stirred for 3 h 15 min at $-78^{\circ} \mathrm{C}$. Afterwards a solution of the aldehyde 26 ($356 \mathrm{mg}, 3.71 \mathrm{mmol}$, 2.00 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5.6 mL), which had been dried over molecular sieves for 10 min , was added slowly, whereupon the colour turned increasingly orange. The mixture was stirred for another 2 h at $-78^{\circ} \mathrm{C}$ (the colour faded towards a pale yellow) and was then allowed to stand in the freezer $\left(-18{ }^{\circ} \mathrm{C}\right)$ for 3 d . During this time the salts were dissolved and an orange, slightly turbid solution resulted. The reaction was quenched with pH 7 phosphate buffer and the layers were separated. The aqueous phase was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined extracts were concentrated under reduced pressure and the residue was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$. Then pH 7 phosphate buffer (2 mL) was added. The mixture was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 2.5 \mathrm{~mL}$) was added. The cooling was removed after a few minutes and the mixture was stirred for 1 h at rt. Afterwards it was poured into water (200 mL). $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added and the layers were separated. The aqueous phase was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with NaHCO_{3} (sat. aq.) and brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude (dr ca. 12:1) was purified by column chromatography (hex:EtOAc $10: 1 \rightarrow 5: 1$) to afford the desired β-hydroxy ketone 28 (1.10 g, 37\% wt/wt along with isopinocampheol, $407 \mathrm{mg}, 58 \%, \mathrm{dr}=14.8: 1$) as a nearly colourless oil.

TLC (hex:EtOAc 5:1): $\mathrm{R}_{f}=0.16$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.57$ (ddd, $J=10.2 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}=\mathrm{CH}\right), 6.25-6.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHI}), 6.13\left(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCH}\right), 5.23(\mathrm{dd}, J=1.9 \mathrm{~Hz}$,
$J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}=\mathrm{CH}$, trans $), 5.12(\mathrm{dd}, J=1.7 \mathrm{~Hz}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}=\mathrm{CH}$, cis $), 4.50(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHOH}$), 3.84 (dd, $J=0.5 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOMe}$), 3.22 (s, $3 \mathrm{H}, \mathrm{OCH}$), 2.88 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.77(\mathrm{p}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}), 2.68(\mathrm{dd}, J=9.3 \mathrm{~Hz}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{C}=0$), $2.55\left(\mathrm{dd}, J=2.7 \mathrm{~Hz}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=0\right), 1.76\left(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{CCH}_{3}\right)$, $1.75(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHI}=\mathrm{CCH} 3), 1.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH} 3)$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): \delta=212.7(C=0), 145.3\left(C_{\mathrm{q}}\right), 138.3\left(C_{\mathrm{q}}\right), 132.4(\mathrm{CH} 2=C \mathrm{H})$, $125.8\left(\mathrm{CH}_{2}=\mathrm{CHCH}\right), 117.6\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right), 86.4(\mathrm{CHOMe}), 80.6(\mathrm{CHI}), 72.1(\mathrm{CHOH}), 57.0\left(\mathrm{OCH}_{3}\right)$, $50.2(\mathrm{CHMe}), 47.6\left(\mathrm{CH}_{2} \mathrm{C}=0\right), 20.7\left(\mathrm{CHCH}_{3}\right), 19.9(\mathrm{CHI}=\mathrm{CCH} 3), 13.0\left(\mathrm{CH}=\mathrm{CCH}_{3}\right)$.
HRMS Calcd. for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{INO}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} m / z$ 396.1030. Found: 396.1036.

$p p m$			
$(t 1)$	150	100	50

29
($3 E, 5 S, 7 S, 8 S, 9 R, 10 E$)-11-Iodo-9-methoxy-4,8,10-trimethylundeca-1,3,10-triene-
5,7-diol (29): A solution of the borohydride ($330 \mathrm{mg}, 4.65 \mathrm{eq}$) in MeCN (1.1 mL) and AcOH (1.1 mL) was cooled to $-40^{\circ} \mathrm{C}$ (MeCN/dry ice). To the frozen mixture was added a solution of the ketone 28 ($102 \mathrm{mg}, 270 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$) in MeCN (0.3 mL , rinsed with $2 \times 0.3 \mathrm{~mL}$). The resulting thick slurry was stirred for a few minutes at the same temperature and was then aged in the freezer for 19.5 h . Afterwards the suspension was allowed to warm to rt and stirred for another 1 h . Then Rochelle salt (aq. sat.) was added to quench the reaction. A white suspension formed immediately. This mixture was stirred at rt for 1.5 h . Then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and NaHCO_{3} (sat. aq.) were added, the mixture was shaken, and the layers were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with NaHCO_{3} (sat. aq.) and with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude was purified by column chromatography (hex:Et2O 2:1 \rightarrow hex:EtOAc 1:1) to afford the desired diol 29 (94.4 mg , $92 \%, \mathrm{dr}=\mathrm{n} . \mathrm{d}$.$) as a colourless oil.$

TLC (hex:EtOAc 1:1): $\mathrm{R}_{f}=0.58$
$[\alpha] \mathbf{D}^{24}=+34.9\left(c=0.29, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.60$ (ddd, $J=10.2 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2}=\mathrm{CH}$), 6.21-6.16 (bd, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCH}$), 6.16-6.14 (m, 1H, CHI), 5.23 (dd, $J=1.9 \mathrm{~Hz}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}=\mathrm{CH}, \operatorname{trans}), 5.12(\mathrm{dd}, J=1.6 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}=\mathrm{CH}$, cis), 4.39 (m, 1H, CHOHCq${ }_{q} \mathrm{Me}$), 3.84 (bd, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOMe}$), 3.86-3.78 (m, 1H, CHMeCHOH), 3.27 (s, 3H, OCH3), 3.20 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMeCHOH}$), 2.64 (d, $J=4.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHOHC}_{\mathrm{q}} \mathrm{Me}$), 1.85-1.68 (m, 9H, CHMe, CH2, $\mathrm{CH}=\mathrm{CCH}_{3}, \mathrm{CHI}=\mathrm{CCH}_{3}$), $0.85(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CHCH}_{3}$).
${ }^{13} \mathbf{C}-\mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): ~} \delta=145.2(\mathrm{CHI}=C), 140.3(\mathrm{CH}=C), 132.6\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 125.0$ $\left(\mathrm{CH}_{2}=\mathrm{CHCH}\right), 117.2\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right), 86.6$ (CHOMe), 78.2 (CHI), 74.1 (CHOHCMe), 71.4
(CHOHCHMe), $57.3\left(\mathrm{OCH}_{3}\right), 40.7(\mathrm{CHMe}), 38.6\left(\mathrm{CH}_{2}\right), 21.8\left(\mathrm{CHI}=\mathrm{CCH}_{3}\right), 13.3(\mathrm{CH}=\mathrm{CCH} 3)$, $11.0\left(\mathrm{CHCH}_{3}\right)$.
IR ($\mathrm{v} /\left[\mathrm{cm}^{-1}\right]$) 3408 (br), 2978, 2934, 2830, 1720, 1671, 1620, 1446, 1380, 1364, 1260, $1247,1216,1193,1113,1088,1052,1012,989,927,907,751(\mathrm{~s}), 683,665,601,507,496$, 484, 470, 458.
HRMS Calcd. for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{INaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} m / z$ 403.0741. Found: 403.0728.

30
(1E,3R,4S,5S,7S,8E)-1-Iodo-3-methoxy-2,4,8-trimethyl-7-((triisopropylsilyl)oxy)-undeca-1,8,10-trien-5-ol (30): To a solution of the diol 29 ($85.5 \mathrm{mg}, 0.225 \mathrm{mmol}$, 1.00 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ over molecular sieves ($3 \AA$ beads) was added 2,6-lutidine ($131 \mu \mathrm{~L}, 1.12 \mathrm{mmol}, 5.00 \mathrm{eq}$) at rt. The mixture was stirred at rt for 5 min , then it was cooled to $-78^{\circ} \mathrm{C}$ and, after another 5 min stirring, TIPSOTf ($60.0 \mu \mathrm{~L}, 0.225 \mathrm{mmol}, 1.00 \mathrm{eq}$) was added. TLC after 10 min and after 25 min showed incomplete conversion. Therefore, more TIPSOTf ($5 \mu \mathrm{~L}$) was added after 32 min . After 40 min the reaction was complete and was thus quenched with NaHCO_{3} (sat. aq.). The layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. Then the combined organic extracts were washed with brine, dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude was purified by column chromatography (hex: $\mathrm{Et}_{2} \mathrm{O} 7: 1$) to afford the desired product $\mathbf{3 0}$ as a colourless oil ($109 \mathrm{mg}, 91 \%$), which turned solid in the freezer.

TLC (Hex:EtOAc 5:1): $\mathrm{R}_{f}=0.57$
$[\alpha] \mathbf{D}^{\mathbf{2 4}}=+25.1\left(c=0.32, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.60(\mathrm{ddd}, J=10.2 \mathrm{~Hz}, J=10.9 \mathrm{~Hz}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24-$ $6.18(\mathrm{bd}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.19(\mathrm{dd}, J=1.8 \mathrm{~Hz}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}$, $J=1.7 \mathrm{~Hz}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.73(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.14-$ $1.01(\mathrm{~m}, 21 \mathrm{H}), 0.84(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): \delta=146.2,138.9,132.5,125.8,116.8,86.5,77.9,76.3,69.7$, $57.2,41.2,38.0,21.1,18.03,18.00,13.9,12.3,10.1$.
IR ($\mathrm{v} /\left[\mathrm{cm}^{-1}\right]$) 3511 (br), 2942 (s), 2893, 2866 (s), 2360, 2340, 2333, 1721, 1696, 1653, 1621, 1601, 1463, 1380, 1256, 1194, 1136, 1112, 1089 (s), 1063 (s), 1011, 988 (s), 948, 883 (s), 823, 757, 680 (s), 601, 577, 512, 495, 464, 445, 428.
HRMS Calcd. for $\mathrm{C}_{24} \mathrm{H}_{45} \mathrm{INaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} m / z$ 559.2075. Found: 559.2069.

[^0]ppm (t1)

Methyl (R)-3-(tert-butyldimethylsilyloxy)-2-methylpropanoate (S10a): To a stirring solution of $(R)-(-)-3$-hydroxyisobutyric acid methyl ester (36) ($4.00 \mathrm{~mL}, 36.1 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (360 mL) was added at $0^{\circ} \mathrm{C}$ imidazole ($3.69 \mathrm{~g}, 54.1 \mathrm{mmol}, 1.5$ equiv) followed by TBSCl ($6.53 \mathrm{~g}, 43.3 \mathrm{mmol}, 1.2$ equiv). After stirring for 30 min at $0^{\circ} \mathrm{C}$ (the reaction was almost complete) and for 2 h at rt , the reaction mixture was quenched at rt with sat. $\mathrm{NH}_{4} \mathrm{Cl}(70 \mathrm{~mL})$ and water (50 mL). The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 x 60 mL). The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography (hexane \rightarrow hexane/ $\mathrm{Et}_{2} \mathrm{O}, 5: 1$) to give $\mathbf{S 1 0 a}(8.33 \mathrm{~g}, 99 \%$) as a colorless oil. The analytical data were identical to those reported in the literature. ${ }^{1}$
$\mathbf{R}_{\boldsymbol{f}}=0.68$ (hexane/Et ${ }_{2} \mathrm{O}, 5: 1$)
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.77(\mathrm{dd}, J=6.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{dd}, J=6.1$, $9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~m}, ~ 1 \mathrm{H}), 1.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl3): $\delta=175.5,65.2,51.5,42.5,25.8,18.2,13.4,-5.5$.
IR (neat, v/cm¹): 2953m, 2930m, 2858m, 1742s, 1462m, 1435w, 1389w, 1254w, 1254m, $1198 \mathrm{~m}, 1175 \mathrm{~m}, 1092 \mathrm{~s}, 835 \mathrm{~s}, 775 \mathrm{~s}$, 666w.

HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{2} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}]^{+}$: 255.1387 , found: 255.1392.

[^1]

S10b
Methyl (R)-3-((tert-butyldiphenylsilyl)oxy)-2-methylpropanoate (S10b): To a stirring solution of (R)-(-)-3-hydroxyisobutyric acid methyl ester (36) (350 mg, $2.96 \mathrm{mmol}, 1.0$ equiv) in DMF (3 mL) was added at rt imidazole ($303 \mathrm{mg}, 4.45 \mathrm{mmol}$, 1.5 equiv) followed by TBDPSCl ($0.92 \mathrm{~mL}, 3.55 \mathrm{mmol}, 1.2$ equiv) in one portion. After stirring for 18 h at rt , the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ and water $(15 \mathrm{~mL})$ and the layers were separated. The aqueous layer was extracted once with Et 2 O (30 mL). The combined organic extracts were washed with brine (20 mL), dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, 200:1 \rightarrow 100:1, then hexane/Et ${ }_{2} \mathrm{O}, 5: 1$) to give $\mathbf{S 1 0 b}$ ($971 \mathrm{mg}, 92 \%$) as a colorless oil. ${ }^{2}$
$\mathbf{R}_{\boldsymbol{f}}=0.62$ (hexane/Et $\mathrm{E}_{2} \mathrm{O}, 5: 1$)
${ }^{\mathbf{1}} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.72-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 6 \mathrm{H}), 3.84(\mathrm{dd}, J=6.9$, $9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=5.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.73\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.17(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 1.05 ($\mathrm{s}, 9 \mathrm{H}$).

[^2]

Methyl (R)-3-(benzyloxy)-2-methylpropanoate (S10c): To a solution of (R)-(-)-3hydroxyisobutyric acid methyl ester (36) ($318 \mathrm{mg}, 2.69 \mathrm{mmol}, \quad 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ cyclohexane (1:1, 9.1 mL) was added benzyl trichloroacetimidate (0.60 mL , $3.23 \mathrm{mmol}, 1.2$ equiv) and a few drops of TfOH (until the reaction began and the imidate salt started to precipitate). After stirring for 4 h at rt , the reaction mixture was diluted with sat. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with sat. NaHCO_{3} and brine, dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, 30:1 $\rightarrow 20: 1$) to give S10c as a colorless oil ($430 \mathrm{mg}, 77 \%$). ${ }^{3}$
$\mathbf{R}_{\boldsymbol{f}}=0.60$ (hexane/EtOAc, 5:1)
${ }^{\mathbf{1}} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.39-7.25$ (m, 5H), 4.53 (s, 2H), 3.70 (s, 3H), 3.67 (dd, $J=$ $7.3,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=5.9,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.19(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

[^3]

11a
(R)-3-(tert-butyldimethylsilyloxy)-2-methylpropanal (11a): To a stirring solution of S10a ($4.30 \mathrm{~g}, 18.5 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(185 \mathrm{~mL})$ was added dropwise at $-78{ }^{\circ} \mathrm{C}$ DIBAL ($19.0 \mathrm{~mL}, 19.0 \mathrm{mmol}, 1.0$ equiv, 1.0 m in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) with the aid of a mechanical syringe pump over 1.25 h . After the addition was complete, the reaction mixture was stirred for 1.25 h at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was quenched by addition of sat. Rochelle salt (100 mL) and stirred for 30 min at rt . The suspension was filtered over celite, the layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 70 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. The crude product 11a was directly used for the next step without further purification due to danger of racemization. The analytical data were identical to those reported in the literature. ${ }^{4}$
$\mathbf{R}_{\boldsymbol{f}}=0.60$ (hexane/EtOAc, 10:1)
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.74(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=5.2,10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.81(\mathrm{dd}, J=6.3,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.09(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}$, 6 H).
${ }^{13} \mathbf{C}$-NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=204.6,63.4,48.8,25.8,18.2,10.3,-5.5$.

[^4]

11b
(R)-3-((tert-Butyldiphenylsilyl)oxy)-2-methylpropanal (11a): To a stirring solution of S10b ($356 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise at $-78{ }^{\circ} \mathrm{C}$ DIBAL ($1.00 \mathrm{~mL}, 1.00 \mathrm{mmol}, 1.0$ equiv, $1.0 \mathrm{~m} \mathrm{in} \mathrm{CH}_{2} \mathrm{Cl}_{2}$) over 20 min . After the addition was complete, the reaction mixture was stirred for 1.5 h at $-78^{\circ} \mathrm{C}$. The reaction mixture was quenched by addition of sat. Rochelle salt (15 mL) and stirred for 1 h at rt . The suspension was then diluted with dichloromethane, the layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude product 11b was filtered over celite (eluting with hexane), concentrated and was directly used for the next step without further purification due to danger of racemization. ${ }^{5}$
$\mathbf{R}_{f}=0.60$ (hexane/Et ${ }_{2} 0,5: 1$)
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.77(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.33(\mathrm{~m}$, 6 H), 3.91 (dd, $J=5.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.85 (dd, $J=6.3,10.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.57(\mathrm{~m}, 1 \mathrm{H}), 1.11$ (d, J $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$.

[^5]

(\boldsymbol{R})-3-(Benzyloxy)-2-methylpropanal (11c): To a stirring solution of $\mathbf{S 1 0 c}(61.2 \mathrm{mg}$, 0.29 mmol , 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.8 \mathrm{~mL})$ was added dropwise at $-78^{\circ} \mathrm{C}$ DIBAL (0.38 mL , $0.38 \mathrm{mmol}, 1.3$ equiv, 1.0 m in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) over 30 min . After the addition was complete, the reaction mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. The reaction mixture was quenched by addition of sat. Rochelle salt (10 mL) and stirred for 1 h at rt . The suspension was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 20 mL). The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude product $\mathbf{1 c}$ was used for the next step without further purification due to danger of racemization. ${ }^{6}$
$\mathbf{R}_{\boldsymbol{f}}=0.42$ (hexane/EtOAc, 5:1)
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.73(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H})$, $3.69(\mathrm{dd}, J=6.3,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=3.9,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.67\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.14(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 H)$.

[^6]
((But-3-yn-1-yloxy)methyl)benzene (31): A solution of 3-butyn-1-ol ($2.0 \mathrm{~mL}, 26 \mathrm{mmol}$, 1.0 equiv) in THF (16 mL) was added dropwise to a suspension of $\mathrm{NaH}(1.3 \mathrm{~g}, 54 \mathrm{mmol}$, 2.1 equiv) in THF (28 mL) at $0^{\circ} \mathrm{C}$. After the adding TBAI ($50 \mathrm{mg}, 0.1 \mathrm{mmol}, 0.5 \mathrm{~mol} \%$) and benzylbromide ($3.5 \mathrm{~mL}, 29 \mathrm{mmol}, 1.1$ equiv) to the reaction mixture, stirring was continued for 1.5 h at $0^{\circ} \mathrm{C}$ and overnight at rt . The reaction mixture was quenched at $0^{\circ} \mathrm{C}$ with crushed ice until a clear, biphasic solution was formed. The layers were separated and the aqueous phase was extracted with EtOAc ($2 \times 60 \mathrm{~mL}$). The combined organic extracts were washed with water and brine, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, $90: 1 \rightarrow 80: 1 \rightarrow 60: 1$, then hexane/Et20, 10:1) to provide 31 (4.22 g , quant) as a yellowish oil. ${ }^{7}$
$\mathbf{R}_{\boldsymbol{f}}=0.57$ (hexane/Et 2 O, 10:1)
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.44-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.63(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{dt}, J=2.7,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl3): $\delta=138.0,128.3,127.6,81.2,72.9,69.3,68.1,19.8$.

[^7]

32

3-Iodobut-3-en-1-ol (32): To a suspension of NaI ($5.99 \mathrm{~g}, 40.0 \mathrm{mmol}, 2.0$ equiv) in acetonitrile (28 mL) was added TMSCl ($5.07 \mathrm{~mL}, 40.0 \mathrm{mmol}, 2.0$ equiv) followed by water ($0.36 \mathrm{~mL}, 20.0 \mathrm{mmol}, 1.0$ equiv). After 10 min , a solution of 32 ($3.20 \mathrm{~g}, 20.0 \mathrm{mmol}$, 1.0 equiv) in acetonitrile (7 mL) was added to the suspension and the reaction mixture was stirred for 1 h at rt . The reaction was quenched with water (70 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 120 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/Et ${ }_{2} \mathrm{O}, 10: 1 \rightarrow 5: 1$, then hexane/EtOAc, $5: 1 \rightarrow 3: 1$) to provide iodoalcohol 32 ($1.59 \mathrm{~g}, 40 \%$) as a brown liquid. ${ }^{8}$
$\mathbf{R}_{\boldsymbol{f}}=0.33$ (hexane/EtOAc, 1:1)
${ }^{\mathbf{1}} \mathbf{H}$-NMR (400.1 MHz, CDCl $_{3}$): $\delta=6.14\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.81\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.71(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.60$ (dt, $J=1.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.30 (brs, 1H).
${ }^{13}$ C-NMR (100.6 MHz, CDCl3): $\delta=128.4,107.4,60.9,48.0$.

[^8]

33
tert-Butyl((3-iodobut-3-en-1-yl)oxy)dimethylsilane (33): To a stirring solution of $\mathbf{3 2}$ ($652 \mathrm{mg}, 3.29 \mathrm{mmol}, 1.0$ equiv) in DMF (5 mL) was added at rt imidazole (336 mg , $4.94 \mathrm{mmol}, 1.5$ equiv) followed by TBSCl ($596 \mathrm{mg}, 3.03 \mathrm{mmol}, 1.2$ equiv). After stirring for 1.5 h at rt , anhydrous methanol (0.5 mL) was added to the reaction mixture to facilitate removal of excess TBSCl. After stirring for 30 min at rt , the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ and water (20 mL). The layers were separated and the aqueous layer was extracted once with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The combined organic extracts were washed with brine (25 mL), dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/ $\mathrm{Et}_{2} \mathrm{O}, 100: 1 \rightarrow$ hexane/ $\mathrm{Et}_{2} \mathrm{O}, 50: 1$) to give 33 ($1.00 \mathrm{~g}, 98 \%$) as a light purple oil.
$\mathbf{R}_{f}=0.56$ (hexane/Et $2 \mathrm{O}, 50: 1$)
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.08\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.76\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.73(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.59$ (dt, $J=0.9,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR (100.6 MHz, CDCl_{3}): $\delta=127.4,107.6,61.7,48.4,25.9,18.3,-5.2$.

12a
tert-Butyldimethyl((3-((trimethylsilyl)methyl)but-3-en-1-yl)oxy)silane (12a): To a slurry of $\mathrm{LiCl}\left(37.4 \mathrm{mg}, 0.88 \mathrm{mmol}, 4.0\right.$ equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) 4$ ($1.27 \mathrm{mg}, 0.5 \mathrm{~mol} \%$) in $\mathrm{Et} 2 \mathrm{O}^{2}$ (3.6 mL) was added a solution of 33 ($68.9 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{Et}_{2} \mathrm{O}$ (2.1 mL). After 10 min , (trimethylsilyl)methylmagnesium chloride (0.40 mL , 2.0 equiv, 1.1 m solution in $\left.\mathrm{Et}_{2} \mathrm{O}\right)^{9}$ was added at once. After stirring at rt for 1 h , the reaction mixture was quenched with sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and was extracted with hexane/Et2 $\mathrm{O}(1: 1,3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified by column chromatography (hexane/Et2O, $0.5 \% \mathrm{NEt}_{3}, 100 \% \rightarrow 400: 1 \rightarrow 200: 1$) to provide 12a ($55.7 \mathrm{mg}, 93 \%$) as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.78$ (hexane/Et ${ }_{2}$ O, 50:1)
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=4.75\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.67\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.74(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.26$ (dt, $J=0.9,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.01(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13}$ C-NMR (100.6 MHz, C ${ }_{6} \mathrm{D}_{6}$): $\delta=144.8,108.9,62.5,42.0,27.4,26.1,18.5,-1.3,-5.2$.

[^9]

($6 R, 7 R$)-2,2,3,3,6,13,13,14,14-Nonamethyl-9-methylene-4,12-dioxa-3,13-
disilapentadecan-7-ol (34a): To a stirring suspension of $\mathbf{1 2 a}$ ($178 \mathrm{mg}, 0.65 \mathrm{mmol}$, 2.1 equiv) and powdered $4 \AA$ molecular sieves (20 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$ was added dropwise SnCl_{4} ($0.62 \mathrm{~mL}, 0.62 \mathrm{mmol}, 2.0$ equiv, 1.0 m solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) at $-78{ }^{\circ} \mathrm{C}$. After stirring for 15 min at that temperature, a solution of $\mathbf{1 1 a}$ ($62.7 \mathrm{mg}, 0.31 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise. After stirring for 3 h at $-78^{\circ} \mathrm{C}$, the reaction mixture was quenched with sat. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 15 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified by column chromatography (hexane/ $\mathrm{Et}_{2} \mathrm{O}, 10: 1 \rightarrow 4: 1 \rightarrow 2: 1$) to provide an inseparable mixture of $\mathbf{3 4 a} / \mathbf{3 5 a}$ ($88.2 \mathrm{mg}, 71 \%$ over 2 steps, $d r$ 10:6.2) as a colorless oil. The analytical data are reported for the mixture of diastereoisomers.
$\mathbf{R}_{\boldsymbol{f}}=0.43$ and 0.38 (hexane/ $\mathrm{Et}_{2} \mathrm{O}, 5: 1$)
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.94-4.83(\mathrm{~m}, 2 \mathrm{H}), 4.00-3.58(\mathrm{~m}, 5 \mathrm{H}), 3.26(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}$, OH minor), 2.83 (d, $J=2.7 \mathrm{~Hz}, 0 \mathrm{OH}$ major), 2.37-2.07 (m, 4H), 1.80-1.66 (m, 1H), 0.93 (d, J $=7.0 \mathrm{~Hz}$, Me major), $0.91(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, Me minor), $0.90-0.87(2 \mathrm{~s}, 18 \mathrm{H}), 0.08-0.03(2 \mathrm{~s}, 6 \mathrm{H})$.

($6 R, 7 R$)-2,2,6,13,13,14,14-Heptamethyl-9-methylene-3,3-diphenyl-4,12-dioxa-
3,13-disilapentadecan-7-ol (34b): To a stirring solution of $\mathbf{1 1 b}$ ($103 \mathrm{mg}, 0.32 \mathrm{mmol}$, 1.0 equiv) and $\mathbf{1 2 a}$ ($188 \mathrm{mg}, 0.69 \mathrm{mmol}$, 2.2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added dropwise at $-78{ }^{\circ} \mathrm{C} \mathrm{TiCl}_{4}$ ($0.35 \mathrm{~mL}, 0.35 \mathrm{mmol}$, 1.1 equiv, 1.0 m solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). After stirring for 1.5 h at $-78{ }^{\circ} \mathrm{C}$, the reaction mixture was quenched with sat. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 25 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified by column chromatography (hexane/Et 2 O, 20:1 $\rightarrow 10: 1 \rightarrow 5: 1$) to provide an inseparable mixture of $\mathbf{3 4 b} / \mathbf{3 5 b}$ (62.1 mg , 37% over 2 steps, $d r$ 3:1.72) as a colorless oil. The analytical data are reported for the mixture of diastereoisomers.
$\mathbf{R}_{\boldsymbol{f}}=0.51$ and 0.45 (hexane/ $\mathrm{Et}_{2} \mathrm{O}, 5: 1$)
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.75-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.35(\mathrm{~m}, 6 \mathrm{H}), 4.95-4.85(\mathrm{~m}, 2 \mathrm{H})$, $4.03\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.85-3.62(\mathrm{~m}, 4 \mathrm{H}), 3.04(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 0 \mathrm{OH}$ minor), $2.61(\mathrm{~d}, J=3.1 \mathrm{~Hz}, \mathrm{OH}$ major), 2.40-2.07 (m, 4H), 1.86-1.70 (m, 1H), 1.07 (s, 9H), 0.97-0.92 (2d, 3H), 0.90 (s, 9H), 0.06 ($\mathrm{s}, 6 \mathrm{H}$).

(2R,3S)-1-(Benzyloxy)-7-(tert-butyldimethylsilyloxy)-2-methyl-5-methyleneheptan-3-ol (35c): To a stirring solution of 11c ($26.2 \mathrm{mg}, 0.15 \mathrm{mmol}$, 1.0 equiv) and $\mathbf{1 2 a}$ ($105 \mathrm{mg}, 0.39 \mathrm{mmol}, 2.6$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL})$ was added at $-78{ }^{\circ} \mathrm{C}$ TiCl_{4} ($0.20 \mathrm{~mL}, 0.20 \mathrm{mmol}$, 1.4 equiv, 1.0 m solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). After stirring for 1.5 h at $-78{ }^{\circ} \mathrm{C}$, the reaction mixture was quenched with sat. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified by column chromatography (hexane/Et2 E_{2}, $10: 1 \rightarrow 4: 1 \rightarrow 2: 1$) to provide an inseparable mixture of 35c/34c ($27.7 \mathrm{mg}, 50 \%$ over 2 steps, $d r 10: 3$) as a colorless oil. The analytical data are reported for the major isomer 35c:
$\mathbf{R}_{\boldsymbol{f}}=0.26$ (hexane/ Et ${ }_{2} \mathrm{O}$, 5:1)
${ }^{1} \mathbf{H}-$ NMR $\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.39-7.25(\mathrm{~m}, 5 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{t}, \mathrm{J}=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.72-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=2.1,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.36-2.25(\mathrm{~m}, 3 \mathrm{H}), 2.10(\mathrm{dd}, J$ $=9.8,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.89\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 0.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=144.3,138.2,128.4,127.6,113.8,73.8,73.3,72.4,62.4$, 42.2, 38.9, 38.7, 25.9, 18.3, 14.0, -5.3.

4-(Benzyloxy)-2-methylenebutan-1-ol (39) and 1-(benzyloxy)-3-methylbut-3-en-2-ol (40): To a solution of $\mathbf{3 8}{ }^{10}$ ($252 \mathrm{mg}, 1.43 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was added t - BuOOH ($0.29 \mathrm{~mL}, 1.45 \mathrm{mmol}, 1.0$ equiv, 5.0 m in decane) and SeO_{2} (16.9 mg , $0.15 \mathrm{mmol}, 10 \mathrm{~mol} \%$). After stirring for 2 h at $\mathrm{rt}, \mathrm{MeOH}(7 \mathrm{~mL})$ and NaBH_{4} (210 mg , $5.55 \mathrm{mmol}, 3.9$ equiv) were added to the reaction mixture at $0^{\circ} \mathrm{C}$ and stirring was continued for 30 min at that temperature. Sat. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/Et ${ }_{2} \mathrm{O}, 6: 1 \rightarrow 4: 1 \rightarrow 2: 1 \rightarrow 1: 1$) to provide 39 ($64.5 \mathrm{mg}, 23 \%, 38 \% \mathrm{brsm}$) as a yellow oil. ${ }^{11}$ Furthermore, secondary alcohol 40 (76.6 mg , 28%) and starting material 38 ($97.3 \mathrm{mg}, 39 \%$) were isolated. The analytical data for 39 matched those reported below.

Analytical data for 40:
$\mathbf{R}_{\boldsymbol{f}}=0.30$ (hexane/Et $\mathrm{E}_{2} \mathrm{O}, 2: 1$)
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.07\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.93\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.58(\mathrm{~s}$, $2 \mathrm{H}), 4.29(\mathrm{dd}, J=2.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=3.3,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=8.1,9.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.54 (brs, 1H), 1.74 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}-$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=143.8,137.8,128.4,127.8,127.7,112.0,73.3$ (2C), 18.7.

[^10]

4-(Benzyloxy)-2-methylenebutan-1-ol (39) and (E)-4-(benzyloxy)-2-methylbut-2-en-1-ol (43): To a stirred solution of 2,2,6,6-tetramethylpiperidine ($0.59 \mathrm{~mL}, 3.51 \mathrm{mmol}$, 2.25 equiv) in toluene (9.5 mL) was added at $0^{\circ} \mathrm{C} n-\operatorname{BuLi}(2.15 \mathrm{~mL}, 3.43 \mathrm{mmol}, 2.20$ equiv, 1.6 m in hexane) and stirring was continued for 30 min at that temperature. Then, Et 2 AlCl ($3.43 \mathrm{~mL}, 3.43 \mathrm{mmol}, 2.20$ equiv, 1.0 m in hexane) was added. After stirring for 30 min at $0^{\circ} \mathrm{C}$, a solution of $\mathbf{4 2}{ }^{12}$ ($300 \mathrm{mg}, 1.56 \mathrm{mmol}, 1.00$ equiv) in toluene (2.4 mL) was added slowly via syringe down the side of the flask. After 3 h at $0^{\circ} \mathrm{C}, 2 \mathrm{~m} \mathrm{HCl}(10 \mathrm{~mL})$, water (50 mL) and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ were added. The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (5 x 60 mL) and the combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/Et20, 10:1 $\rightarrow 5: 1 \rightarrow 2: 1 \rightarrow 1: 1 \rightarrow 0: 1$) to provide the desired alcohol 39 ($144 \mathrm{mg}, 48 \%$) and the regioisomers 43 ($46.9 \mathrm{mg}, 16 \%$). The analytical data for $\mathbf{3 9}$ matched those reported below.

Analytical data for 43:
$\mathbf{R}_{\boldsymbol{f}}=0.39$ (hexane/ EtOAc, 2:1)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.66\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}), 2.10(\mathrm{brs}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=139.3,138.2,128.3,127.7,127.6,121.2,72.3,67.8,66.1$, 13.8.

[^11]

ppm (t1)

45

4-(Benzyloxy)butan-1-ol (45): To a vigorously stirring suspension of $\mathrm{NaH}(4.44 \mathrm{~g}$, $111 \mathrm{mmol}, 1.2$ equiv, 60% dispersion in mineral oil) in THF (151 mL) was added at $0^{\circ} \mathrm{C}$ quickly a solution of 1,4-butanediol (44) ($41 \mathrm{~mL}, 463 \mathrm{mmol}, 5.0$ equiv) in THF (61 mL) via an addition funnel. After stirring for 50 min at rt , the reaction mixture was again cooled to $0^{\circ} \mathrm{C}$ and BnBr ($11.0 \mathrm{~mL}, 92.5 \mathrm{mmol}, 1.0$ equiv) was added dropwise via syringe. After stirring for 14 h at rt , the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(80 \mathrm{~mL})$ and water (50 mL). The layers were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (2 x 80 mL). The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, $2: 1 \rightarrow 1: 1$) to afford 45 ($16.2 \mathrm{~g}, 97 \%$) as a colorless oil. ${ }^{13}$
$\mathbf{R}_{\boldsymbol{f}}=0.28$ (hexane/EtOAc, 2:1)
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.52(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{bs}, 1 \mathrm{H}), 1.74-1.66\left(\mathrm{~m}_{\mathrm{c}}, 4 \mathrm{H}\right)$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=138.2,128.4,127.7,127.6,73.0,70.3,62.7,30.1,26.7$.
IR (neat, v / cm^{-1}): 3372br, 2938w, 2861m, 1496w, 1453m, 1362m, 1205w, 1096m, 1059s, 1028m, 957w, 734s, 697s, 611m.
HRMS (EI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}]^{+}: 180.1145$, found: 180.1142 .

[^12]

46

4-(Benzyloxy)-2-methylenebutanal (46): To a solution of oxalyl chloride ($2.76 \mathrm{~mL}, 32.6$ mmol, 1.5 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(157 \mathrm{~mL})$ was added dropwise at $-78^{\circ} \mathrm{C}$ DMSO ($4.64 \mathrm{~mL}, 65.3$ mmol, 3.0 equiv). After stirring for 20 min at that temperature, a solution of 45 (3.92 g , 21.8 mmol , 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($42 \mathrm{~mL}+10 \mathrm{~mL}$ of washing) was added dropwise over 20 min , and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Triethylamine ($15.2 \mathrm{~mL}, 109 \mathrm{mmol}, 5.0$ equiv) was added, and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for $30 \mathrm{~min} . \mathrm{CH}_{2} \mathrm{NMe}_{2} \mathrm{Cl}$ ($4.07 \mathrm{~g}, 43.5 \mathrm{mmol}, 2.0$ equiv) and DBU ($3.25 \mathrm{~mL}, 21.8 \mathrm{mmol}, 1.0$ equiv) were then added; the mixture was stirred at rt for 22 h , the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$, and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 300 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, 30:1 \rightarrow 10:1) to provide 46 ($3.56 \mathrm{~g}, 86 \%$ over 2 steps) as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.33$ (hexane/EtOAc, 10:1)
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.54(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.39(\mathrm{dd}, J=0.8,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.08(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{dt}, J=0.7,6.4 \mathrm{~Hz}$, 2 H).
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=194.4,147.0,138.2,135.6,128.4,127.6,72.8,67.9,28.3$. IR (neat, v/cm¹): 3088w, 3063w, 3031w, 2925w, 2858w, 1686s, 1496w, 1454m, 1361m, 1101s, 1029w, 948m, 737s, 698s..
HRMS (EI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}]^{+}: 190.0989$, found: 190.0991 .

39
NaBH_{4} reduction: A solution of 46 ($3.55 \mathrm{~g}, 18.7 \mathrm{mmol}, 1.0$ equiv) in EtOH (40 mL) was added over 20 min to a stirred suspension of $\mathrm{NaBH}_{4}(367 \mathrm{mg}, 9.70 \mathrm{mmol}, 0.52$ equiv) in EtOH (100 mL) at $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 40 min , brine (70 mL) and water (40 mL) were added, and the mixture was extracted with EtOAc ($2 \times 350 \mathrm{~mL}$). The combined organic extracts were washed with brine (80 mL), dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, 4:1 $\rightarrow 2: 1$) to provide 39 ($3.38 \mathrm{~g}, 94 \%$) as a colorless oil.
LiAlH_{4} reduction: To a solution of $\mathbf{4 6}(12.7 \mathrm{~g}, 66.8 \mathrm{mmol}, 1.0$ equiv) in THF (600 mL) was added at $0^{\circ} \mathrm{C} \mathrm{LiAlH}_{4}(1.32 \mathrm{~g}, 38.0 \mathrm{mmol}, 0.52$ equiv) in small portions over 5 min . After stirring at $0^{\circ} \mathrm{C}$ for 30 min , water (16 mL) was added dropwise at $0^{\circ} \mathrm{C}$ to the reaction mixture followed by $10 \% \mathrm{NaOH}(25 \mathrm{~mL})$ and water (150 mL). The colorless precipitate was filtered off and washed with THF. The mother liquor was transferred to a separatory funnel and diluted with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ and (80 mL). The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, $4: 1 \rightarrow 2: 1$) to provide 39 ($12.3 \mathrm{~g}, 96 \%$) as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.47$ (hexane/EtOAc, 2:1)
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.39-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.07(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H})$, $4.54(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{dt}, J=0.6,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{brs}, 1 \mathrm{H})$. ${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=146.8,137.9,128.4,127.7$ (2C), 112.2, 73.2, 69.7, 66.3, 33.9 .

IR (neat, v / cm^{-1}): 3384br, 3087w, 3065w, 3031w, 2911w, 2860m, 1454m, 1362m, 1206w, $1099 \mathrm{~s}, 1074 \mathrm{~s}, 1028 \mathrm{~s}, 901 \mathrm{~m}, 738 \mathrm{~s}, 698 \mathrm{~s}, 615 \mathrm{w}$.
HRMS (EI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}]^{+}: 192.1145$, found: 192.1139.

ppm (t1)

(((3-(Chloromethyl)but-3-en-1-yl)oxy)methyl)benzene (41):

Finkelstein reaction: To a suspension of $39(1.32 \mathrm{~g}, 6.87 \mathrm{mmol}, 1.0$ equiv) and LiCl ($660 \mathrm{mg}, 15.6 \mathrm{mmol}, 2.3$ equiv) in DMF (33 mL) was added dropwise at $0^{\circ} \mathrm{C}$ 2,6-lutidine ($1.81 \mathrm{~mL}, 15.5 \mathrm{mmol}, 2.3$ equiv) and $\mathrm{MsCl}(0.94 \mathrm{~mL}, 12.1 \mathrm{mmol}, 1.8$ equiv). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h and was alowed to warm to rt over 2 h . After quenching with water (70 mL) at $0^{\circ} \mathrm{C}$, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 120 \mathrm{~mL}$). The combined organic extracts were washed with water (50 mL) and brine (50 mL), dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/Et $2 \mathrm{O}, 60: 1 \rightarrow 40: 1 \rightarrow 20: 1$) to provide 41 (1.27 g, 88\%) as a yellow liquid.

Appel reaction: To a solution of $\mathbf{3 9}$ ($12.2 \mathrm{~g}, 63.5 \mathrm{mmol}, 1.0$ equiv) in acetonitrile (8.0 mL) was added at $0{ }^{\circ} \mathrm{C}$ triphenylphosphine ($21.6 \mathrm{~g}, 82.4 \mathrm{mmol}, 1.3$ equiv) and tetrachloromethane ($8.0 \mathrm{~mL}, 82.9 \mathrm{mmol}, 1.3$ equiv). After stirring for 2 h at rt , the reaction mixture was directly purified by column chromatography (hexane/Et ${ }_{2} \mathrm{O}, 20: 1$) to provide 41 ($12.7 \mathrm{~g}, 95 \%$) as a colorless liquid.
$\mathbf{R}_{\boldsymbol{f}}=0.33$ (hexane/Et ${ }_{2}$ O, 20:1).
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.39-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.53(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{dt}, J=0.7,6.5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=142.6,138.3,128.4,127.6$ (2C), 115.9, 73.0, 68.5, 48.4, 33.3.

IR (neat, v / cm^{-1}): $3087 \mathrm{w}, 3064 \mathrm{w}, 3031 \mathrm{w}, 2947 \mathrm{w}, 2859 \mathrm{~m}, 1496 \mathrm{w}, 1453 \mathrm{~m}, 1361 \mathrm{~m}, 1258 \mathrm{~m}$, 1206w, 1100s, 1028m, 909m, 737s, 698s, 611w.
HRMS (EI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}$ [M] ${ }^{+}$: 210.0806, found: 210.0812. (For ${ }^{35} \mathrm{Cl}$).

(4-(Benzyloxy)-2-methylenebutyl)tributylstannane (12b): Mg ($1.28 \mathrm{~g}, 52.8 \mathrm{mmol}$, 1.4 equiv) was dried with a heat gun under vacuum. After the flask had cooled to rt, THF (56 mL) was added followed by tributyltinchloride ($10.0 \mathrm{~mL}, 36.9 \mathrm{mmol}, 1.0$ equiv) and a crystal of iodine. $\mathbf{4 1}$ ($10.1 \mathrm{~g}, 47.9 \mathrm{mmol}, 1.3$ equiv) was added to this mixture with stirring at $0^{\circ} \mathrm{C}$ and with external ultrasound irradiation over a period of $30 \mathrm{~min}(+3 \mathrm{~mL}$ THF for washing). After stirring for 1.5 h (ultrasound) at $0^{\circ} \mathrm{C}$, a suspension was formed. At this point a few drops of dibromoethane were added and the reaction mixture was allowed to warm to rt. The reaction mixture was heated to reflux with a heat gun, the salts precipitated immediately and some more THF was added (10 mL). After stirring over night at rt , the reaction was quenched at $0^{\circ} \mathrm{C}$ with water (200 mL) and diluted with ether (250 mL). The layers were separated and the aqueous layer was extracted once with ether (300 mL). The combined organic extracts were washed with brine (160 mL), dried over MgSO_{4} and concentrated under reduced pressure to give the crude stannane $\mathbf{1 2 b}$ (19.0 g. 80\% purity).
${ }^{\mathbf{1}} \mathbf{H}$-NMR (400.1 MHz, CDCl $_{3}$): $\delta=7.39-7.25(\mathrm{~m}, 5 \mathrm{H}), 4.58\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.53(\mathrm{mc}, 2 \mathrm{H}), 4.49\left(\mathrm{~m}_{\mathrm{c}}\right.$, $1 \mathrm{H}), 3.59(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{~s}, 2 \mathrm{H}), 1.56-1.40(\mathrm{~m}, 6 \mathrm{H}), 1.30(\mathrm{~m} \mathrm{c}$, $6 \mathrm{H}), 0.95-0.82(\mathrm{~m}, 15 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=146.9,138.6,128.3,127.6,127.5,106.0,72.9,69.3,38.2$, 29.1, 27.3, 19.4, 13.7, 9.5.
${ }^{119}$ Sn-NMR (186.5 MHz, CDCl3): $\delta=-14.8$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{NaOSn}[\mathrm{M}+\mathrm{Na}]^{+}: 489.2154$; found: 489.2158.

47

(2R,3R)-7-(benzyloxy)-1-(tert-butyldimethylsilyloxy)-2-methyl-5-

methyleneheptan-3-ol (47): The reaction was performed in two parallel batches. A 250 mL Schlenk flask was charged with (R, R) - N, N^{\prime} '-bis-para-toluenesulfonyl-1,2-diamino-1,2-diphenylethane (48) ($4.98 \mathrm{~g}, 9.57 \mathrm{mmol}, 1.03$ equiv) and heated to $90^{\circ} \mathrm{C}$ under high vacuum (0.03 mbar). After 16 h , the resulting colorless solid was cooled to rt and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (65 mL) was added. This solution was cooled to $0^{\circ} \mathrm{C}$ and treated with $\mathrm{BBr}_{3}(9.6 \mathrm{~mL}$, $9.60 \mathrm{mmol}, 1.04$ equiv, 1.0 m in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The resulting brownish solution was stirred at $0^{\circ} \mathrm{C}$ for 10 min , warmed to rt , and stirred for 1 h . The solvent and HBr were removed carefully under reduced pressure (Schlenk). The resulting solid was dried under high vacuum for 1.5 h and was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(87 \mathrm{~mL})$, the solution was cooled to $0^{\circ} \mathrm{C}$, and $\mathbf{1 2 b}$ ($5.00 \mathrm{~g}, 10.7 \mathrm{mmol}, 1.16$ equiv) was added dropwise. After stirring for 16 h at rt, a solution of 11a ($1.87 \mathrm{~g}, 9.25 \mathrm{mmol}, 1.00$ equiv, crude) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}+3 \mathrm{~mL}$ for washing) was added dropwise at $-78^{\circ} \mathrm{C}$ over 1 h by means of a mechanical syringe pump. The reaction mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$; then pH 7 buffer (50 mL) was added and the mixture was allowed to warm to rt. At this point both batches of material were combined. The layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 60 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The resulting solid was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and filtered to recover the ligand ($9.36 \mathrm{~g}, 94 \%$ recovery). The filtrate was concentrated and the residue was purified by column chromatography (hexane/Et $20,10: 1 \rightarrow 5: 1 \rightarrow 4: 1$) to provide 47 ($5.16 \mathrm{~g}, 74 \%, d r$ 91:9) as a slightly yellowish oil.
$\mathbf{R}_{\boldsymbol{f}}=0.19$ (hexane/ Et $2 \mathrm{O}, 5: 1$)
$[\alpha] \mathbf{D}^{24}=-0.35^{\circ}\left[c=0.511, \mathrm{CHCl}_{3}\right]$
${ }^{1} \mathbf{H}$-NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.91(\mathrm{dd}, J=1.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{~s}$, 2 H), 3.97 (ddd, $J=2.8,5.2,11.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68 (ddd, $J=4.9,9.8,15.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.61 ($\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dt}, J=2.8,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.71$ ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}$), $0.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right): ~ \delta=144.0,138.4,128.3,127.7,127.5,113.3,72.9,71.6,68.9$, $67.8,41.6,39.0,35.8,25.9,18.2,10.3,-5.6$.

IR (neat, v / cm^{-1}): $3483 \mathrm{br}, 2954 \mathrm{~m}, 2930 \mathrm{~m}, 2857 \mathrm{~m}, 1467 \mathrm{w}, 1362 \mathrm{w}, 1254 \mathrm{~m}, 1092 \mathrm{~s}, 1025 \mathrm{~m}$, 836s, 776s, 738m, 697m, 669w.

HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 379.2663$; found: 379.2662.

S12
\boldsymbol{S}-Mosher ester S12: To a solution of 47 ($16.1 \mathrm{mg}, 42.5 \mu \mathrm{~mol}, 1.0$ equiv) in pyridine ($0.1 \mathrm{~mL}, 1.24 \mathrm{mmol}, 29$ equiv) was added DMAP ($15.5 \mathrm{mg}, 127 \mu \mathrm{~mol}, 3.0$ equiv) and (R)-$(-)-M T P A-C l(29 \mu \mathrm{~L}, 155 \mu \mathrm{~mol}, 3.7$ equiv). The reaction mixture was stirred for 16 h at rt and quenched with water (1 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 6 mL) and the combined organic extracts were dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (hexane/Et20, 10:1) to afford $\mathbf{S} \mathbf{1 2}$ as a colorless oil (12.4 mg, 49\%, 77\% brsm).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (hexane/ $\mathrm{Et}_{2} \mathrm{O}, 5: 1$)
$[\alpha] \mathrm{D}^{24}=-26.7^{\circ}\left[c=0.570, \mathrm{CHCl}_{3}\right]$
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.59-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.22(\mathrm{~m}, 8 \mathrm{H}), 5.51(\mathrm{dt}, J=2.6$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.32$ $(\mathrm{d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=7.2,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.38\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.88\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.9,142.1,138.4,132.5,129.5,128.3,128.2,127.6$, $127.5,127.5,123.4(q, J=288 \mathrm{~Hz}), 114.4,74.6,72.9,68.5,64.3,55.4,38.3,38.3,35.4,25.8$, 18.1, 10.1, -5.5. (quaternary carbon not visible)

IR (neat, v / cm^{-1}): $3066 \mathrm{w}, 2953 \mathrm{~m}, 2930 \mathrm{~m}, 2858 \mathrm{~m}, 1747 \mathrm{~s}, 1472 \mathrm{w}, 1257 \mathrm{~s}, 1169 \mathrm{~s}, 1104 \mathrm{~s}$, 1020m, 912w, 837s, 775m, 722m, 697m.
HRMS (ESI): m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 612.3327; found: 612.3313.

S13
\boldsymbol{R}-Mosher ester S13: To a solution of 47 ($17.3 \mathrm{mg}, 45.7 \mu \mathrm{~mol}, 1.0$ equiv) in pyridine ($0.1 \mathrm{~mL}, 1.24 \mathrm{mmol}, 27$ equiv) was added DMAP ($17.5 \mathrm{mg}, 143 \mu \mathrm{~mol}, 3.1$ equiv) and (S)-$(-)-M T P A-C l(29 \mu \mathrm{~L}, 155 \mu \mathrm{~mol}, 3.4$ equiv). The reaction mixture was stirred for 16 h at rt and quenched with water (1 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 6 mL) and the combined organic extracts were dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (hexane/Et20, 10:1) to afford $\mathbf{S 1 3}$ as a colorless oil ($22.7 \mathrm{mg}, 84 \%$).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (hexane/ $\mathrm{Et}_{2} \mathrm{O}$, 5:1)
$[\boldsymbol{\alpha}] \mathbf{D}^{24}=+4.4^{\circ}\left[c=1.07, \mathrm{CHCl}_{3}\right]$
${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.56-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.25(\mathrm{~m}, 8 \mathrm{H}), 5.51(\mathrm{dt}, J=2.7$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 1 \mathrm{H}), 3.41$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.46 (dd, $J=7.4,14.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.41(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.32 (dd, $J=6.9$, $14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.91\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.0,141.9,138.5,132.3,129.5,128.3,128.3,127.7$, 127.6, 127.5, 123.4 ($q, J=288 \mathrm{~Hz}$), 114.5, 74.5, 72.9, 68.5, 64.5, 55.2, 38.3, 35.4, 25.8, 18.1, 10.3, -5.5. (quaternary carbon not visible)

IR (neat, v / cm^{-1}): $3068 \mathrm{w}, 2953 \mathrm{~m}, 2929 \mathrm{~m}, 2857 \mathrm{~m}, 1744 \mathrm{~s}$, 1471w, 1256s, 1169s, 1104s, 1017m, 903w, 837s, 777m, 721m, 698m.

HRMS (ESI): m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 612.3327; found: 612.3320.

52
(2R,3R)-7-(Benzyloxy)-1-(tert-butyldimethylsilyloxy)-2-methyl-5-
methyleneheptan-3-yl acrylate (52): To a solution of 47 ($5.16 \mathrm{~g}, 13.6 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(115 \mathrm{~mL})$ was added at $-40^{\circ} \mathrm{C}$ DIPEA ($10.1 \mathrm{~mL}, 58.6 \mathrm{mmol}, 4.3$ equiv) followed by dropwise addition of acryloylchloride ($4.44 \mathrm{~mL}, 54.5 \mathrm{mmol}, 4.0$ equiv). The yellow reaction mixture was stirred at $-50^{\circ} \mathrm{C}$ for 1.5 h and then transferred into a vigorously stirred solution of sat. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL}) . \mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ was then added and the mixture was stirred for 30 min ; during this period the pH of the aqueous phase was controlled (pH 6-7) to prevent loss of TBS by acid formation (if necessary, some solid NaHCO_{3} was added). The layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \times 70 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/Et20, 30:1 $\rightarrow 7: 1$) to afford 52 ($5.02 \mathrm{~g}, 85 \%$) as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.51$ (hexane/ Et ${ }_{2} \mathrm{O}, 5: 1$)
$[\alpha]_{\mathbf{D}^{24}}=-5.0^{\circ}\left[c=0.533, \mathrm{CHCl}_{3}\right]$
${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.36-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.35(\mathrm{dd}, J=1.5,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.08$ (dd, $J=10.4,17.3 \mathrm{~Hz}, 1 \mathrm{H}$), $5.78(\mathrm{dd}, J=1.6,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{ddd}, J=3.6,6.2,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.85(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{dq}, J=6.6,9.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.45-2.28(\mathrm{~m}$, 4 H), $1.89\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 0.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.6,142.7,138.5,130.1,128.9,128.3,127.6,127.4$, $113.9,72.8,72.2,68.7,64.9,38.8,38.7,35.7,25.9,18.2,11.0,-5.5$.

IR (neat, v / cm^{-1}): 2953m, 2930m, 2857m, 1723s, 1459w, 1405m, 1268m, 1192s, 1095s, 1045m, 984m, 836s, 775s, 736m, 698m.
HRMS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{NO}_{4} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 450.3034$; found: 450.3048 .

52

(R)-4-(2-(Benzyloxy)ethyl)-6-((R)-1-(tert-butyldimethylsilyloxy)propan-2-yl)-5,6-dihydro-2H-pyran-2-one (53): To a solution of 52 ($44.9 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) in DCE (1.0 mL) was added Hoveyda-Grubbs' $2^{\text {nd }}$ generation catalyst ($3.9 \mathrm{mg}, 6.0 \mathrm{~mol} \%$). After refluxing for 24 h , a solution of Hoveyda-Grubbs' $2^{\text {nd }}$ generation catalyst (2.4 mg , $3.7 \mathrm{~mol} \%$) in DCE (0.4 mL) was added. After refluxing for 17 h , the reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography (hexane/EtOAc, 6:1 $\rightarrow 3: 1$) to afford 53 ($37.4 \mathrm{mg}, 89 \%$) as a greenish oil. In addition, 2.4 mg of the catalyst were recovered (38\%).
$\mathbf{R}_{f}=0.37$ (hexane/EtOAc, 3:1)
$[\boldsymbol{\alpha}]_{\mathbf{D}^{24}}=+35.8^{\circ}\left[c=0.667, \mathrm{CHCl}_{3}\right]$.
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.85\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.47(\mathrm{td}, J$ $=3.8,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.57-2.43(\mathrm{~m}, 3 \mathrm{H}), 2.16(\mathrm{dd}$, $J=3.5,17.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.86\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 0.99(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=165.4,158.7,137.7,128.5,127.8,127.7,116.7,77.6,73.2$, 67.0, 64.2, 39.5, 36.8, 31.5, 25.9, 18.2, 11.5, -5.5.

IR (neat, v / cm^{-1}): 2953m, 2929m, 2857m, 1718s, $1459 \mathrm{w}, 1389 \mathrm{w}, 1249 \mathrm{~s}, 1097 \mathrm{~s}, 1026 \mathrm{~m}$, 836s, 777s, 739m, 699m.

HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+$: 405.2456; found: 405.2461.

(5R,6R)-1-(Benzyloxy)-7-(tert-butyldimethylsilyloxy)-5-hydroxy-6-methyl-
heptan-3-one (54): To a solution of 52 ($56.6 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv) in dioxane/water (3:1, 1.5 mL) was added at rt OsO_{4} (4% aq. solution, $18.3 \mu \mathrm{~L}, 2 \mathrm{~mol} \%$) followed by 2,6lutidine ($34.8 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{NaIO}_{4}(128 \mathrm{mg}, 0.60 \mathrm{mmol}, 4.0$ equiv). The brownish reaction mixture was stirred for 2.5 h at rt , quenched with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (6 mL) and diluted with EtOAc (15 mL)/brine (6 mL). The layers were separated and the aqueous layer was extracted with EtOAc ($2 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, 4:1 $\rightarrow 3: 1$) to afford 54 ($53.6 \mathrm{mg}, 94 \%$) as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.39$ (hexane/ EtOAc, 3:1)
$[\alpha] \mathbf{D}^{24}=+13.2^{\circ}\left[c=0.700, \mathrm{CHCl}_{3}\right]$.
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{~m}, 1 \mathrm{H}), 3.75\left(\mathrm{~m}_{\mathrm{c}}\right.$, 2 H), 3.69 (dd, $J=4.4,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=6.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.76(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{dd}, J=9.3,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=3.4,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}$), 0.91 ($\mathrm{d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$), $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=209.5,138.0,128.4,127.7$ (2C), 73.2, 69.8, 66.9, 65.2, $47.7,43.7,39.3,25.9,18.2,10.8,-5.5,-5.6$.

IR (neat, v / cm^{-1}): $3484 \mathrm{brs}, 2954 \mathrm{~m}, 2930 \mathrm{~m}, 2858 \mathrm{~m}, 1712 \mathrm{~m}, 1468 \mathrm{w}, 1364 \mathrm{~m}, 1254 \mathrm{~m}$, 1095s, 1025m, 1008m, 836s, 776s, 739m, 699m.

HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NaO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 403.2275$, found: 403.2273.

(2R,3R)-7-(Benzyloxy)-1-(tert-butyldimethylsilyloxy)-2-methyl-5-oxoheptan-3-yl 2-(diethoxyphosphoryl)acetate (56): To a solution of diethylphosphonoacetic acid (55) ($0.38 \mathrm{~mL}, 2.36 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}$) over molecular sieves (570 mg powder, $4 \AA$) was added at $0^{\circ} \mathrm{C}$ CME-carbodiimide ($1.13 \mathrm{~g}, 2.68 \mathrm{mmol}, 1.7$ equiv) in one portion. After stirring the reaction mixture for 10 min at $0^{\circ} \mathrm{C}$, a solution of $54(599 \mathrm{mg}$, $1.57 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(19 \mathrm{~mL})$ was added at that temperature. The cooling bath was removed and a catalytic amount of DMAP ($19.2 \mathrm{mg}, 10 \mathrm{~mol} \%$) was added. After stirring for 1 h at rt , the reaction mixture was directly purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, then EtOAc) to afford 56 ($818 \mathrm{mg}, 93 \%$) as a colorless oil.
$\mathbf{R}_{f}=0.56$ (EtOAc)
$[\alpha] \mathrm{D}^{24}=+4.5^{\circ}\left[c=0.845, \mathrm{CHCl}_{3}\right]$.
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.36-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.42\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.13\left(\mathrm{~m}_{\mathrm{c}}\right.$, 4 H), $3.71(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{dd}, J=2.4,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.95-2.66(\mathrm{~m}, 6 \mathrm{H}), 1.90\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right)$, $1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.91(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.9,164.9(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 138.0,128.3,127.7,127.6$, $73.2,72.1,65.1,64.4,62.5(\mathrm{t}, J=6.7 \mathrm{~Hz}), 45.3,43.1,39.0,34.3(\mathrm{~d}, J=134 \mathrm{~Hz}), 25.8,18.1$, $16.3(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 11.5,-5.5,-5.6$.
${ }^{31} \mathbf{P}$-NMR ($162.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.8$.
IR (neat, v/cm ${ }^{-1}$): 2954m, 2931m, 2858m, 1736s, 1469w, 1392w, 1261s, 1210w, 1099s, 1052s, 1025s, 969m, 838s, 777m, 743m, 696w.

HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{47} \mathrm{NaO}_{8} \mathrm{PSi}[\mathrm{M}+\mathrm{Na}]^{+}: 581.2670$, found: 581.2659.

(R)-4-(2-(Benzyloxy)ethyl)-6-((R)-1-(tert-butyldimethylsilyloxy)propan-2-yl)-5,6-dihydro-2H-pyran-2-one (53): To a solution of 56 ($38.7 \mathrm{mg}, 69.3 \mu \mathrm{~mol}, 1.0$ equiv) in THF (2.0 mL) was added at $0^{\circ} \mathrm{C} \mathrm{NaH}(1.8 \mathrm{mg}, 76.2 \mu \mathrm{~mol}, 1.1$ equiv) in one portion. After stirring for 45 min at $0^{\circ} \mathrm{C}$, the reaction mixture was quenched with sat $\mathrm{NH}_{4} \mathrm{Cl}(8 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($2 \times 15 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (hexane/EtOAc, 3:1) to give 53 ($23.4 \mathrm{mg}, 83 \%$) as a colorless oil. The analytical data for $\mathbf{5 3}$ were identical to those reported above (vide supra).

(4R,6R)-6-((R)-1-(tert-butyldimethylsilyloxy)propan-2-yl)-4-(2-hydroxyethyl)-tetrahydro-2H-pyran-2-one (57): To a solution of 53 ($4.09 \mathrm{~g}, 10.1 \mathrm{mmol}, 1.0$ equiv) in EtOAc (80 mL) was added palladium hydroxide on carbon ($360 \mathrm{mg}, 5 \mathrm{~mol} \%, 20 \% \mathrm{wt} / \mathrm{wt}$ Pd). The mixture was stirred under a hydrogen atmosphere (9 bar) for 23 h while being monitored by MS and TLC. Then, the heterogeneous suspension was filtered over celite, the solvent was removed under reduced pressure and the residue was purified by column chromatography (hexane/EtOAc, $1: 1 \rightarrow 0: 1$) to afford 57 ($3.14 \mathrm{~g}, 98 \%$) as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.21$ (hexane/EtOAc, 1:1)
$[\alpha] \mathrm{D}^{24}=-22.5^{\circ}\left[c=0.535, \mathrm{CHCl}_{3}\right]$.
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.45(\mathrm{td}, J=3.0,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.62$ (dd, $J=7.6,9.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.54(\mathrm{dd}, J=5.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=5.3,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.17$ ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}$), 2.09 (dd, $\left.J=10.5,16.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.90(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.80\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.71-1.49$ $(\mathrm{m}, 2 \mathrm{H}), 1.38 \mathrm{~J}=11.9,25.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.6,80.2,64.2,59.7,40.3,38.9,36.4,32.7,28.6,25.9$, 18.2, 10.8, -5.5 .

IR (neat, v / cm^{-1}): $3434 \mathrm{br}, 2953 \mathrm{~m}, 2928 \mathrm{~m}, 2857 \mathrm{~m}, 1720 \mathrm{~m}, 1471 \mathrm{w}, 1389 \mathrm{w}, 1250 \mathrm{~s}, 1088 \mathrm{~m}$, 1054m, 1006m, 834s, 775s, 668m.
HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 317.2143$; found: 317.2143.

2-(($2 R, 4 S)$-2-((R)-1-(tert-butyldimethylsilyloxy)propan-2-yl)-6-oxotetrahydro-

2H-pyran-4-yl)acetaldehyde (8): To a solution of oxalyl chloride ($0.21 \mathrm{~mL}, 2.46 \mathrm{mmol}$, 1.5 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise a solution of DMSO (0.35 mL , $4.92 \mathrm{mmol}, 3.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.5 mL). After stirring at $-7{ }^{\circ} \mathrm{C}$ for 10 min , a solution of 57 ($519 \mathrm{mg}, 1.64 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise. The resultant cloudy mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , and then TEA ($0.91 \mathrm{~mL}, 6.56 \mathrm{mmol}, 4.0$ equiv) was added slowly and the reaction mixture was allowed to warm to room temperature (1 h). The reaction was quenched with water (20 mL), and the layers were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and the combined organic phases were washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by column chromatography (hexane/EtOAc, 2:1) to afford 8 ($483 \mathrm{mg}, 94 \%$) as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.52$ (hexane/EtOAc, 1:1)
$[\alpha]_{D^{24}}=-27.5^{\circ}\left[c=0.525, \mathrm{CHCl}_{3}\right]$.
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.77(\mathrm{t}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{ddd}, J=3.0,3.5,12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.61(\mathrm{dd}, J=7.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=5.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{ddd}, J=1.7,6.0,17.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.64-2.48(\mathrm{~m}, 3 \mathrm{H}), 2.10(\mathrm{dd}, J=9.8,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.80\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.40$ ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}$), 0.92 ($\mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}$), $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=199.6,170.6,79.9,64.1,49.9,40.2,35.9,32.3,26.2,25.9$, 18.2, 10.8, -5.5.

IR (neat, v / cm^{-1}): 2954m, 2928m, 2857m, 1725s, 1471m, 1388m, 1361w, 1248s, 1080m, 1005m, 921w, 835s, 776s, 668m.

HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{NaO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 337.1806$, found: 337.1821.

58
tert-Butyl 2-(triphenyl-15-phosphaneylidene)acetate (58): To a stirred solution of triphenylphosphine ($9.90 \mathrm{~g}, 37.7 \mathrm{mmol}, 1.0$ equiv) in toluene (22 mL) was added dropwise at $0^{\circ} \mathrm{C}$ tert-butyl bromoacetate ($5.50 \mathrm{~mL}, 37.7 \mathrm{mmol}, 1.0$ equiv). The reaction mixture was allowed to warm to rt and stirring was continued over night. The colorless precipitate was filtered off, washed with pentane ($2 \times 25 \mathrm{~mL}$) and dried under high vacuum to afford the phosphonium salt as a colorless solid ($16.1 \mathrm{~g}, 93 \%$).

This salt was dissolved in water (300 mL) and the solution was washed with $\mathrm{Etz}_{2} \mathrm{O}(60 \mathrm{~mL})$. The aqueous layer was separated and phenolphthalein (6 mg) was added. The homogeneous solution was cooled to $0^{\circ} \mathrm{C}$ and aq. NaOH (at the beginning 8 mL of a 4 M solution, then 1 M solution) was added dropwise until the pink color persisted. Unfortunately, the ylide did not precipitate due to small amounts of $\mathrm{Et}_{2} \mathrm{O}$ present, and subsequent filtration failed. Therefore, the aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 100 \mathrm{~mL}$) and the combined organic extracts were dried over MgSO_{4}, filtered and concentrated under reduced pressure. After drying under high vacuum, a gummy resin was formed, which did not solidify (13.4 g). This residue was dissolved in MeOH (30 mL) and water (70 mL) was added quickly to this vigorously stirred solution, which led to immediate precipitation of the ylide. This heterogeneous solution was stored in the fridge for 3 h , filtered and washed repeatedly with cold water ($0^{\circ} \mathrm{C}, 5 \times 20 \mathrm{~mL}$). After drying under high vacuum, $\mathbf{5 8}$ ($12.5 \mathrm{~g}, 95 \%$) was obtained as a colorless solid. ${ }^{14}$
${ }^{1} \mathbf{H}-$ NMR (400.1 MHz, CDCl $_{3}$): $\delta=7.74-7.58(\mathrm{~m}, 6 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.35(\mathrm{~m}, 6 \mathrm{H})$, 2.67 (br s, 1H), 1.20 (br s, 9H).

[^13]

59
tert-Butyl (E)-4-((2R,4R)-2-((R)-1-(tert-butyldimethylsilyloxy)propan-2-yl)-6-oxo-tetrahydro-2H-pyran-4-yl)but-2-enoate (59): To a solution of $\mathbf{8}(73 \mathrm{mg}, 0.23 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.3 mL) was added $0{ }^{\circ} \mathrm{C}$ the ylide 57^{14} ($113 \mathrm{mg}, 0.30 \mathrm{mmol}$, 1.3 equiv). After stirring for 30 min at that temperature, the reaction mixture was allowed to warm to rt and was concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, 6:1 \rightarrow 5:1) to give 59 as a colorless oil (84.4 mg , 84\%).
$\mathbf{R}_{\boldsymbol{f}}=0.32$ (hexane/EtOAc, 3:1)
$[\alpha] \mathbf{D}^{24}=-16.0^{\circ}\left[c=0.904, \mathrm{CHCl}_{3}\right]$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.75(\mathrm{td}, J=7.3,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.43(\mathrm{td}, J=3.3,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=7.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=5.3,10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.70\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.28-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.89\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.80\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.36\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right)$, $0.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.9,165.4,143.1,125.8,80.5,80.1,64.2,40.3,38.6$, 36.1, 32.3, 31.2, 28.1, 25.9, 18.2, 10.9, -5.5.

IR (neat, v / cm^{-1}): 2955m, 2929m, 2857w, 1733m, 1712m, 1654w, 1472w, 1367m, 1249m, $1150 \mathrm{~s}, 1082 \mathrm{~m}, 1027 \mathrm{~m}, 980 \mathrm{~m}, 835 \mathrm{~s}, 775 \mathrm{~s}, 754 \mathrm{~m}, 669 \mathrm{~m}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{NO}_{5} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 430.2983$, found: 430.2982 .

60

tert-Butyl (E)-4-((2R,4R)-2-((R)-1-hydroxypropan-2-yl)-6-oxotetrahydro-2H-

pyran-4-yl)but-2-enoate (60): To a solution of $\mathbf{5 9}$ ($79.9 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.0$ equiv) in THF (1.9 mL) was added at $0^{\circ} \mathrm{C}$ TBAF ($0.77 \mathrm{~mL}, 0.77 \mathrm{mmol}, 4.0$ equiv, 1.0 m in THF) and AcOH ($44 \mu \mathrm{~L}, 0.77 \mathrm{mmol}, 4.0$ equiv). After stirring for 18 h at rt , the reaction mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, the aqueous layer was extracted with EtOAc (3 x 15 mL). The combined organic extracts were washed with brine, dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, $1: 1 \rightarrow 1: 2 \rightarrow 0: 1$) to give $60(57.2 \mathrm{mg}, 96 \%)$ as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.54$ (EtOAc)
$[\boldsymbol{\alpha}] \mathbf{D}^{24}=-12.9^{\circ}\left[c=0.524, \mathrm{CHCl}_{3}\right]$
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.74(\mathrm{td}, J=7.3,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{td}, J=1.2,15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.52(\mathrm{td}, J=3.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=7.8,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=5.3,10.7 \mathrm{~Hz}$, 1H), 2.71 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}$), 2.27-2.08 (m, 4H), 1.93-1.82 (m, 2H), 1.48 (s, 9H), 1.45-1.29 (m, 1H), $0.96(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=170.9,165.4,143.0,125.8,80.6,80.1,64.2,40.3,38.5$, 36.1, 32.1, 31.2, 28.1, 10.5 .

IR (neat, v / cm^{-1}): $3451 \mathrm{br}, 2975 \mathrm{~m}, 2930 \mathrm{~m}, 2885 \mathrm{~m}, 1709 \mathrm{~s}, 1653 \mathrm{~m}, 1457 \mathrm{w}, 1391 \mathrm{~m}, 1367 \mathrm{~m}$, $1332 \mathrm{~m}, 1313 \mathrm{~m}, 1294 \mathrm{~m}, 1250 \mathrm{~s}, 1151 \mathrm{~s}, 1034 \mathrm{~m}, 988 \mathrm{~m}, 850 \mathrm{w}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{NO}_{5}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 316.2118$, found: 316.2115.

61

tert-Butyl (E)-4-((4R,6R)-2-oxo-6-((S)-1-oxopropan-2-yl)tetrahydro-2H-pyran-4-

yl)but-2-enoate (61): To a solution of $\mathbf{6 0}$ ($442 \mathrm{mg}, 1.48 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL) was added at $0^{\circ} \mathrm{C}$ Dess-Martin periodinane ($754 \mathrm{mg}, 1.78 \mathrm{mmol}, 1.2$ equiv) in one portion. After stirring for 2 h at rt, sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\left(30 \mathrm{~mL}\right.$), sat. $\mathrm{NaHCO}_{3}\left(30 \mathrm{~mL}\right.$) and $\mathrm{Et}_{2} \mathrm{O}$ $(150 \mathrm{~mL})$ were added at rt to the reaction mixture. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The combined organic extracts were washed with sat. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product 140 (514 mg , containing residual solvent) was used for the next step without further purification.
$\mathbf{R}_{\boldsymbol{f}}=0.75$ (EtOAc).
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.73(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{td}, J=7.2,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.80$ ($\mathrm{d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.70(\mathrm{ddd}, J=2.9,4.7,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.62\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.29-$ 2.06 (m, 4H), 1.99 (mc, 1H), 1.48 (s, 9H), 1.34 (mc, 1H), $1.24(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=201.7,169.8,165.3,142.6,126.1,80.7,78.8,50.2,38.3$, 35.9, 32.0, 31.0, 28.1, 8.6.

63

tert-Butyl $(E)-4-((2 R, 4 R)-2-((R)-b u t-3-e n-2-y l)-6-o x o t e t r a h y d r o-2 H-p y r a n-4-~$

yl)but-2-enoate (63): To a solution of $61(439 \mathrm{mg}, 1.48 \mathrm{mmol}, 1.0$ equiv) and the Julia PT sulfone 62^{15} ($432 \mathrm{mg}, 1.93 \mathrm{mmol}, 1.3$ equiv) in THF (15 mL) was added at $-78^{\circ} \mathrm{C}$ solid NaHMDS ($353 \mathrm{mg}, 1.93 \mathrm{mmol}, 1.3$ equiv). After stirring the yellowish solution at $-78^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was allowed to warm to rt over 2 h . A pH7 buffer solution (20 mL) was added at $0^{\circ} \mathrm{C}$ and the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (hexane/EtOAc, 3:1) to afford 63 (294 mg) as a mixture with the Julia PT sulfone 62 (204 $\mathrm{mg})(38 \%$ yield of 63).
$\mathbf{R}_{f}=0.29$ (hexane/EtOAc, 3:1)
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.71$ ($\mathrm{td}, J=7.3,15.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.81-5.67(\mathrm{~m}, 2 \mathrm{H}), 5.13-$ $5.04(\mathrm{~m}, 2 \mathrm{H}), 4.11$ (ddd, $J=2.8,6.2,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.66\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.42\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.26-2.13$ (m, 2H), 2.12-1.98 (m, 2H), 1.93 (d, J = $13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.45$ (s, 9H), 1.27-1.12 (m, 1H), 1.08 ($\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=170.6,165.3,143.0,138.4,125.7,116.3,83.1,80.4,42.5$, 38.4, 35.9, 31.7, 30.8, 28.0, 15.1.

HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 312.2169, found: 312.2166.

[^14]

6

(E)-4-((2R,4R)-2-((R)-But-3-en-2-yl)-6-oxotetrahydro-2H-pyran-4-yl)but-2-enoic

 acid (6): To a solution 5 (284 mg , containing Julia PT sulfone) was added at $0^{\circ} \mathrm{C}$ a solution of TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($1.0 \mathrm{~m}, 7.7 \mathrm{~mL}$, ca. 14 equiv of TFA). The reaction mixture was stirred at rt for 17 h . Then, the reaction mixture was concentrated under reduced pressure and the crude purified by column chromatography (hexane/EtOAc, 1:1, then EtOAc/MeOH/AcOH, 30:1:0.5) to afford 6 (164 mg , quant.) as a brownish oil.$\mathbf{R}_{\boldsymbol{f}}=0.54$ (chloroform/MeOH/water/AcOH, 90:10:1.0:0.5)
$[\alpha]_{\mathbf{D}^{24}}=+5.5^{\circ}\left[c=0.391, \mathrm{CHCl}_{3}\right]$.
${ }^{1} \mathrm{H}$-NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.0$ (br s, 1H), $6.95\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.87(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.73 (ddd, $J=7.7,10.4,17.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.16-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.14$ (ddd, $J=2.9,6.3,11.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.70(\mathrm{q}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.34-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~d}, J=$ $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.29-1.15(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.0$ ($2 \mathrm{x} \mathrm{C}=0$), 147.4, 138.3, 123.3, 116.5, 83.3, 42.6, 38.6, 35.9, 31.7, 30.7, 15.2.

IR (neat, v/cm¹): 3450br, 3082w, 2924m, 1694s, 1657s, 1420m, 1386m, 1248s, 1204s, $1144 m, 1077 w, 994 m, 921 m, 892 w, 843 w$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 239.1278$, found: 239.1277.

(1E,3R,4S,5S,7S,8E)-7-(tert-butyldimethylsilyloxy)-1-iodo-3-methoxy-2,4,8-trimethylundeca-1,8,10-trien-5-yl (E)-4-((2R,4R)-2-(R R)-but-3-en-2-yl)-6-oxo-tetrahydro-2H-pyran-4-yl)but-2-enoate (5): To a cooled ($0^{\circ} \mathrm{C}$) solution of acid 6 ($10.1 \mathrm{mg}, 42.4 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ over molecular sieves (10 mg powder, $4 \AA$) was added CME-carbodiimide ($22.3 \mathrm{mg}, 52.6 \mu \mathrm{~mol}, 1.30 \mathrm{eq}$). The mixture was aged for 10 min , then a solution of the alcohol $\mathbf{3 0}(23.9 \mathrm{mg}, 48.4 \mu \mathrm{~mol}, 1.14 \mathrm{eq})$ was added. After 20 min the cooling was removed and DMAP ($0.5 \mathrm{mg}, 10 \mathrm{~mol} \%$) was added. TLC after 8 h did not indicate any conversion. Therefore the mixture was stored in the freezer over the weekend. Afterwards it was concentrated under reduced pressure and the residue was purified by column chromatography (Hex:EtOAc $5: 1 \rightarrow \mathrm{CHCl}_{3}: \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{3} \mathrm{COOH}$ 90:10:1.0:0.5) to afford the desired 5 ($4.1 \mathrm{mg}, 14 \%$) as a colourless oil along with the parent alcohol $\mathbf{3 0}$ ($17.3 \mathrm{mg}, 72 \%$). No acid $\mathbf{6}$ could be recovered.

For analytical data see below.

(4R,6R)-6-((R)-1-(tert-butyldimethylsilyloxy)propan-2-yl)-4-(2-((tert-butyl-diphenylsilyl)oxy)ethyl)tetrahydro-2H-pyran-2-one (64): A stirred solution of 57 ($1.94 \mathrm{~g}, 6.12 \mathrm{mmol}, 1.0$ equiv) in dry DMF (5 mL) was treated at rt with imidazole (500 mg , $7.35 \mathrm{mmol}, 1.2$ equiv) followed by TBDPSCl ($1.90 \mathrm{~mL}, 7.35 \mathrm{mmol}, 1.2$ equiv). After stirring at rt for 18 h , the reaction mixture was diluted with EtOAc (80 mL). The resulting mixture was washed with brine ($3 \times 20 \mathrm{~mL}$), dried over MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography (hexane/EtOAc, 10:1) to give $64(3.22 \mathrm{~g}$, 95\%) as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.24$ (hexane/EtOAc, 10:1)
$[\boldsymbol{\alpha}] \mathbf{D}^{24}=-10.0^{\circ}\left[c=0.366, \mathrm{CHCl}_{3}\right]$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.65(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.48-7.33(\mathrm{~m}, 6 \mathrm{H}), 4.42(\mathrm{td}, J=$ $3.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.67-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.50(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{dd}, \mathrm{J}$ $=5.1,17.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.18(\mathrm{~m}, 1 \mathrm{H}), 2.04$ (dd, $J=10.7,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.62-$ $1.48(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}$, 6 H).
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=171.6,135.5,133.6,129.8,127.7,80.2,64.3,60.8,40.3$, 38.9, 36.5, 32.6, 28.7, 26.9, 25.9, 19.2, 18.3, 10.7, -5.4.

IR (neat, v / cm^{-1}): 3071w, 2954m, 2929m, 2857m, 1738s, 1472m, 1428m, 1389m, 1250m, 1108s, 836s, 778m, 741m, 702s, 613m, 504m.

HRMS (ESI): m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{NO}_{4} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 572.3586, found: 572.3581.

(4R,6R)-4-(2-((tert-Butyldiphenylsilyl)oxy)ethyl)-6-((R)-1-hydroxypropan-2-yl)tetrahydro-2H-pyran-2-one (65): To a solution of 64 ($1.52 \mathrm{~g}, 2.74 \mathrm{mmol}, 1.0$ equiv) in THF/water (4:1, 28 mL) was added sodium periodate ($3.51 \mathrm{~g}, 16.4 \mathrm{mmol}, 6.0$ equiv). After stirring at rt for 20 h , the reaction mixture was quenched with water (40 mL) and diluted with EtOAc (40 mL). The layers were separated and the aqueous layer was extracted with EtOAc ($2 \times 50 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, 2:1 \rightarrow 1:1) to give 65 ($995 \mathrm{mg}, 82 \%$) as a colorless solid. The analytical data were identical to those reported in literature. ${ }^{16}$
$\mathbf{R}_{\boldsymbol{f}}=0.33$ (hexane/EtOAc, 1:1)
${ }^{1} \mathbf{H}$-NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.68-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 6 \mathrm{H}), 4.48(\mathrm{td}, J=3.0$, $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.65-3.55(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{ddd}, J=$ $1.8,5.8,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.18\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.11-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.59(\mathrm{~m}$, $1 \mathrm{H}), 1.56(\mathrm{dd}, J=6.3,12.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=171.4,135.5,133.5,129.8,127.7,80.5,64.4,60.8,39.8$, $38.8,36.4,32.3,28.6,26.9,19.2,10.5$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{NO}_{4} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 458.2721$, found: 458.2723.

[^15]

66
(S)-2-((2R,4R)-4-(2-((tert-Butyldiphenylsilyl)oxy)ethyl)-6-oxotetrahydro-2H-pyran-2-yl)propanal (66): To a solution of 65 ($333 \mathrm{mg}, 0.76 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15.1 mL) cooled at $0^{\circ} \mathrm{C}$ was added Dess-Martin periodinane ($385 \mathrm{mg}, 0.91 \mathrm{mmol}$, 1.2 equiv) in one portion. After stirring for 2 h at rt, sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (20 mL), sat. NaHCO_{3} $(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ were added at rt to the reaction mixture. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($2 \times 25 \mathrm{~mL}$). The combined organic extracts were washed with sat. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product $66(388 \mathrm{mg})$ was used for the step without further purification, due to decomposition on silica gel. The analytical data were in agreement with those reported in the literature. ${ }^{17}$
$\mathbf{R}_{f}=0.78$ (hexane/EtOAc, 1:1)
${ }^{1} \mathrm{H}$-NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.73(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.35(\mathrm{~m}$, $6 \mathrm{H}), 4.65$ (dd, $J=2.9,4.4,12.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.71 (t, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.69 (ddd, $J=1.8,5.7,17.5 \mathrm{~Hz}$, $1 H), 2.56\left(m_{c}, 1 H\right), 2.22\left(m_{c}, 1 H\right), 2.07(d d, J=10.9,17.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.88\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.55$ (dd, J $=6.3,12.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.27\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.20(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=202.0,170.4,135.5,133.5,133.4,129.8,127.8,79.1,60.6$, 50.2, 38.6, 36.2, 32.2, 28.5, 26.9, 19.2, 8.5.

HRMS (ESI): m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NaO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 461.2119$, found: 461.2118 .

[^16]

67
(4R,6R)-6-((R)-but-3-en-2-yl)-4-(2-((tert-butyldiphenylsilyl)oxy)ethyl)tetra-
hydro-2H-pyran-2-one (67): To a solution of 66 (388 mg , crude) and the Julia PT sulfone 62^{18} ($220 \mathrm{mg}, 0.98 \mathrm{mmol}, 1.3$ equiv) in THF (7.7 mL) was added at $-78^{\circ} \mathrm{C}$ solid NaHMDS ($180 \mathrm{mg}, 0.98 \mathrm{mmol}, 1.3$ equiv). After stirring the yellowish solution at $-78^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was allowed to warm to rt over 2.25 h . pH 7 buffer solution (20 mL) was added and the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (hexane/EtOAc, 10:1 \rightarrow 7:1) to afford 67 ($216 \mathrm{mg}, 65 \%$ over 2 steps) as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.43$ (hexane/EtOAc, 5:1)
$[\alpha]_{\mathbf{D}^{24}}=+5.2^{\circ}\left[c=0.360, \mathrm{CHCl}_{3}\right]$
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.67-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 6 \mathrm{H}), 5.74$ (ddd, $J=7.7$, $10.4,17.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.14-5.04 (m, 2H), 4.10 (ddd, $J=2.9,6.2,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{t}, J=6.0 \mathrm{~Hz}$, 2 H), 2.65 (ddd, $J=1.8,5.4,17.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.42\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.13\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.03$ (dd, $J=10.9$, $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.91$ ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}$), 1.59-1.50 (m, 2H), 1.21-1.07 (m, 1H), 1.10 (d, J = 6.8 Hz, 3H), 1.05 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=171.3,138.7,135.5,133.5,129.8,127.7,116.1,83.5,60.8$, $42.7,38.7,36.4,32.2,28.5,26.9,19.2,15.3$.

IR (neat, v / cm^{-1}): 3072w, 2958m, 2929m, 2857m, 1738s, 1472w, 1428m, 1388w, 1234m, 1110s, 1008w, 822m, 745m, 703s, 613w.

HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{NO}_{3} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 454.2772$, found: 454.2761 .

[^17]

S14
(4R,6R)-6-((R)-But-3-en-2-yl)-4-(2-hydroxyethyl)tetrahydro-2H-pyran-2-one
(S14): To a solution of $\mathbf{6 7}$ ($34.4 \mathrm{mg}, 0.08 \mathrm{mmol}, 1.0$ equiv) in THF (0.8 mL) was added at $0^{\circ} \mathrm{C}$ TBAF ($0.32 \mathrm{~mL}, 0.32 \mathrm{mmol}, 4.0$ equiv, 1.0 m in THF) and AcOH ($18.1 \mu \mathrm{~L}, 0.32 \mathrm{mmol}$, 4.0 equiv). After stirring for 20 h at rt , the reaction mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ (10 mL) and diluted with EtOAc (15 mL). The layers were separated and the aqueous layer was extracted with EtOAc ($2 \times 15 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, 1:2 $\rightarrow 0: 1$) to give $\mathbf{S 1 4}$ as a colorless oil ($13.6 \mathrm{mg}, 87 \%$).
$\mathbf{R}_{\boldsymbol{f}}=0.38(\mathrm{EtOAc})$
$[\alpha] \mathrm{D}^{24}=+14.0^{\circ}\left[c=0.595, \mathrm{CHCl}_{3}\right]$
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.69\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.10-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.09$ (ddd, $J=2.9,6.3$, $11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.67\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.39\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.16-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.96-$ 1.87 (m, 1H), 1.67 (br s, 1H), 1.51 (mc, 2H), 1.26-1.07 (m, 1H), 1.05 (d, J = $6.8 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=171.4,138.6,116.2,83.5,59.6,42.7,38.8,36.3,32.1,28.2$, 15.3.

IR (neat, v / cm^{-1}): $3420 \mathrm{br}, 2966 \mathrm{~m}, 2923 \mathrm{~m}, 1714 \mathrm{~s}, 1383 \mathrm{~m}, 1245 \mathrm{~s}, 1175 \mathrm{w}, 1089 \mathrm{~m}, 1053 \mathrm{~s}$, 1011m, 921m, 699w.

HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+$: 199.1329, found: 199.1326 .

ppm (t1)

2-((2R,4S)-2-((R)-But-3-en-2-yl)-6-oxotetrahydro-2H-pyran-4-yl)acetaldehyde

(68): To a solution of oxalyl chloride ($0.05 \mathrm{~mL}, 0.61 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5.0 mL) at $-78^{\circ} \mathrm{C}$ was added dropwise DMSO ($0.09 \mathrm{~mL}, 1.22 \mathrm{mmol}, 3.0$ equiv). After stirring at $78^{\circ} \mathrm{C}$ for 10 min , a solution of $\mathbf{S 1 4}$ ($80.6 \mathrm{mg}, 0.41 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.1 mL) was added dropwise. The resultant cloudy mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h , and then TEA ($0.23 \mathrm{~mL}, 1.63 \mathrm{mmol}, 4.0$ equiv) was added slowly and the reaction mixture was allowed to warm to room temperature (1 h). The reaction was quenched with water (10 mL), and the layers were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 20 mL) and the combined organic phases were washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by column chromatography (hexane/EtOAc, $2: 1 \rightarrow 1: 1 \rightarrow 1: 2$) to afford $68(76.0 \mathrm{mg}, 95 \%)$ as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.59$ (EtOAc)
$[\alpha]_{\mathrm{D}^{24}}=+4.8^{\circ}\left[c=0.535, \mathrm{CHCl}_{3}\right]$
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.76(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{ddd}, J=7.7,10.4,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-$ $5.05(\mathrm{~m}, 2 \mathrm{H}), 4.17$ (ddd, $J=2.9,6.3,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.48(\mathrm{~m}, 3 \mathrm{H})$, $2.44\left(m_{c}, 1 H\right), 2.15-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.00\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.30-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=199.6,170.3,138.3,116.4,83.1,49.8,42.6,35.8,31.8$, 25.9, 15.2.

IR (neat, v / cm^{-1}): 2974m, 2922m, 1723s, 1385m, 1238s, 1174w, 1080m, 1053m, 1006m, 923m.

HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 197.1172, found: 197.1173.

(1E,3R,4S,5S,7S,8E)-1-Iodo-3-methoxy-2,4,8-trimethyl-7-((triisopropylsilyl)oxy)-undeca-1,8,10-trien-5-yl 2-(diethoxyphosphoryl)acetate (69): To a cooled ($0^{\circ} \mathrm{C}$) solution of diethylphosphonoacetic acid (55) ($0.178 \mathrm{~mL}, 1.11 \mathrm{mmol}, 1.50 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ over molecular sieves (beads, $3 \AA$) was added CME-carbodiimide (563 mg , $1.33 \mathrm{mmol}, 1.80 \mathrm{eq})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for $10-15 \mathrm{~min}$, then a solution of the alcohol 30 (396 mg , $0.738 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 mL , rinsed with $2 \times 3 \mathrm{~mL}$) was added. The cooling was removed and DMAP ($9 \mathrm{mg}, 10 \mathrm{~mol} \%$) was added a few minutes later. A precipitate had formed already by the time of the DMAP addition. TLC reaction control after 45 min showed full conversion. After 1 h , the mixture was transferred into a flask and concentrated under reduced pressure. The crude was purified by column chromatography (hex:EtOAc $2: 1 \rightarrow 1: 1$) to afford the desired ester $69(458 \mathrm{mg}, 87 \%)$ as a colourless oil, which crystallized upon storage in a freezer.

TLC (Hex:EtOAc 1:1): $\mathrm{R}_{f}=0.48$
$[\alpha] \mathbf{D}^{\mathbf{2 4}}=+29.1\left(c=1.26, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.50\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 6.17\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.87(\mathrm{dd}, J=10.9 \mathrm{~Hz}$, $J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J=1.8 \mathrm{~Hz}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=1.8 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.77(\mathrm{ddd}, J=1.5 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.07(\mathrm{~m}, 5 \mathrm{H}), 3.43(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.17 (s, 3H), 2.81 (dd, $J=14.3 \mathrm{~Hz}, J=28.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.76 (dd, $J=14.3 \mathrm{~Hz}, J=28.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.00 (ddd, $J=4.6 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H})$, 1.73 (d, $J=1.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.69 (ddd, $J=1.5 \mathrm{~Hz}, J=5.9 \mathrm{~Hz}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.33 ($2 \times \mathrm{t}$, $J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.06-0.98(\mathrm{~m}, 21 \mathrm{H}), 0.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) /$
${ }^{13}$ C-NMR ($\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}$): $\delta=164.9$ (d, $J=6.4 \mathrm{~Hz}$), 146.4, 140.4, 132.4, 126.3, 117.4, 87.0, 79.0, 77.0, 73.8, 62.52 (d, $J=6.2 \mathrm{~Hz}$), 62.48 (d, $J=6.3 \mathrm{~Hz}$), 56.7, 39.1, 35.7, 34.5 (d, $J=134 \mathrm{~Hz}), 19.8,18.1,18.0,16.34(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 16.30(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 12.4,11.4,9.7$.

IR (v/[$\left.\mathrm{cm}^{-1}\right]$) 2964, 2942, 2893, 2866, 1734, 1463, 1382, 1261 (s), 1089, 1050 (s), 1025 (s), 988, $967,905,882,810,785,736,681,653,621,572,506,459,446,424$; HRMS Calcd. for $\mathrm{C}_{30} \mathrm{H}_{60} \mathrm{INO}_{7} \mathrm{PSi}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} m / z 732.2916$. Found: 732.2921.

69

68

5
(1E,3R,4S,5S,7S,8E)-1-iodo-3-methoxy-2,4,8-trimethyl-7-((triisopropylsilyl)oxy)-undeca-1,8,10-trien-5-yl (E)-4-((2R,4R)-2-((R)-but-3-en-2-yl)-6-oxotetrahydro-2H-pyran-4-yl)but-2-enoate (5): To LiCl ($9.19 \mathrm{mg}, 217 \mu \mathrm{~mol}, 1.20 \mathrm{eq}$) was added a solution of the phosphonate $69(155 \mathrm{mg}, 217 \mu \mathrm{~mol}, 1.20 \mathrm{eq})$ in MeCN (1.1 mL), followed by DBU ($30.0 \mu \mathrm{~L}, 199 \mu \mathrm{~mol}, 1.10 \mathrm{eq}$). After 20 min stirring at rt, the mixture was cooled to $0^{\circ} \mathrm{C}$, whereupon the solution turned turbid. Then a solution of the aldehyde $\mathbf{6 8}(35.5 \mathrm{mg}$, $181 \mu \mathrm{~mol}, 1.00 \mathrm{eq})$ in MeCN (1.7 mL) was added dropwise. TLC and ESI/MS-control after 45 min indicated, that no aldehyde was left. After 1 h the mixture was concentrated at the rotavap and the residue was purified by flash chromatography (hex:EtOAc 5:1 $\rightarrow 2: 1$) to afford the desired α, β-unsaturated ester 5 ($127.5 \mathrm{mg}, 92 \% \mathrm{wt} / \mathrm{wt}$ along with EtOAc, $117 \mathrm{mg}, 85 \%$) as a colourless oil.

TLC (hex:EtOAc 1:1): $\mathrm{R}_{f}=0.79$
$[\alpha] \mathrm{D}^{24}=+22.5\left(c=0.96, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.75\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 6.43\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 6.16\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.88$ (pseudo $\mathrm{d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80-5.69(\mathrm{~m}, 2 \mathrm{H}), 5.17-5.06(\mathrm{~m}, 3 \mathrm{H}), 5.02(\mathrm{dd}, J=1.8 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.78(\mathrm{ddd}, J=1.6 \mathrm{~Hz}, J=4.1 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.69\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.45\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.26-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.01(\mathrm{~m}, 3 \mathrm{H}), 2.00-$ $1.91(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~d}$, $J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.27-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.06-0.97(\mathrm{~m}, 21 \mathrm{H}), 0.91(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR ($\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}$): $\delta=170.6,165.2,146.5,144.3,140.3,138.4,132.6,126.4$, $124.2,116.9,116.5,87.6,83.2,79.0,76.6,72.5,56.7,42.7,39.0,38.6,36.0,35.7,31.8,31.0$, 19.7, 18.2, 18.1, 15.3, 12.4, 11.6, 9.8.

IR (v/[cm-1]) 3016, 2963, 2941, 2892, 2866, 1718, 1656, 1462, 1420, 1381, 1329, 1311, $1247,1217,1203,1157,1082,1054,1028,1009,989,919,906,883,809,752 \mathrm{~s}, 680,666$, 601, 510, 475, 463, 445, 432, 418, 405.
HRMS Calcd. for $\mathrm{C}_{37} \mathrm{H}_{65} \mathrm{INO}_{6} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} m / z 774.3620$. Found: 774.3614.

(1E,3R,4S,5S,7S,8E)-7-hydroxy-1-iodo-3-methoxy-2,4,8-trimethylundeca-1,8,10-trien-5-yl (E)-4-((2R,4R)-2-((R)-but-3-en-2-yl)-6-oxotetrahydro-2H-pyran-4-yl)but-2-enoate (70):

Using TBAF: To a solution of the TIPS-protected alcohol 5 ($56.0 \mathrm{mg}, 74.0 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$) in THF (1 mL) were added a solution of TBAF (1.0 m in THF, $0.30 \mathrm{~mL}, 0.300 \mathrm{mmol}, 4.00 \mathrm{eq}$) and acetic acid ($17 \mu \mathrm{~L}, 0.296 \mathrm{mmol}, 4.00 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$. The cooling was removed after a few minutes and the mixture was stirred at rt overnight. As the conversion was incomplete, more TBAF (4 eq) and acetic acid (4 eq) were added at rt . After another 8 h at rt , the conversion was still incomplete. The reaction was quenched by addition of $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq.). The aqueous phase was diluted with water, ether (10 mL) was added and the layers were separated. The aqueous phase was extracted with ether ($2 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude was purified by column chromatography (hex:EtOAc $5: 1 \rightarrow 1: 1$) to afford the desired alcohol 70 ($18.3 \mathrm{mg}, 87 \% \mathrm{wt} / \mathrm{wt}$ along with EtOAc, $15.9 \mathrm{mg}, 47 \%$) as a colourless oil. Furthermore some starting material 5 was recovered ($15.2 \mathrm{mg}, 27 \%$).

Using buffered HF*Py: To a solution of the TIPS-protected alcohol 5 ($52.4 \mathrm{mg}, 69.2 \mu \mathrm{~mol}$, $1.00 \mathrm{eq})$ in THF (2.6 mL) and pyridine (0.76 mL) was added a solution of HF*Py (1.53 mL 70% as $\mathrm{HF}, 1.18 \mathrm{~g}, 58.9 \mathrm{mmol}, 850 \mathrm{eq})$ carefully at $0^{\circ} \mathrm{C}$. The cooling was removed after 10-15 min and the mixture was stirred at rt overnight. Afterwards the reaction was quenched into a mixture of NaHCO_{3} (sat. aq., 40 mL) and $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL}$). As soon as the gas evolution had ceased, the layers were separated and the organic phase was washed with CuSO_{4} (sat. aq., 5 mL) and water ($2 \times 10 \mathrm{~mL}$). The combined aqueous layers were extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. Afterwards the combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude was purified by
column chromatography (hex:EtOAc 5:1 $\rightarrow 2: 1$), to afford the desired alcohol 70 (35.6 mg , 86\%) as a colourless oil.

TLC (Hex:EtOAc 1:1): $\mathrm{R}_{f}=0.46$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.89\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 6.55\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 6.19\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 6.05$ (pseudo $\mathrm{d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{td}, J=1.3 \mathrm{~Hz}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{ddd}, J=7.7 \mathrm{~Hz}, J=10.4 \mathrm{~Hz}$, $J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=1.8 \mathrm{~Hz}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-5.02(\mathrm{~m}, 5 \mathrm{H}), 4.18-4.07(\mathrm{~m}, 1 \mathrm{H})$, $3.88\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.49(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.76-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, 1 H), $2.45\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.30-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~d}$, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.73-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

HRMS Calcd. for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{INaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} m / z 623.1840$. Found: 623.1839.

Representative procedure for initial single-batch test reactions:

To a solution of the catalyst ($20 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL})$ was added a solution of the enediene 5 ($6.7 \mathrm{mg}, 8.9 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL}$, rinsed with $2 \times 0.5 \mathrm{~mL})$. After a few minutes stirring at rt, the pale brown solution was heated to $50^{\circ} \mathrm{C}$ overnight. The conversion was assessed by ESI-MS and TLC.

Remark: The reaction was run in a microwave vial and the catalyst was weighed directly into the tube in a glovebox.

Representative procedure for catalyst-/solvent-/temperature screenings:

A stock solution of the ene-diene $\mathbf{5}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was prepared such that 0.1 mL of the stock solution contained 2.0 mg of the substrate.
0.1 mL of the substrate stock solution was diluted with 1.7 mL of the solvent to be assessed. Then the respective catalyst stock solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (typically around 0.2 mL , corresponding to $20 \mathrm{~mol} \%$) was added. The conversion was assessed by ESI-MS from time-to-time. In most of the cases, the reaction mixtures were stirred overnight at the desired temperature, whereafter the conversion was re-assessed by ESI-MS. The samples that had been kept at rt were later heated.

Table S1: RCM screening for substrate 5

entry	catalyst (mol\%)	solvent	Temp./ ${ }^{\circ} \mathrm{C}$	conversion ${ }^{[\text {[] }]}$
1	Hoveyda-Grubbs 1 (10)	tol	90	no
2	Hoveyda-Grubbs 1 (20)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	50	no
3	Hoveyda-Grubbs 2 (20)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	50	no
4	Hoveyda-Grubbs 2 (20)	tol	95	yes
5	Grubbs 1 (20)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	50	no
6	Grubbs 1 (20)	tol	95	yes
7	Grubbs 2 (10)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	50	yes, incomplete
8	Grubbs 2 (20)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	50	yes, full
9	Grubbs 2 (10)	tol	rt	no
10	Grubbs 2 (10)	tol	45	no
11	Grubbs 2 (20)	tol	95	yes
12	Grubbs 3 (20)	tol	rt	no
13	Grubbs 3 (20)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	no
14	Piers-Grubbs 2 (20)	tol	rt	no
15	Piers-Grubbs 2 (20)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	no
16	UHGS* (20)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	no
17	UHGS* (20)	tol	95	no

[a] consumption of starting material. Yes = complete consumption; no $=$ no consumption. For incomplete conversion, the degree of the consumption of starting material was not quantified.

*

Ung, T.; Hejl, A.; Grubbs, R. H.; Schrodi, Y. Latent Ruthenium Olefin Metathesis Catalysts That Contain an N-Heterocyclic Carbene Ligand. Organometallics 2004, 23, 5399-5401.

Table S2: RCM screening for substrate 70

entry	catalyst (20 mol\%)	solvent	temp./ ${ }^{\circ} \mathrm{C}$	conversion ${ }^{\text {[a] }}$
1	Grubbs 1	tol	95	no
2	Grubbs 2	tol	95	full
3	Hoveyda-Grubbs 2	tol	95	full
4	Grubbs 1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	50	no
5	Grubbs 2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	50	full
6	Hoveyda-Grubbs 2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	50	incomplete

[a] consumption of starting material. no = no consumption. For incomplete conversion, the degree of the consumption of starting material was not quantified.

S15
(\boldsymbol{E})-Octa-2,7-dienal (S15): To a slurry of celite $(12 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(55 \mathrm{~mL})$ was added PCC ($3.84 \mathrm{~g}, 17.8 \mathrm{mmol}, 1.50 \mathrm{eq}$). To this was then added a solution of 2,7 -octadienol ($\mathbf{7 1}$) ($1.50 \mathrm{~g}, 11.9 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ dropwise at rt , whereupon the mixture turned brown and thicker. After 2.5 h stirring at rt, the slurry was diluted with ether $(100 \mathrm{~mL})$ and filtered through a paper filter. The residue was washed thoroughly with ether and the combined filtrates were concentrated under reduced pressure $\left(40^{\circ} \mathrm{C}\right.$, 800-690 mbar) to leave a brown liquid. This was passed through a pad of silica washing with ether. The combined filtrates were again concentrated to yield aldehyde S15 as a slightly green liquid ($1.44 \mathrm{~g}, 84 \% \mathrm{wt} / \mathrm{wt}$ along with $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.22 \mathrm{~g}, 82 \%$), which was volatile.

TLC (Hex:EtOAc 5:1): $\mathrm{R}_{f}=0.51$
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=9.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{td}, J=6.8 \mathrm{~Hz}, J=15.6 \mathrm{~Hz}$, 1 H), 6.13 (tdd, $J=1.5 \mathrm{~Hz}, J=7.9 \mathrm{~Hz}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.79 (tdd, $J=6.7 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}$, $J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-4.97(\mathrm{~m}, 2 \mathrm{H}), 2.35\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 2.11\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 1.62\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right)$.

72

Methyl (2E,4E)-2-methyldeca-2,4,9-trienoate (72): To a solution of the phosphonium ylide $\mathbf{1 7}(3.41 \mathrm{~g}, 9.79 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added aldehyde $\mathbf{S 1 5}(1.22 \mathrm{~g}$, $9.82 \mathrm{mmol}, 1.00 \mathrm{eq}$) dropwise at rt. Unlike in the corresponding reaction with acrolein (vide supra), the addition proceeded only slightly exothermic. The yellow solution was then heated to a gentle reflux ($47^{\circ} \mathrm{C}$ oil bath). TLC after 3 h 20 min showed, that the conversion was incomplete. Therefore, more ylid ($682 \mathrm{mg}, 0.2 \mathrm{eq}$) was added and the mixture was heated to reflux overnight. Despite some starting material still being left, the mixture was allowed to cool to rt and concentrated under reduced pressure. The crude was cooled to $0^{\circ} \mathrm{C}$ and pentane was added. The precipitated phosphinoxide was filtered off and washed thoroughly with pentane. The combined filtrates were concentrated under reduced pressure and the remaining yellow liquid was purified by column chromatography (hex:EtOAc 10:1) to afford the desired diene 72 as a colourless liquid (1.14 g, 60\%, trans only; 636 mg , trans/cis $=4 / 1,33 \%$).

TLC (hex:EtOAc 5:1): $\mathrm{R}_{f, c i s}=0.73 ; \mathrm{R}_{f, \text { trans }}=0.63$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=7.16(\mathrm{bd}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CMe}), 6.34(\operatorname{tdd}, J=1.4 \mathrm{~Hz}$, $J=11.3 \mathrm{~Hz}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2}$), $6.07\left(\mathrm{td}, J=7.1 \mathrm{~Hz}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2}\right)$, $5.80\left(\operatorname{tdd}, J=6.7 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.07-4.93(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} 2=\mathrm{CH}), 3.75$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.21 (td, $J=7.2 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}$), 2.15-2.03 (m, 2 H , $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $1.93\left(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{CCH}_{3}\right), 1.62-1.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, ${ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): \delta=169.1,142.8,138.8,138.3,126.2,124.9,114.9,51.7,33.2$ 32.6, 28.1, 12.6

IR ($\left.v /\left[\mathrm{cm}^{-1}\right]\right) 3078,3034,2994,2980,2948,2928,2857,1707(\mathrm{~s}), 1640,1610,1435,1389$, 1292, 1266, 1235 (s), 1191, 1104, 970, 940, 911, 831, 748, 689, 634, 552, 489, 457, 441, 424.

HRMS Calcd. for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} m / z$ 195.1380. Found: 195.1378.

S16
(2E,4E)-2-Methyldeca-2,4,9-trien-1-ol (S16): To a cooled ($0^{\circ} \mathrm{C}$) solution of the ester $\mathbf{7 2}$ ($1.12 \mathrm{~g}, 5.75 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{Et} 2 \mathrm{O} \mathrm{O}(30 \mathrm{~mL})$ was added $\mathrm{LiAlH}_{4}(218 \mathrm{mg}, 5.75 \mathrm{mmol}$, $1.00 \mathrm{eq})$ in one portion. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 50 min . Afterwards the reaction was quenched with water (10 mL) followed by $1 \mathrm{~m} \mathrm{NaOH}(10 \mathrm{~mL})$ and more water (30 mL). The layers were separated, additional 1 m NaOH was added and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure to afford the desired alcohol S16 (895 mg, 94\%) as a colourless liquid.

TLC (hex:EtOAc 5:1): $\mathrm{R}_{f}=0.24$.
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.26(\operatorname{tdd}, J=1.4 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{bd}$, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{tdd}, J=6.7 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.69\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.06-4.91$ $(\mathrm{m}, 2 \mathrm{H}), 4.06(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.02(\mathrm{~m}, 4 \mathrm{H}), 1.78(\mathrm{bs}, 3 \mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.30$ (m, 1H).
${ }^{13} \mathbf{C}-$ NMR ($\left.\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): ~ \delta=138.7,134.8,134.7,126.2,125.3,114.6,68.7,33.2,32.3$, 28.6, 14.1; IR (v/[cm-1]) 3323 (br), 3077, 3026, 2978, 2924, 2856, 1640, 1453, 1438, 1415, 1388, 1225, 1143, 1066, 996 (s), 966 (s), 909 (s), 883, 668, 635, 610, 456, 448.

ppm (t1)

73
(2E,4E)-2-Methyldeca-2,4,9-trienal (73): To a solution of the allylic alcohol S16 ($150 \mathrm{mg}, 0.902 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ were added molecular sieves ($3 \AA$, beads) and activated $\mathrm{MnO}_{2}(1.57 \mathrm{~g}, 18.0 \mathrm{mmol}, 20.0 \mathrm{eq})$ at rt. The suspension was stirred for 2 h at the same temperature. Afterwards it was filtered through a pad of celite, topped with a few mm of silica. The filter was washed thoroughly with $\mathrm{Et}_{2} \mathrm{O}$. The combined filtrates were concentrated under reduced pressure and the crude aldehyde 73 ($161 \mathrm{mg}, 86 \% \mathrm{wt} / \mathrm{wt}$ along with $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 139 \mathrm{mg}, 85 \%$), a pale yellow liquid, was used directly in the next step.

TLC (hex:EtOAc 5:1): $\mathrm{R}_{f}=0.48$
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=9.42(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{bd}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.53$ (tdd, $J=1.4 \mathrm{~Hz}, J=11.1 \mathrm{~Hz}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{td}, J=7.1 \mathrm{~Hz}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81$ (tdd, $J=6.7 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-4.96(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{td}, J=7.4 \mathrm{~Hz}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.10\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 1.83(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.58\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right)$.

(1E,3R,4R,7S,8E,10E)-7-Hydroxy-1-iodo-3-methoxy-2,4,8-trimethylhexadeca-
1,8,10,15-tetraen-5-one (74): To a cooled ($-78^{\circ} \mathrm{C}$) solution of (+)-DIP-Cl (227 mg, $0.709 \mathrm{mmol}, 2.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added $\mathrm{NEt}_{3}(0.118 \mathrm{~mL}, 0.851 \mathrm{mmol}, 2.40 \mathrm{eq})$ followed by a solution of the ketone 27 (523 mg , $1.85 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL}$, rinsed with $2 \times 0.3 \mathrm{~mL}$). Ca. 5 min following the addition of the ketone, a white precipitate formed. The thick suspension was stirred for 3 h 15 min at $-78{ }^{\circ} \mathrm{C}$. Afterwards a solution of the aldehyde 73 ($132 \mathrm{mg}, 0.804 \mathrm{mmol}, 2.27 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added slowly, whereupon the colour immediately turned bright yellow. The mixture was stirred overnight, allowing for the cooling bath to warm to $-20^{\circ} \mathrm{C}$. The reaction was then quenched with pH 7 phosphate buffer and the layers were separated. The aqueous phase was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined extracts were concentrated under reduced pressure. The residue was dissolved in $\mathrm{MeOH}(2 \mathrm{~mL}$) and pH 7 phosphate buffer (0.4 mL) was added. The mixture was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%$, 0.5 mL) was added. The cooling was removed after a few minutes and the mixture was stirred for 1 h at rt . Afterwards it was poured into water (30 mL). $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the layers were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude was purified by column chromatography (hex:EtOAc $10: 1 \rightarrow 5: 1$) to afford the desired product 74 ($245 \mathrm{mg}, 44 \% \mathrm{wt} / \mathrm{wt}$ along with isopinocampheol, $107 \mathrm{mg}, 68 \%, \mathrm{dr}=7.2: 1$) as a nearly colourless oil.
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.28-6.17(\mathrm{~m}, 2 \mathrm{H}), 6.07\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.80(\operatorname{tdd}, J=6.7 \mathrm{~Hz}$, $J=10.2 \mathrm{~Hz}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}$), $5.70(\mathrm{td}, J=7.1 \mathrm{~Hz}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.00 (ddd, $J=1.6 \mathrm{~Hz}$, $J=3.6 \mathrm{~Hz}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{tdd}, J=1.2 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~m}, 1 \mathrm{H})$, $3.84(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{p}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-$ $2.60(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.02(\mathrm{~m}, 4 \mathrm{H}), 1.75(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.73$ (d, $J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): \delta=212.7,145.3,138.6,135.3,135.2,126.0,125.5,114.6$, $86.3,80.6,72.3,57.0,50.1,47.7,33.2,32.3,28.6,19.9,12.8,12.2$.

S17
($1 E, 3 R, 4 S, 5 S, 7 S, 8 E, 10 E)$-1-Iodo-3-methoxy-2,4,8-trimethylhexadeca-1,8,10,15-
tetraene-5,7-diol (S17): A solution of tetramethylammonium triacetoxyborohydride ($283 \mathrm{mg}, 1.08 \mathrm{mmol}, 4.65 \mathrm{eq}$) in $\mathrm{MeCN}\left(2.5 \mathrm{~mL}\right.$) and $\mathrm{AcOH}(2.5 \mathrm{~mL})$ was cooled to $-40^{\circ} \mathrm{C}$ (MeCN /dry ice). To the frozen mixture was added a solution of the ketone 74 (103 mg, $0.231 \mathrm{mmol}, 1.00 \mathrm{eq})$ in MeCN (0.6 mL , rinsed with $2 \times 0.6 \mathrm{~mL}$). The resulting mixture was allowed to stand a few min. at the same temperature and was then aged in a freezer ($-18^{\circ} \mathrm{C}$) for 19 h . Afterwards the suspension was allowed to warm to rt and stirred for another 1.5 h . Then the reaction was quenched with Rochelle salt (sat. aq.). The so obtained thick slurry was stirred for 2 h 15 min . Afterwards it was transferred with water (ca. 80 mL) into an Erlenmeyer flask, then $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~mL}\right.$) and $\mathrm{NaHCO}_{3}(\mathrm{~s}, 3.7 \mathrm{~g})$ were added. Once the gas evolution had stopped, the layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude was purified by column chromatography (hex:Et ${ }_{2} \mathrm{O} 2: 1 \rightarrow 1: 1$) to afford the desired product $\mathbf{S 1 7}$ ($94.0 \mathrm{mg}, 94 \% \mathrm{wt} / \mathrm{wt}$ along with isopinocampheol, $88.6 \mathrm{mg}, 86 \%, \mathrm{dr}=7.8: 1$ from previous aldol). Despite the fact that still some isopinocampheol was left, the material was taken forward to the next step.

TLC (hex:EtOAc 2:1): $\mathrm{R}_{f}=0.38$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.32-6.20(\mathrm{~m}, 1 \mathrm{H}), 6.19-6.07(\mathrm{~m}, 2 \mathrm{H}), 5.81(\mathrm{tdd}, J=6.7 \mathrm{~Hz}$, $J=10.2 \mathrm{~Hz}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.70\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.01$ (ddd, $\left.J=1.6 \mathrm{~Hz}, J=3.7 \mathrm{~Hz}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 4.96 (tdd, $J=1.2 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{td}, J=3.7 \mathrm{~Hz}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (bd, , $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.86-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.82-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.76(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{bs}, 3 \mathrm{H})$, $1.50(\mathrm{td}, J=7.4 \mathrm{~Hz}, J=14.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.84(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): \delta=145.3,138.7,137.2,134.8,126.1,124.6,114.6,86.5,78.1$, $74.3,71.3,57.3,40.7,38.6,33.3,32.4,28.6,21.8,13.1,10.9$.

HRMS Calcd. for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{INaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} m / z$ 471.1367. Found: 471.1368.

S18
($1 E, 3 R, 4 S, 5 S, 7 S, 8 E, 10 E)$-1-Iodo-3-methoxy-2,4,8-trimethyl-7-((triisopropylsilyl)-oxy)hexadeca-1,8,10,15-tetraen-5-ol (S18): To a solution of the secondary alcohol S17 ($88.6 \mathrm{mg}, 0.198 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5 \mathrm{~mL}$) over molecular sieves ($3 \AA$ A beads) was added 2,6-lutidine ($115 \mu \mathrm{~L}, 0.988 \mathrm{mmol}, 5.00 \mathrm{eq}$) at rt. The mixture was stirred at rt for 5 min , then it was cooled to $-78^{\circ} \mathrm{C}$ and, after another 5 min stirring, TIPSOTf ($61.0 \mu \mathrm{~L}$, $0.227 \mathrm{mmol}, 1.15 \mathrm{eq}$) was added. After 20 min the reaction was quenched with NaHCO_{3} (sat. aq.). The layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$. Then the combined organic extracts were washed with brine, dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude was purified by column chromatography (hex:Et2 Et_{2} (1) to afford the desired product $\mathbf{S 1 8}$ as a colourless oil ($102 \mathrm{mg}, 85 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis revealed, that three isomers were present, but it was impossible to distinguish the TIPS-regioisomer and the diastereoisomers. In total, the ratio of desired vs. undesired was around $6 / 1$ (see signal at 4.47 ppm).

TLC (hex:EtOAc 5:1): $\mathrm{R}_{f}=0.57$
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.32-6.18(\mathrm{~m}, 1 \mathrm{H}), 6.18-6.01(\mathrm{~m}, 2 \mathrm{H}), 5.82(\mathrm{tdd}, J=6.7 \mathrm{~Hz}$, $J=10.2 \mathrm{~Hz}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.65\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.01$ (ddd, $\left.J=1.6 \mathrm{~Hz}, J=3.7 \mathrm{~Hz}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.95(\mathrm{tdd}, J=1.2 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.7\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.75-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~d}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.02(\mathrm{~m}, 4 \mathrm{H}), 1.78-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.73(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H})$, 1.69 (bs, 3H), 1.51 ($\mathrm{m}_{\mathrm{c}}, 2 \mathrm{H}$), 1.11-1.02 (m, 21H), $0.84(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (CDCl $3,100.6 \mathrm{MHz}$): $\delta=146.3,138.8,135.7,134.2,126.2,125.3,114.5,86.5,78.0$, $76.5,69.7,57.2,41.2,38.1,33.3,32.4,28.6,21.0,18.05,18.01,13.8,12.3,10.1$.

HRMS Calcd. for $\mathrm{C}_{29} \mathrm{H}_{53} \mathrm{INaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} m / z$ 627.2701. Found: 627.2696.

(1E,3R,4S,5S,7S,8E,10E)-1-Iodo-3-methoxy-2,4,8-trimethyl-7-((triisopropylsilyl)-oxy)hexadeca-1,8,10,15-tetraen-5-yl 2-(diethoxyphosphoryl)acetate (75): Tо а cooled ($0{ }^{\circ} \mathrm{C}$) solution of diethylphosphonoacetic acid (55) ($36.0 \mu \mathrm{~L}, 1.11 \mathrm{mmol}, 1.50 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ over molecular sieves (beads, $3 \AA$) was added CME-carbodiimide ($114 \mathrm{mg}, 0.268 \mathrm{mmol}, 1.80 \mathrm{eq}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for $10-15 \mathrm{~min}$, then a solution of the alcohol $\mathbf{S 1 8}(90.0 \mathrm{mg}, 0.149 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL}$, rinsed with $2 \times 0.6 \mathrm{~mL}$) was added. The cooling was removed and DMAP ($1.8 \mathrm{mg}, 10 \mathrm{~mol} \%$) was added a few minutes later. A precipitate had formed already before the addition of DMAP. TLC after 45 min indicated full conversion. The mixture was concentrated under reduced pressure and the crude was purified by column chromatography (hex:EtOAc $2: 1 \rightarrow 1: 1$) to afford the desired ester 75 ($95.7 \mathrm{mg}, 82 \%$) as a colourless oil.

TLC (hex:EtOAc 1:1): $\mathrm{R}_{f}=0.61$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.22-6.08(\mathrm{~m}, 2 \mathrm{H}), 5.89-5.71(\mathrm{~m}, 2 \mathrm{H}), 5.62(\mathrm{td}, J=7.1 \mathrm{~Hz}$, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.00 (ddd, $J=1.6 \mathrm{~Hz}, J=3.6 \mathrm{~Hz}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.94 (tdd, $J=1.2 \mathrm{~Hz}$, $J=2.2 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{ddd}, J=1.4 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-3.99(\mathrm{~m}$, $5 \mathrm{H}), 3.42(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.77$ (ddd, $J=14.3 \mathrm{~Hz}, J=21.5 \mathrm{~Hz}, J=41.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.15-1.93 (m, 5H), 1.89-1.76(m, 1H), $1.80(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~d}$, $J=0.6 \mathrm{~Hz} 3 \mathrm{H}), 1.47\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.06-0.96(\mathrm{~m}$, $21 \mathrm{H}), 0.92(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): \delta=164.8(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 146.4,138.6,137.2,134.7,126.0$, $125.8,114.6,87.0,79.0,77.1,73.8,62.5(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 56.7,39.0,35.6,34.5(\mathrm{~d}, J=134 \mathrm{~Hz})$, $33.2,32.3,28.6,19.8,18.1,18.0,16.32(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 16.28(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 12.4,11.2,9.7$. HRMS Calcd. for $\mathrm{C}_{35} \mathrm{H}_{64} \mathrm{INaO} 7 \mathrm{PSi}[\mathrm{M}+\mathrm{Na}]^{+} m / z$ 805.3096. Found: 805.3097.

(1E,3R,4S,5S,7S,8E,10Z)-1-Iodo-3-methoxy-2,4,8-trimethyl-7-((triisopropylsilyl)-oxy)hexadeca-1,8,10,15-tetraen-5-yl (E)-4-((2R,4R)-2-((R)-but-3-en-2-yl)-6-oxotetrahydro-2H-pyran-4-yl)but-2-enoate (76): To LiCl ($3.88 \mathrm{mg}, \quad 91.5 \mu \mathrm{~mol}$, 1.20 eq) was added a solution of the phosphonate $\mathbf{S 1 8}$ ($71.8 \mathrm{mg}, 91.7 \mu \mathrm{~mol}, 1.20 \mathrm{eq}$) in MeCN (0.6 mL), followed by DBU ($13.0 \mu \mathrm{~L}, 84.1 \mu \mathrm{~mol}, 1.10 \mathrm{eq})$. After 20 min stirring at rt, the mixture was cooled to $0^{\circ} \mathrm{C}$, whereupon the solution turned turbid. Then a solution of the aldehyde 67 ($15.0 \mathrm{mg}, 76.4 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$) in MeCN (0.3 mL , rinsed with $2 \times 0.2 \mathrm{~mL}$) was added dropwise. TLC reaction control after 45 min indicated, that no aldehyde was left. After 1 h stirring the mixture was concentrated under reduced pressure and the residue was purified by flash chromatography (hex:EtOAc 5:1 $\rightarrow 2: 1$) to afford the desired product 76 ($48.6 \mathrm{mg}, 85 \%$) as a colourless oil.

TLC (hex:EtOAc 5:1): $\mathrm{R}_{f}=0.45$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.80-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.16(\mathrm{bs}, 1 \mathrm{H}), 6.10\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.88-5.69$ $(\mathrm{m}, 4 \mathrm{H}), 5.59\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.17-5.07(\mathrm{~m}, 2 \mathrm{H}), 5.00(\mathrm{ddd}, J=1.6 \mathrm{~Hz}, J=3.6 \mathrm{~Hz}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.95(\operatorname{tdd}, J=1.2 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{ddd}, J=1.7 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.17-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.69\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.45\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right)$, 2.29-1.89 (m, 10H), 1.87-1.75 (m, 1H), $1.83(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.67$ (bs, $3 \mathrm{H}), 1.47$ (mc, 2H), 1.30-1.14 (m, 1H), $1.12(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.06-0.95(\mathrm{~m}, 21 \mathrm{H}), 0.90(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}$): $\delta=170.5,165.2,146.5,144.0,138.7,138.4,137.2,134.1$, $126.2,125.9,124.3,116.5,114.6,87.6,83.2,79.0,76.5,72.6,56.7,42.7,38.9,38.7,36.0$, $35.8,33.2,32.4,31.9,31.0,28.6,19.7,18.2,18.1,15.3,12.5,11.5,9.8$.

HRMS Calcd. for $\mathrm{C}_{42} \mathrm{H}_{73} \mathrm{INO}_{6} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} m / z 842.4246$. Found: 842.4250.

(3R,4R,7S,E)-7-Hydroxy-1-iodo-3-methoxy-2,4,8-trimethylnona-1,8-dien-5-one
(78): A solution of (+)-DIP-Cl ($342 \mathrm{mg}, 1.07 \mathrm{mmol}, 2.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. Upon cooling, the solution froze which rendered the mixture instirrable. Next NEt_{3} ($0.177 \mathrm{~mL}, 1.28 \mathrm{mmol}, 2.40 \mathrm{eq}$), followed by a solution of ketone 27 (150 mg , $0.532 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL}$, rinsed with $2 \times 0.2 \mathrm{~mL}$) were added. After 1 h 40 min the cooling was removed and, after a few minutes, replaced by an ice bath. This led to formation of a thick suspension, which was slightly stirrable. After 5 min at $0^{\circ} \mathrm{C}$, the mixture was recooled to $-78^{\circ} \mathrm{C}$. It was more homogeneous than before warming, but still hardly stirrable. After a total of 2 h 45 min , neat methacrolein (77) ($88 \mu \mathrm{~L}, 1.06 \mathrm{mmol}$, 2.00 eq) was added. No change was observed, except that stirring was slightly facilitated. The mixture was stirred for another 50 min at $-78^{\circ} \mathrm{C}$, and was then aged in a freezer ($-18^{\circ} \mathrm{C}$) for ca. 3.5 d . Afterwards the reaction was quenched with pH 7 phosphate buffer and the layers were separated. The aqueous phase was diluted with phosphate buffer and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined extracts were concentrated under reduced pressure. The residue was dissolved in $\mathrm{MeOH}(3 \mathrm{~mL}$) and pH 7 phosphate buffer $(0.6 \mathrm{~mL})$ was added. After cooling to $0^{\circ} \mathrm{CH}_{2} \mathrm{O}_{2}(30 \%, 0.75 \mathrm{~mL})$ was added and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 45 min and at rt for 15 min . Afterwards it was poured into water $(40 \mathrm{~mL}) . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the layers were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by column chromatography (hex:EtOAc 5:1) to afford the desired product 78 ($312 \mathrm{mg}, 40 \%$ $\mathrm{wt} / \mathrm{wt}$ along with isopinocampheol/Et $\mathrm{t}_{2} \mathrm{O} / \mathrm{EtOAc}, 125 \mathrm{mg}, 67 \%, \mathrm{dr}=19.6: 1$) as a nearly colourless oil.

TLC (hex:EtOAc 5:1): $\mathrm{R}_{f}=0.17$
 $J=2.8 \mathrm{~Hz}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=7.4 \mathrm{~Hz}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{~d}, J=3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.77(\mathrm{p}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.54(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.74\left(\mathrm{~m}_{\mathrm{c}}, 3 \mathrm{H}\right), 1.13(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): \delta=212.7,145.5,145.2,111.2,86.3,80.6,70.8,57.0,50.0$, 47.6, 19.8, 18.4, 12.1.

HRMS Calcd. for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{INaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} m / z$ 375.0428. Found: 375.0435.

S19
(3S,5S,6S,7R,E)-9-Iodo-7-methoxy-2,6,8-trimethylnona-1,8-diene-3,5-diol (S19): A solution of tetramethylammonium triacetoxyborohydride ($417 \mathrm{mg}, 4.65 \mathrm{eq}$) in MeCN (1.4 mL) and $\mathrm{AcOH}(1.4 \mathrm{~mL})$ was cooled to $-40^{\circ} \mathrm{C}(\mathrm{MeCN} /$ dry ice). To the frozen mixture was added a solution of the ketone 78 ($120 \mathrm{mg}, 341 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$) in MeCN (0.4 mL , rinsed with $2 \times 0.4 \mathrm{~mL}$). The resulting thick slurry was stirred for a few minutes at the same temperature and was then aged in a freezer $\left(-18{ }^{\circ} \mathrm{C}\right)$ for 18 h . Afterwards the suspension was allowed to warm to rt and stirred for another 1 h 15 min . Then Rochelle salt (aq. sat.) was added. A white suspension formed immediately. This mixture was stirred at rt for 2 h . Then it was diluted with water, some $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the acetic acid was quenched with $\mathrm{NaHCO}_{3}(\mathrm{~s})$. As soon as the gas evolution stopped, the layers were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude was purified by column chromatography (hex:Et $2 \mathrm{O} 2: 1 \rightarrow$ hex:EtOAc $1: 1$) to afford the desired product S20 (121 mg, 95\% wt/wt along with EtOAc, 115 mg , 95\%, $\mathrm{dr}=49: 1$) as a colourless oil.

TLC (Hex:EtOAc 1:1): $\mathrm{R}_{f}=0.64$
$[\alpha]_{\mathrm{D}}{ }^{24}=+44.2\left(c=1.00, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.15\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.07(\mathrm{bs}, 1 \mathrm{H}), 4.91\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.37\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right)$, 3.95 (d, J = 3.6 Hz, 1H), 3.88-3.78 (m, 1H), 3.27 (s, 3H), 3.25 (d, J = $5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.74-2.68 (m, 1H), 1.83-1.68 (m, 3H), 1.76 (d, J = 1.0 Hz, 3H), 1.73 (bs, 3H), $0.85(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): \delta=147.3,145.3,110.4,86.5,78.2,73.1,71.2,57.3,40.7,38.2$, 21.7, 18.8, 10.9 .

IR ($\left.v /\left[\mathrm{cm}^{-1}\right]\right) 3385 \mathrm{br}, 3073,2974,2935,2918,2830,1738,1725,1651,1620,1443,1376$, $1243,1193,1113,1087 \mathrm{~s}, 1049 \mathrm{~s}, 1010,948,931,921,899,852,785,683,669,647,637$, 597, 579, 569, 550, 542, 535, 515, 505, 499, 492, 483, 469, 459, 440, 424.

HRMS Calcd. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{INaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} m / z$ 377.0584. Found: 377.0571.

ppm (t1)

79
(3R,4S,5S,7S,E)-1-Iodo-3-methoxy-2,4,8-trimethyl-7-((triisopropylsilyl)oxy)nona-
1,8-dien-5-ol (79): To a solution of the diol $\mathbf{S 1 9}$ ($104 \mathrm{mg}, 0.294 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8 mL) over molecular sieves ($3 \AA$ beads) was added 2,6-lutidine ($171 \mu \mathrm{~L}, 1.47 \mathrm{mmol}$, $5.00 \mathrm{eq})$ at rt. The mixture was stirred at rt for 5 min , then it was cooled to $-78{ }^{\circ} \mathrm{C}$ and, after another 5 min stirring, TIPSOTf ($87.0 \mu \mathrm{~L}, 0.323 \mathrm{mmol}, 1.10 \mathrm{eq}$) was added. TLC reaction control after 25 min indicated nearly full conversion. After 35 min the reaction was quenched with NaHCO_{3} (sat. aq.). The layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. Then the combined organic extracts were washed with brine, dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude was purified by column chromatography (hex:Et20 7:1) to afford the desired product 79 as a colourless oil ($146 \mathrm{mg}, 97 \%$).
TLC (hex:EtOAc 5:1): $\mathrm{R}_{f}=0.52 ;[\boldsymbol{\alpha}]_{\mathbf{D}^{24}}=+16.43\left(c=0.85, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400.1 \mathrm{MHz}): \delta=6.08\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.14\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.98\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.49(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-$ $3.68(\mathrm{~m}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.74(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.69$ (bs, 3H), 1.13$1.02(\mathrm{~m}, 21 \mathrm{H}), 0.84(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): \delta=146.4,145.5$, 111.6, 86.4, 77.9, 75.6, 69.5, 57.2, 41.2, 37.1, 20.9, 19.3, 18.04, 18.02, 12.2, 9.9; IR $\left(\mathrm{v} /\left[\mathrm{cm}^{-1}\right]\right) 3518 \mathrm{br}, 2942,2893,2867,1654,1620,1462,1379,1256,1193,1112,1082 \mathrm{~s}$, 1064s, 998, 952, 919, 883s, 818, 784, 764, 725, 719, 679s, 658, 596, 569, 561, 510, 499, 485, 463, 446, 433, 424, 410, 404; HRMS Calcd. for $\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{IO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} m / z 511.2099$. Found: 511.2103.

ppm (t1)

80
($3 R, 4 S, 5 S, 7 S, E)$-1-Iodo-3-methoxy-2,4,8-trimethyl-7-((triisopropylsilyl)oxy)nona-1,8-dien-5-yl 2-(diethoxyphosphoryl)acetate (80): To a cooled ($0^{\circ} \mathrm{C}$) solution of diethylphosphonoacetic acid (55) ($66 \mu \mathrm{~L}, 0.413 \mathrm{mmol}, 1.50 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3.5 mL) over molecular sieves (beads, 3 Å) was added CME-carbodiimide ($210 \mathrm{mg}, 0.496 \mathrm{mmol}$, 1.80 eq). The mixture was stirred at $0^{\circ} \mathrm{C}$ for $10-15 \mathrm{~min}$, then a solution of the alcohol 79 ($141 \mathrm{mg}, 0.275 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.1 \mathrm{~mL}$, rinsed with $2 \times 1.1 \mathrm{~mL}$) was added. The cooling was removed and DMAP ($3.4 \mathrm{mg}, 10 \mathrm{~mol} \%$) was added. After 2.5 h the mixture was concentrated under reduced pressure. The crude was purified by column chromatography (hex:EtOAc $2: 1 \rightarrow 1: 1$) to afford the desired ester $\mathbf{8 0}$ ($154 \mathrm{mg}, 81 \%$) as a colourless oil.

TLC (Hex:EtOAc 1:1): $\mathrm{R}_{f}=0.43$
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 4}}=+18.5\left(c=0.905, \mathrm{CHCl}_{3}\right)$
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.16\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.80\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.75$ (ddd, $J=1.7 \mathrm{~Hz}$, $J=4.4 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.20-4.10(\mathrm{~m}, 5 \mathrm{H}), 3.43(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.17$ $(\mathrm{s}, 3 \mathrm{H}), 2.85(\mathrm{ddd}, J=14.4 \mathrm{~Hz}, J=21.5 \mathrm{~Hz}, J=34.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 1 \mathrm{H})$, $1.81(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.33\left(\mathrm{~m}_{\mathrm{c}}, 6 \mathrm{H}\right), 1.07-1.00$ (m, 21H), $0.94(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): \delta=164.9(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 147.2,146.5,111.7,87.1,79.0,75.6$, 73.8, 62.53 ($\mathrm{d}, J=6.3 \mathrm{~Hz}$), 62.51 ($\mathrm{d}, J=6.3 \mathrm{~Hz}$), $56.7,39.0,35.9,34.3$ (d, $J=135 \mathrm{~Hz}$), 19.8, $18.16,18.90,16.4,16.34(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 16.32(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 12.4,9.7$.

IR ($\mathrm{v} /\left[\mathrm{cm}^{-1}\right]$) 3072, 2942, 2866, 1734, 1651, 1614, 1462, 1385, 1264s, 1199, 1162, 1089, 1051s, 1052s, 964, 883, 825, 784, 713, 678, 656, 621, 569, 505, 500, 487, 482, 462, 422, 417.

HRMS Calcd. for $\mathrm{C}_{28} \mathrm{H}_{54} \mathrm{INaO}_{7} \mathrm{PSi}[\mathrm{M}+\mathrm{Na}]^{+} m / z 711.2313$. Found: 711.2

81
(E)-5-(Octa-2,7-dien-1-ylsulfonyl)-1-phenyl-1H-tetrazole (81): To a solution of (E)-2,7-octadienol ($\mathbf{8 0})^{19}$ ($300 \mathrm{mg}, 2.38 \mathrm{mmol}, 1.0$ equiv), 2-mercaptophenyltetrazole ($509 \mathrm{mg}, 2.86 \mathrm{mmol}, 1.2$ equiv) and triphenylphosphine ($749 \mathrm{mg}, 2.86 \mathrm{mmol}, 1.2$ equiv) in THF (12.8 mL) was added dropwise at rt DEAD ($0.45 \mathrm{~mL}, 2.86 \mathrm{mmol}, 1.2$ equiv). After strirring for 3 h at rt , the reaction mixture was diluted with ethanol (21 mL) and cooled to $0^{\circ} \mathrm{C}$. Then, a premixed solution of $50 \% \mathrm{H}_{2} \mathrm{O}_{2}(2.23 \mathrm{~mL}, 36.4 \mathrm{mmol}, 15$ equiv) and ammonium molybdate ($486 \mathrm{mg}, 0.39 \mathrm{mmol}, 17 \mathrm{~mol} \%$) in water (1.5 mL) was added dropwise to the reaction mixture. After stirring over night at rt , the yellow reaction mixture was diluted with water (50 mL). The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with water and brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude purified by column chromatography (hexane/EtOAc, 15:1 \rightarrow 10:1) to afford $\mathbf{8 1}$ ($436 \mathrm{mg}, 57 \%$ over 2 steps) as a colorless oil, which solidified upon storage in the freezer to give a colorless solid.
$\mathbf{R}_{\boldsymbol{f}}=0.41$ (hexane/EtOAc, 5:1)
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.70-7.55(\mathrm{~m}, 5 \mathrm{H}), 5.96(\mathrm{td}, J=6.9,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.74$ (tdd, $J=6.7,10.2,17.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.50(\mathrm{dtt}, J=15.4,7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.92$ (m, 2H), 4.37 (dd, J $=0.8,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{dd}, J=7.0,14.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=144.8,138.0,133.0,131.4,129.6,125.1,115.0,113.1$, 59.8, $32.9,32.0,27.6$ (one quaternary carbon missing)

HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 319.1223$, found: 319.1228.

[^18]

S20
(4R,6R)-4-(2-((tert-Butyldiphenylsilyl)oxy)ethyl)-6-($(R, 3 E, 5 E)$-undeca-3,5,10-trien-2-yl)tetrahydro-2H-pyran-2-one (S20): To a solution of crude aldehyde 68 (380 mg) and sulfone 81 ($332 \mathrm{mg}, 1.04 \mathrm{mmol}, 1.3$ equiv) in THF (7.6 mL) was added at $78^{\circ} \mathrm{C}$ LiHMDS ($2.10 \mathrm{~mL}, 1.05 \mathrm{mmol}, 1.3$ equiv, 0.5 m solution in THF). After stirring the yellowish solution at $-78{ }^{\circ} \mathrm{C}$ for 1.5 h , the reaction mixture was allowed to warm to rt over $2 \mathrm{~h} . \mathrm{pH} 7$ buffer solution (20 mL) was added and the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ (20 mL). The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (2 x 25 mL). The combined organic extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (pentane/Et ${ }_{2} \mathrm{O}, 15: 1 \rightarrow 10: 1 \rightarrow 7: 1 \rightarrow 6: 1 \rightarrow 5: 1$) to afford $\mathbf{S 2 0}$ ($144 \mathrm{mg}, 34 \%$ over 2 steps, $\mathrm{E} / \mathrm{Z}>30: 1$) as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.18$ (pentane/Et20, 5:1)
$[\alpha] \mathrm{D}^{24}=+7.5^{\circ}\left[c=0.610, \mathrm{CHCl}_{3}\right]$
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.68-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.33(\mathrm{~m}, 6 \mathrm{H}), 6.05(\mathrm{dd}, J=10.3$, $17.2 \mathrm{~Hz}, 1 \mathrm{H}$), $6.01(\mathrm{dd}, J=10.4,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{ddd}, J=6.7,10.2,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.63$ (td, $J=6.8,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=8.0,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01$ (ddd, $J=1.6,3.5,17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.96 (ddd, $J=2.8,6.2,11.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.08 (ddd, $J=2.8,6.2,11.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.69 (t, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.64 (ddd, $J=1.7,5.4,17.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.43\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.24-1.95(\mathrm{~m}, 6 \mathrm{H}), 1.89(\mathrm{~d}, J=13.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.61-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.20-1.08(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.4,138.6,135.5,133.8,133.6,133.5,131.7,131.5$, $130.2,129.8,127.7,114.6,83.9,60.8,41.8,38.7,36.4,33.2,32.3,32.0,28.5,26.9,19.2,15.8$. IR (neat, v/cm¹): 3071w, 2928m, 2857m, 1736s, 1472w, 1428m, 1389w, 1235m, 1110s, 990m, 910w, 823m, 739m, 703s, 615m, 505s, 488m.

HRMS (ESI): m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 553.318$, found: 553.3109.

(4R,6R)-4-(2-Hydroxyethyl)-6-((R,3E,5E)-undeca-3,5,10-trien-2-yl)tetrahydro-2H-pyran-2-one (S21): To a solution of S20 ($144 \mathrm{mg}, 0.27 \mathrm{mmol}, 1.0$ equiv) in THF (2.70 mL) was added at $0^{\circ} \mathrm{C}$ TBAF ($1.10 \mathrm{~mL}, 1.10 \mathrm{mmol}, 4.0$ equiv, 1.0 m in THF) and AcOH ($63 \mu \mathrm{~L}, 1.1 \mathrm{mmol}, 4.0$ equiv). After stirring for 16 h at rt, the reaction mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, 1:2 $\rightarrow 0: 1$) to give $\mathbf{S 2 1}(72.4 \mathrm{mg}$, 89\%, $\mathrm{E} / \mathrm{Z}>30: 1,3 \% \mathrm{wt} / \mathrm{wt} \mathrm{CH}_{2} \mathrm{Cl}_{2}$) as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.52$ (EtOAc).
$[\alpha]_{\mathrm{D}^{24}}=+10.7^{\circ}\left[\mathrm{c}=0.635, \mathrm{CHCl}_{3}\right]$.
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.13-5.91(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{tdd}, J=6.7,10.2,16.9 \mathrm{~Hz}, 1 \mathrm{H})$, 5.63 (td, $J=6.8,13.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.47 (dd, $J=8.0,14.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.00 (ddd, $J=1.6,3.6,17.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.95$ (tdd, $J=1.2,2.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ (ddd, $J=2.9,6.3,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{t}, J=$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.78-2.65 (m, 1H), 2.45 (mc, 1H), 2.20-2.01 (m, 6H), $1.96\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.66-1.42$ ($\mathrm{m}, 5 \mathrm{H}$), 1.28-1.10 (m, 1H), 1.11 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=171.3,138.6,133.9,131.8,131.4,130.2,114.6,83.8,59.6$, $41.8,38.8,36.3,33.2,32.3,32.0,28.4,28.2,15.8$.

IR (neat, v / cm^{-1}): 3427brs, 2925m, 1723s, 1456w, 1440w, 1381m, 1247s, 1087m, 1053m, 990s, 911m.

HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 315.1931$, found: 315.1923.

83

2-(($4 S, 6 R)$-2-oxo-6-($(R, 3 E, 5 E)$-undeca-3,5,10-trien-2-yl)tetrahydro-2H-pyran-4-

yl)acetaldehyde (83): To a solution of oxalyl chloride ($30.6 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise DMSO ($51.3 \mu \mathrm{~L}, 0.72 \mathrm{mmol}, 3.0$ equiv). After stirring at $-78^{\circ} \mathrm{C}$ for 10 min , a solution of $\mathbf{S} 21$ ($70.4 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.1 \mathrm{~mL})$ was added dropwise. The resultant cloudy mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h , and then TEA ($0.13 \mathrm{~mL}, 0.96 \mathrm{mmol}, 4.0$ equiv) was added slowly and the reaction mixture was allowed to warm to room temperature (1 h). The reaction was quenched with water (10 mL), and the layers were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$ and the combined organic phases were washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by column chromatography (hexane/EtOAc, 3:1 \rightarrow 1:1) to afford 83 ($66.6 \mathrm{mg}, 95 \%$) as a yellow oil.
$\mathbf{R}_{\boldsymbol{f}}=0.40$ (hexane/EtOAc, 1:1).
$[\alpha]_{D^{24}}=+7.4^{\circ}\left[c=0.600, \mathrm{CHCl}_{3}\right]$.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.75(\mathrm{~s}, 1 \mathrm{H}), 6.12-5.90(\mathrm{~m}, 2 \mathrm{H}), 5.79(\mathrm{dt}, J=6.6,16.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.62(\mathrm{td}, J=6.9,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=8.0,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.94(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (ddd, $J=2.6,6.3,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.78\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.58-2.38(\mathrm{~m}$, $4 \mathrm{H}), 2.20-1.93(\mathrm{~m}, 6 \mathrm{H}), 1.47$ (mc, 2H), 1.29-1.14 (m, 1H), 1.11 (d, J = 6.9 Hz, 3H).
${ }^{13}$ C-NMR (100.6 MHz, CDCl 3): $\delta=199.6,170.3,138.6,134.0,131.9,131.0,130.1,114.6$, 83.4, 49.8, 41.7, 35.8, 33.2, 31.9 (2С), 28.4, 25.9, 15.8.

IR (neat, v / cm^{-1}): 2974m, 2926m, 2855w, 2728w, 1732s, 1640w, 1456m, 1383m, 1238s, 1173w, 1078m, 991s, 912m.

HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]+$: 313.1774 , found: 313.1783.

(3R,4S,5S,7S,E)-1-Iodo-3-methoxy-2,4,8-trimethyl-7-((triisopropylsilyl)oxy)nona-1,8-dien-5-yl ($E)-4-((4 R, 6 R)$-2-oxo-6-($(R, 3 E, 5 E)$-undeca-3,5,10-trien-2-yl)tetra-
hydro-2H-pyran-4-yl)but-2-enoate (83): To LiCl ($8.9 \mathrm{mg}, 211 \mu \mathrm{~mol}, 1.15 \mathrm{eq}$) was added a solution of the phosphonate $\mathbf{8 0}(145 \mathrm{mg}, 211 \mu \mathrm{~mol}, 1.15 \mathrm{eq})$ in $\mathrm{MeCN}(0.3 \mathrm{~mL}$, rinsed with $2 \times 0.3 \mathrm{~mL}+0.5 \mathrm{~mL}$), followed by DBU ($30.0 \mu \mathrm{~L}, 202 \mu \mathrm{~mol}, 1.10 \mathrm{eq}$). After 15 min stirring at rt , the colourless solution was cooled to $0^{\circ} \mathrm{C}$, whereupon the solution turned slightly turbid. After 25 min , a solution of the aldehyde 83 ($53.3 \mathrm{mg}, 184 \mu \mathrm{~mol}$, $1.00 \mathrm{eq})$ in MeCN (1.6 mL) was added. The pale yellow mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and was then allowed to warm to rt . After 1 h , the mixture was concentrated at the rotavap and the residue was purified by flash chromatography (hex:EtOAc 3:1) to afford the desired product 84 (108 mg 97\% wt/wt along with ether and EtOAc, 105 mg , 69\%) as a colourless oil.

TLC (hex:EtOAc 3:1): $\mathrm{R}_{f}=0.43$
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.78\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 6.15(\mathrm{bs}, 1 \mathrm{H}), 6.11-5.94(\mathrm{~m}, 2 \mathrm{H}), 5.87-5.74$ (m, 2H),5.63 (td, $J=7.0 \mathrm{~Hz}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=8.0 \mathrm{~Hz}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00$ (ddd, $J=1.6 \mathrm{~Hz}, J=3.6 \mathrm{~Hz}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{tdd}, J=1.2 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.78$ ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}$), 4.73 (ddd, $J=1.5 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.65\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.18-4.06(\mathrm{~m}, 2 \mathrm{H})$, $3.37(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=6.9 \mathrm{~Hz}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-$ 2.16 (m, 2H), 2.14-2.01 (m, 7H), 1.98-1.90 (m, 1H), 1.89-1.78 (m, 1H), 1.83 (d, J = 1.0 Hz , $3 H), 1.76-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.67$ (bs, 3H), 1.48 (mc, 2H), 1.24-1.16 (m, 1H), $1.11(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.07-0.09(\mathrm{~m}, 21 \mathrm{H}), 0.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (CDCl $\left.3,100.6 \mathrm{MHz}\right): \delta=170.6,165.3,147.0,146.6,144.2,138.6,134.1,132.0$, 131.0, 130.1, 124.1, 114.6, 111.7, 87.7, 83.5, 79.0, 75.5, 72.5, 56.7, 41.7, 39.0, 38.7, 35.9, 35.8, 33.2, 32.0, 31.9, 31.0, 28.4, 19.6, 18.2, 18.1, 16.5, 15.8, 12.4, 9.9.

HRMS Calcd. for $\mathrm{C}_{42} \mathrm{H}_{69} \mathrm{NaO}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} m / z$ 847.3800. Found: 847.3808.

ppm (t1)

86

5-(Hex-5-en-1-ylsulfonyl)-1-phenyl-1H-tetrazole: To a solution of 5-hexen-1-ol (85) ($135 \mu \mathrm{~L}, 1.18 \mathrm{mmol}, 1.00 \mathrm{eq}$), phenyltetrazole thiol ($240 \mathrm{mg}, 1.35 \mathrm{mmol}, 1.15 \mathrm{eq}$) and $\mathrm{PPh}_{3}(353 \mathrm{mg}, 1.35 \mathrm{mmol}, 1.15 \mathrm{eq})$ in THF (6 mL) was added DEAD ($212 \mu \mathrm{~L}, 1.35 \mathrm{mmol}$, $1.15 \mathrm{eq})$ dropwise at rt . The orange colour of the drops discharged upon contact with the mixture until the very last drops and a slight warming was observed. The resulting pale yellow solution was stirred for 3 h . Then EtOH (10 mL) was added and the reaction was cooled to $0^{\circ} \mathrm{C}$. Afterwards a previously prepared solution of ammonium molybdate tetrahydrate ($229 \mathrm{mg}, 0.185 \mathrm{mmol}, 16 \mathrm{~mol} \%$) in aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 1.86 \mathrm{~mL})$ was added via pipette. The cooling was removed after a few minutes and the mixture was stirred at rt overnight. Then it was diluted with water (40 mL) and dichloromethane. The layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine and concentrated under reduced pressure. The dark orange crude was purified by column chromatography (hex:EtOAc $5: 1$) to afford the title compound $\mathbf{8 6}$ ($269 \mathrm{mg}, 78 \%$) as a pale yellow oil.

TLC (hex:EtOAc 5:1): $\mathrm{R}_{f}=0.30$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=7.72-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 3 \mathrm{H}), 5.77(\mathrm{tdd}, J=6.7 \mathrm{~Hz}$, $J=10.2 \mathrm{~Hz}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-4.96(\mathrm{~m}, 2 \mathrm{H}), 3.75\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 2.13\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 1.98\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right)$, $1.61\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right)$.

S22
(4R,6R)-4-(2-((tert-Butyldiphenylsilyl)oxy)ethyl)-6-((R, E)-nona-3,8-dien-2-
yl)tetrahydro-2H-pyran-2-one (S22): To a solution of the sulfone 86 (173 mg, $0.590 \mathrm{mmol}, 1.30 \mathrm{eq}$) in THF (4.30 mL) was added solid NaHMDS ($108 \mathrm{mg}, 0.590 \mathrm{mmol}$, $1.30 \mathrm{eq})$ at $-78^{\circ} \mathrm{C}$, whereupon the colour turned bright yellow. After 10 min stirring at $-78^{\circ} \mathrm{C}$, the cooling was removed, allowing for the mixture to warm to $-9^{\circ} \mathrm{C}$. After another 5 min , the mixture was re-cooled to $-78^{\circ} \mathrm{C}$ and after a total of 20 min a solution of the aldehyde 66 (217 mg crude) in THF (0.3 mL , rinsed with $2 \times 0.2 \mathrm{~mL}$) was added. The reaction was aged 1 h at $-78^{\circ} \mathrm{C}$ and was then warmed to $-50^{\circ} \mathrm{C}$ (MeCN/dry ice). After 45 min stirring at $-50^{\circ} \mathrm{C}$, the mixture was allowed to warm to $-19^{\circ} \mathrm{C}$ (ice $/ \mathrm{NaCl}$), whereupon the yellow colour faded slightly. After 30 min stirring at $-19^{\circ} \mathrm{C}$ the mixture was allowed to warm to $0^{\circ} \mathrm{C}$. Only at $0^{\circ} \mathrm{C}$ a white precipitate formed. After 1.5 h at $0^{\circ} \mathrm{C}$, pH 7 buffer solution was added and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 x 10 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude was purified by column chromatography (hexane/EtOAc, 5:1) to afford the desired compound S22 (185 mg, 78\% wt/wt along with sulfone, $143 \mathrm{mg}, 62 \%$ over 2 steps) as a colourless oil.
${ }^{\mathbf{1}} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=7.67-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 6 \mathrm{H}), 5.87-5.70(\mathrm{~m}, 1 \mathrm{H})$, 5.54-5.39 (m, 1H), 5.32 (tdd, $J=1.2 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.99 (ddd, $J=1.6 \mathrm{~Hz}$, $J=3.7 \mathrm{~Hz}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.95 (tdd, $J=1.2 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.05 (ddd, $J=2.9 \mathrm{~Hz}, J=6.3 \mathrm{~Hz}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.69\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 2.64(\mathrm{ddd}, J=1.8 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}$, $J=17.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.35(\mathrm{~m}, ~ 1 \mathrm{H}), 2.20-1.93(\mathrm{~m}, 6 \mathrm{H}), 1.89$ ($\mathrm{m}, 1 \mathrm{H}$), 1.61 (td, $J=7.5 \mathrm{~Hz}$, $J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.09(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): ~ \delta=171.5,138.7,135.5,133.58,133.54,131.9,130.6,129.8$, 127.7, 114.6, 84.0, 60.8, 41.9, 38.8, 36.4, 33.2, 32.3, 32.0, 28.6, 28.4, 26.9 19.2, 16.1.

HRMS Calcd. for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} m / z$ 527.2952. Found: 527.2952.

ppm (t1)

(4R,6R)-4-(2-Hydroxyethyl)-6-((R, E)-nona-3,8-dien-2-yl)tetrahydro-2H-pyran-2one (S23): To a cooled ($0^{\circ} \mathrm{C}$) solution of the silyl ether $\mathbf{S 2 2}$ ($143 \mathrm{mg}, 283 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$) in THF (0.6 mL) were added AcOH ($12.2 \mu \mathrm{~L}, 0.217 \mathrm{mmol}, 4.00 \mathrm{eq}$) and TBAF (0.217 mL 1.0 m in THF, $0.217 \mathrm{mmol}, 4.0$ equiv). The cooling was removed after $5-10 \mathrm{~min}$ and the mixture was stirred at rt for 19 h . Then, the reaction mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and the layers were separated. The aqueous phase was extracted with EtOAc (3 x 10 mL). The combined organic extracts were washed with brine, dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by column chromatography (hex/EtOAc, 1:1 $\rightarrow 0: 1$) to give the primary alcohol $\mathbf{S 2 3}$ as a colorless oil ($74.2 \mathrm{mg}, 95 \% \mathrm{wt} / \mathrm{wt}$ along with EtOAc, $70.5 \mathrm{mg}, 94 \%$).

TLC (EtOAc): $\mathrm{R}_{f}=0.43$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=5.80(\mathrm{tdd}, J=6.7 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.50$ (dtd, $J=0.6 \mathrm{~Hz}, J=6.6 \mathrm{~Hz}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.33(\mathrm{tdd}, J=1.3 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.00(\mathrm{ddd}, J=1.7 \mathrm{~Hz}, J=3.7 \mathrm{~Hz}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{tdd}, J=1.2 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.09$ (ddd, $J=2.9 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.73\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right)$, $2.38\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.19-1.93(\mathrm{~m}, 7 \mathrm{H}), 1.58\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 1.45\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 1.24-1.11(\mathrm{~m}, 1 \mathrm{H}), 1.09$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (CDCl $\left.3,100.6 \mathrm{MHz}\right): ~ \delta=171.4,138.7,132.0,130.6,114.6,83.9,59.7,42.0,38.8$, 36.4, 33.2, 32.4, 32.0, 28.6, 28.3, 16.1.

HRMS Calcd. for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} m / z$ 267.1955. Found: 267.1954.

ppm (t1)

87

2-((2R,4S)-2-((R,E)-Nona-3,8-dien-2-yl)-6-oxotetrahydro-2H-pyran-4-
$\mathbf{y l}$)acetaldehyde (87): To a solution of oxalyl chloride ($34.8 \mu \mathrm{~L}, 0.414 \mathrm{mmol}, 1.55 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was added a solution of DMSO ($58.8 \mu \mathrm{~L}, 0.827 \mathrm{mmol}, 3.10 \mathrm{eq}$) dropwise at $-78{ }^{\circ} \mathrm{C}$. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 10 min , a solution of the primary alcohol $\mathbf{S 2 3}$ ($71.1 \mathrm{mg}, 0.267 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.9 \mathrm{~mL}+1.9 \mathrm{~mL}+1.1 \mathrm{~mL})$ was added dropwise. The resulting cloudy mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , and then NEt_{3} ($149 \mu \mathrm{~L}, 1.07 \mathrm{mmol}, 4.00 \mathrm{eq}$) was added slowly and the reaction mixture was allowed to warm to rt. After another 40 min stirring, the reaction was quenched with water (5 mL). The layers were separated, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude was purified by column chromatography (hex/EtOAc, $2: 1 \rightarrow 1: 1$) to afford the desired aldehyde $87(61.6 \mathrm{mg}, 92 \%, E: Z=9.6: 1$) as a colorless oil.

TLC (hex:EtOAc 1:1): $\mathrm{R}_{f}=0.40$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=9.76(\mathrm{bs}, 1 \mathrm{H}), 5.79(\mathrm{tdd}, J=6.7 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, J=16.9 \mathrm{~Hz}$, 1 H), 5.50 (dtd, $J=0.7 \mathrm{~Hz}, J=6.7 \mathrm{~Hz}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.31 (tdd, $J=1.3 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}$, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.99 (ddd, $J=1.6 \mathrm{~Hz}, J=3.6 \mathrm{~Hz}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.95 (tdd, $J=1.2 \mathrm{~Hz}$, $J=2.2 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{ddd}, J=2.9 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~m}, 1 \mathrm{H})$, 2.59-2.43 (m, 3H), $2.37\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.15-1.96(\mathrm{~m}, 6 \mathrm{H}), 1.45\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 1.28-1.12(\mathrm{~m}, 1 \mathrm{H}), 1.08$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}-N M R\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): \delta=199.6,170.5,138.6,132.2,130.3,114.6,83.6,49.9$, 41.9, 35.9, 33.1, 32.0, 32.01, 31.96, 28.5, 25.9, 16.1.

HRMS Calcd. for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} m / z$ 268.2064. Found: 268.2077.

(1E,3R,4S,5S,7S,8E)-1-Iodo-3-methoxy-2,4,8-trimethyl-7-((triisopropylsilyl)oxy)-undeca-1,8,10-trien-5-yl (E)-4-((2R,4R)-2-((R,E)-nona-3,8-dien-2-yl)-6-oxotetra-hydro-2H-pyran-4-yl)but-2-enoate (88): To LiCl ($5.8 \mathrm{mg}, 138 \mu \mathrm{~mol}, 1.20 \mathrm{eq}$) was added a solution of the phosphonate $69(98.3 \mathrm{mg}, 138 \mu \mathrm{~mol}, 1.20 \mathrm{eq})$ in $\mathrm{MeCN}(0.3 \mathrm{~mL}$, rinsed with $2 \times 0.3 \mathrm{~mL}$), followed by DBU ($19.0 \mu \mathrm{~L}, 126 \mu \mathrm{~mol}, 1.10 \mathrm{eq}$). After 15 min stirring at rt , the pale yellow mixture was cooled to $0^{\circ} \mathrm{C}$, whereupon the solution turned turbid. As the precipitate settled, stirring became difficult. After 20 min , a solution of the aldehyde 87 (30.3 mg , $115 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$) in MeCN (1.1 mL) was added. The mixture was stirred for 20 min at $0^{\circ} \mathrm{C}$ and was then allowed to warm to rt . TLC reaction control after 50 min indicated, that no aldehyde was left. Thus, the mixture was concentrated at a rotavap and the residue was purified by flash chromatography (hex:EtOAc 5:1) to afford the desired product 88 (80.4 mg after HV, 85\%) as a colourless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.74(\mathrm{td}, J=7.4 \mathrm{~Hz}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\operatorname{td}, J=10.4 \mathrm{~Hz}$, $J=16.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.16 (bs, 1H), 5.88 (d, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}$), $5.85-5.72$ (m, 2H), 5.51 (td, $J=6.8 \mathrm{~Hz}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.33 (tdd, $J=1.2 \mathrm{~Hz}, J=7.9 \mathrm{~Hz}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.13 (dd, $J=1.8 \mathrm{~Hz}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.06-4.92(\mathrm{~m}, 3 \mathrm{H}), 4.77(\mathrm{ddd}, J=1.6 \mathrm{~Hz}, J=4.1 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.16-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.67\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.39\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right)$, $2.20(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.14-1.98(\mathrm{~m}, 7 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~d}$, $J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{td}, J=7.4 \mathrm{~Hz}, J=14.8 \mathrm{~Hz}$, 2H), 1.23-1.14 (m, 1H), 1.09 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.06-0.98(\mathrm{~m}, 21 \mathrm{H}), 0.91(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR ($\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}$): $\delta=170.7,165.2,146.5,144.3,140.3,138.6,132.6$, $132.2,130.3,126.4,124.2,116.9,114.6,87.6,83.6,79.0,76.7,72.5,56.7,41.8,39.0,38.6$, 36.0, 35.7, 33.2, $32.00,31.98,31.0,28.6,19.7,18.2,18.1,16.0,12.4,11.6,9.8$; HRMS Calcd. for $\mathrm{C}_{42} \mathrm{H}_{69} \mathrm{INaO}{ }_{6} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} m / z$ 847.2800. Found: 847.3813.

Attemped preparation of hydroxy ester 90 by opening of lactone 67:

Lactone opening with LiOMe: To a solution of lactone 67 ($38.0 \mathrm{mg}, 87.0 \mu \mathrm{~mol}, 1.0$ equiv) in $\mathrm{MeOH}(3.0 \mathrm{~mL}$) was added at rt a freshly prepared solution of LiOMe in MeOH (prepared by the addition of n -BuLi ($0.44 \mathrm{~mL}, 0.87 \mathrm{mmol}, 10$ equiv) to 3 mL of MeOH at $0^{\circ} \mathrm{C}$). After stirring for 20 min , conversion was incomplete (TLC) and more LiOMe (10 equiv) was added. After a total reaction time of 60 min the reaction mixture was poured into a mixture of $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and sat. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. All volatiles were removed under reduced pressure. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, the combined organic extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, 10:1 \rightarrow 7:1) to afford only the starting lactone 67 ($37.2 \mathrm{mg}, 98 \%$) as a colorless oil.

Lactone opening with LiOH: To a solution of $67(37.2 \mathrm{mg}, 85.2 \mu \mathrm{~mol}, 1.0$ equiv) in THF/water ($2.5 \mathrm{~mL}, 1: 1 \mathrm{v} / \mathrm{v}$) was added at $0^{\circ} \mathrm{C}$ lithium hydroxide monohydrate (35.7 mg , $0.85 \mathrm{mmol}, 10$ equiv) in one portion. After stirring for 45 min at $0^{\circ} \mathrm{C}$, solid $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ monohydrate (200 mL) was added and the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ (15 mL) and aq. $0.2 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$ solution (15 mL). The layers were separated and the aqeous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude hydroxy acid ($38.0 \mathrm{mg}, 98 \%$) was isolated as a colorless oil and used without further purification. To a solution of the crude acid ($38.0 \mathrm{mg}, 83.6 \mu \mathrm{~mol}, 1.0$ equiv) in toluene (0.50 mL) and MeOH $(0.34 \mathrm{~mL})$ was added at rt TMSCHN $2(46.0 \mu \mathrm{~L}, 92 \mu \mathrm{~mol}, 1.1$ equiv, 2.0 m solution in hexane). After stirring for 1 h at rt , the acid was consumed to give lactone $\mathbf{6 7}$ exclusively (based on TLC analysis).

92
(3R,5R,6R)-3-(2-((tert-Butyldiphenylsilyl)oxy)ethyl)-6-methyloct-7-ene-1,5-diol
(92): To a solution of 67 ($28.5 \mathrm{mg}, 65.3 \mu \mathrm{~mol}, 1.0$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C} \mathrm{LiAlH} 4$ ($3.7 \mathrm{mg}, 97.5 \mu \mathrm{~mol}, 1.5$ equiv). After stirring for 10 min at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was allowed to warm to rt over 50 min and was quenched at $0^{\circ} \mathrm{C}$ by slow addition of sat. Rochelle salt (5 mL). The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (2 x 15 mL). The combined organic extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. 92 (28.7 mg , quant.) was isolated as a yellowish oil, which was used for the next step without further purification.
$\mathbf{R}_{\boldsymbol{f}}=0.16$ (hexane/EtOAc, 2:1)
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.72-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.33(\mathrm{~m}, 6 \mathrm{H}), 5.73$ (ddd, $J=7.3$, $9.8,17.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.01(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.59(\mathrm{~m}, 4 \mathrm{H}), 3.50(\mathrm{ddd}, J=3.1,5.1,9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.20\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.09-1.81(\mathrm{brs}, 2 \mathrm{H}), 1.86\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.68-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.49-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.05$ $(\mathrm{s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=140.8,135.6,133.8,129.6,127.6,115.4,73.3,62.2,60.6$, 44.0, 38.2, 37.6, 37.5, 28.7, 26.9, 19.1, 14.2.

HRMS (ESI): m / z calcd for $\mathrm{C}_{2} \mathrm{H}_{4}{ }_{40} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 463.2639$, found: 463.2631 .

S24
(3R,4R,6R)-8-((tert-Butyldimethylsilyl)oxy)-6-(2-((tert-butyldiphenylsilyl)-oxy)ethyl)-3-methyloct-1-en-4-ol (S24): To a solution of 92 ($33.2 \mathrm{mg}, 0.08 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.1 mL) was added at rt imidazole ($10.6 \mathrm{mg}, 0.16 \mathrm{mmol}$, 2.1 equiv) followed by TBSCl ($16.3 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.4$ equiv). After stirring for 20 min at rt , the reaction mixture was quenched with brine (10 mL) and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, 10:1) to afford S24 ($40.9 \mathrm{mg}, 98 \%$ over 2 steps) as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.26$ (hexane/EtOAc, 15:1)
$[\alpha] \mathrm{D}^{24}=+14.0^{\circ}\left[c=0.515, \mathrm{CHCl}_{3}\right]$.
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.71-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.34(\mathrm{~m}, 6 \mathrm{H}), 5.75$ (ddd, $J=7.5$, $10.7,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.00(\mathrm{~m}, 2 \mathrm{H}), 3.69\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 3.63\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 3.50\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.20\left(\mathrm{~m}_{\mathrm{c}}\right.$, $1 \mathrm{H}), 2.05(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.82\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.68-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~s}$, 9 H), $0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=141.2,135.6,133.9,129.6,127.6,114.9,73.0,62.2,61.3$, $44.0,38.7,37.5,37.0,29.0,26.9,26.0,19.1,18.3,14.5,-5.3$.

IR (neat, v / cm^{-1}): $3450 \mathrm{brs}, 2955 \mathrm{~m}, 2929 \mathrm{~m}, 2858 \mathrm{~m}, 1472 \mathrm{w}, 1428 \mathrm{w}, 1389 \mathrm{w}, 1254 \mathrm{~m}$, 1106s, 1092s, 1005w, 835m, 776m, 738m, 702s, 614w, 506m.

HRMS (ESI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{55} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 555.3684$, found: 555.3682.

(3R,5R,6R)-3-(2-((tert-Butyldiphenylsilyl)oxy)ethyl)-5-((4-methoxybenzyl)oxy)-6-methyloct-7-en-1-ol (S26): To a solution of S24 ($40.9 \mathrm{mg}, 0.07 \mathrm{mmol}, 1.0$ equiv) and PMB-2,2,2-trichloroacetimidate ($55.0 \mathrm{mg}, 0.19 \mathrm{mmol}, 2.6$ equiv) in toluene (1.5 mL) was added at $\mathrm{rt} \mathrm{Sc}(\mathrm{OTf})_{3}(2.3 \mathrm{mg}, 6.3 \mathrm{~mol} \%)$. After stirring for 1.5 h at rt , the reaction mixture was quenched with sat. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and diluted with brine $(10 \mathrm{~mL}) / \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($2 \times 20 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, $50: 1 \rightarrow 30: 1 \rightarrow 10: 1)$ to afford $\mathbf{S} 25(44.1 \mathrm{mg},<89 \%$, impure) as a mixture with impurities originating from PMB-2,2,2-trichloroacetimidate. $\mathbf{R}_{\boldsymbol{f}}=0.38$ (hexane/EtOAc, 15:1). To a solution of S25 ($44.1 \mathrm{mg}, 65.3 \mu \mathrm{~mol}, 1.0$ equiv) in THF/water ($4: 1,0.71 \mathrm{~mL}$) was added sodium periodate ($84.2 \mathrm{mg}, 0.39 \mathrm{mmol}, 6.0$ equiv). After stirring at rt for 15 h , the reaction mixture was quenched with water (10 mL) and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \times 20 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, 5:1 \rightarrow 4:1) to give S26 ($27.8 \mathrm{mg}, 76 \%, 67 \%$ over 2 steps) as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.14$ (hexane/EtOAc, 5:1)
$[\alpha] \mathbf{D}^{24}=+34.0^{\circ}\left[c=0.365, \mathrm{CHCl}_{3}\right]$
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.73-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, 2 H), 6.83 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 5.86 (ddd, $J=6.8,11.4,16.3 \mathrm{~Hz}, 1 \mathrm{H}$), $5.06-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.53$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.32(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.67\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 3.58\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 3.29$ (ddd, $J=2.9,4.3,9.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.55\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.89$ (brs, 1 H$), 1.76\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.68-1.41(\mathrm{~m}$, $4 \mathrm{H}), 1.41-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.1,140.3,135.6,133.9,130.5,129.6,129.4,127.6$, $114.5,113.8,81.7,71.5,62.0,60.7,55.2,39.9,37.7,37.4,35.2,28.4,26.9,19.2,15.1$.

IR (neat, v / cm^{-1}): 3423brs, 2931m, 2857m, 1613w, 1513m, 1428m, 1302w, 1248m, $1173 \mathrm{w}, 1110 \mathrm{~s}, 1084 \mathrm{~s}$, 1037m, 822m, 739m, 702s, 506s, 488m.
HRMS (ESI): m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{NaO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 583.3214$, found: 583.3216.

93

Methyl (3R,5R,6R)-3-(2-((tert-butyldiphenylsilyl)oxy)ethyl)-5-((4-methoxy-

benzyl)oxy)-6-methyloct-7-enoate (93): To a solution of oxalyl chloride ($6.3 \mu \mathrm{~L}$, $74.4 \mu \mathrm{~mol}$, 1.5 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.60 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise DMSO $(10.6 \mu \mathrm{~L}$, $149 \mu \mathrm{~mol}, 3.0$ equiv). After stirring at $-78^{\circ} \mathrm{C}$ for 10 min , a solution of $\mathbf{S 2 6}(27.8 \mathrm{mg}$, $49.6 \mu \mathrm{~mol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.9 \mathrm{~mL})$ was added dropwise. The resultant cloudy mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1.5 h , and then TEA ($27.6 \mu \mathrm{~L}, 198 \mu \mathrm{~mol}, 4.0$ equiv) was added slowly and the reaction mixture was allowed to warm to room temperature (1 h). The reaction was quenched with water (10 mL), and the layers were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude aldehyde (34.3 mg) was isolated as colorless crystals and was used for the next step without further purification.

To a solution of the aldehyde (34.3 mg , crude) in THF (0.30 mL), tert-butanol (0.58 mL) and 2-methyl-2-butene (0.21 mL) was added at rt an aqeuous solution of $\mathrm{NaClO}_{2}(56.6 \mathrm{mg}$, $0.63 \mathrm{mmol}, 13$ equiv) and $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ monohydrate ($86.4 \mathrm{mg}, 0.63 \mathrm{mmol}, 13$ equiv) in water (0.39 mL). After stirring the yellow reaction mixture for 2 h at rt , sat. aq. $\mathrm{NaH}_{2} \mathrm{PO}_{4}(4 \mathrm{~mL})$ was added and the biphasic mixture was stirred for 15 min . EtOAc (10 mL) and brine (5 mL) was added and the layers were separated. The aqueous layer was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure to afford the acid (32.5 mg , crude) as a yellow oil, which was used for the next step without further purification.

To a solution of the crude acid (32.5 mg , crude) in toluene (0.30 mL) and $\mathrm{MeOH}(0.20 \mathrm{~mL}$) was added at $0^{\circ} \mathrm{C} \mathrm{TMSCHN}_{2}(37.0 \mu \mathrm{~L}, 74 \mu \mathrm{~mol}, 1.5$ equiv, 2.0 m solution in hexane). After stirring for 30 min at $0^{\circ} \mathrm{C}$, the reaction mixture was quenched slowly by the dropwise addition of an $\mathrm{AcOH} / \mathrm{MeOH}$ solution (10:1), until the yellow color disappeared. The solvent was removed under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, 15:1 \rightarrow 10:1) to afford 93 ($23.0 \mathrm{mg}, 79 \%$ over 3 steps) as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.59$ (hexane/EtOAc, 5:1)
$[\alpha] \mathbf{D}^{24}=+19.2^{\circ}\left[c=0.520, \mathrm{CHCl}_{3}\right]$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.70-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.84\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.07-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.36$ (d, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{td}, J=4.8,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.50\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.36-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.22\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.74-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.47-$ $1.38(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=173.4,159.0,140.6,135.6,133.9,130.9,129.6,129.3$, $127.6,114.5,113.7,80.7,71.0,61.7,55.2,51.3,40.3,39.4,36.3,35.8,29.4,26.8,19.1,15.1$. IR (neat, v / cm^{-1}): $3072 \mathrm{w}, 2932 \mathrm{~m}, 2857 \mathrm{~m}, 1737 \mathrm{~s}, 1613 \mathrm{w}, 1513 \mathrm{~s}, 1463 \mathrm{w}, 1429 \mathrm{~m}, 1248 \mathrm{~s}$, $1171 \mathrm{~m}, 1110 \mathrm{~s}, 1091 \mathrm{~s}, 822 \mathrm{~m}, 739 \mathrm{~m}, 703 \mathrm{~s}, 614 \mathrm{w}, 506 \mathrm{~m}$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{NaO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 611.3163$, found: 611.3163 .

(R)-4-((2R,3R)-2-((4-Methoxybenzyl)oxy)-3-methylpent-4-en-1-yl)tetrahydro-2H-pyran-2-one (94): To a solution of 93 ($23.0 \mathrm{mg}, 39.1 \mu \mathrm{~mol}, 1.0$ equiv) in THF (0.39 mL) was added at rt AcOH ($11.5 \mu \mathrm{~L}, 0.20 \mathrm{~mol}, 5.1$ equiv) and TBAF $(0.20 \mathrm{~mL}, 0.20 \mathrm{mmol}$, 5.1 equiv, 1.0 m in THF). After stirring the reaction mixture for 20 h at rt, sat. $\mathrm{NH}_{4} \mathrm{Cl}$ $(15 \mathrm{~mL})$ and EtOAc (15 mL) were added. The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, 2:1) to give a separable mixture ${ }^{20}$ of $\mathbf{9 4} / \mathbf{S 2 7}$ ($11.0 \mathrm{mg}, 88 \%, 9: 1$) as a colorless oil.

Lactone 94: ${ }^{21}$
$\mathbf{R}_{\boldsymbol{f}}=0.33$ (hexane/EtOAc, 2:1)
$[\alpha]_{\mathbf{D}^{24}}=+53.9^{\circ}\left[c=0.330, \mathrm{CHCl}_{3}\right]$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.86$ (ddd, $J=7.0,10.7,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=11.3 \mathrm{~Hz}$, 1 H), 4.33-4.26 (m, 1H), 4.07 (dt, $J=3.7,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.33$ (ddd, $J=2.8,4.8$, $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.42(\mathrm{~m}, 1 \mathrm{H})$, $1.40-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=171.2,159.3,139.7,130.4,129.7,115.1,113.8,78.8,70.9$, $68.4,55.3,39.7,37.2,37.1,28.3,28.1,15.4$.

IR (neat, v/cm ${ }^{-1}$): $3079 \mathrm{w}, 2961 \mathrm{~m}, 2932 \mathrm{~m}, 1736 \mathrm{~s}, 1612 \mathrm{~m}, 1513 \mathrm{~s}, 1463 \mathrm{w}, 1401 \mathrm{w}, 1248 \mathrm{~s}$, $1219 \mathrm{~m}, 1173 \mathrm{~m}, 1086 \mathrm{~m}, 1068 \mathrm{~m}, 1034 \mathrm{~m}, 916 \mathrm{w}, 821 \mathrm{~m}, 771 \mathrm{~m}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 341.1723$, found: 341.1725.

Hydroxy methylester S27:
$\mathbf{R}_{f}=0.21$ (hexane/EtOAc, 2:1).

[^19]

ppm (t1)

92

Methyl (3S,5R,6R)-5-((4-methoxybenzyl)oxy)-6-methyl-3-(2-oxoethyl)oct-7-

enoate (95): To a solution of 94 ($6.6 \mathrm{mg}, 20.7 \mu \mathrm{~mol}, 1.0$ equiv) in MeOH (0.9 mL) was added at rt a freshly prepared solution of LiOMe in MeOH ($1.36 \mathrm{~mL}, 30.2 \mu \mathrm{~mol}, 1.5$ equiv) (prepared by addition of $n-\mathrm{BuLi}(50 \mu \mathrm{~L}, 0.10 \mathrm{mmol})$ to $\mathrm{MeOH}(4.5 \mathrm{~mL})$ at $\left.0^{\circ} \mathrm{C} \rightarrow 22.2 \mu \mathrm{~m}\right)$. After stirring for 1 h at rt , the reaction mixture was quenched by simultaneous addition of $\mathrm{Et}_{2} \mathrm{O}(1.2 \mathrm{~mL})$ and sat. $\mathrm{NH}_{4} \mathrm{Cl}(1.8 \mathrm{~mL})$. All volatiles were removed under reduced pressure. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude hydroxyester S27 (along with some remaining lactone 94) was used for the next step without further purification due to danger of lactonization.

To a solution of the crude hydroxyester $\mathbf{S 2 7}(8.0 \mathrm{mg})$ was added solid sodium bicarbonate ($7.8 \mathrm{mg}, 4.5$ equiv) followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6.8 mL). After cooling to $0^{\circ} \mathrm{C}$, Dess-Martin periodinane ($11.4 \mathrm{mg}, 26.9 \mu \mathrm{~mol}$, 1.3 equiv) was added in one portion. After stirring for 1 h at rt , sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (3 mL) and sat. $\mathrm{NaHCO}_{3}(3 \mathrm{~mL}$) were added simultaneously. This biphasic mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and brine. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (2 x 10 mL). The combined organic extracts were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, 2:1) to afford 95 ($4.9 \mathrm{mg}, 68 \%$, $93 \% \mathrm{brsm}$) as a colorless oil. In addition, the starting material 94 ($1.8 \mathrm{mg}, 27 \%$) was recovered.
$\mathbf{R}_{f}=0.62$ (hexane/EtOAc, 5:1)
$[\alpha] \mathrm{D}^{24}=+40.1^{\circ}\left[c=0.245, \mathrm{CHCl}_{3}\right]$
${ }^{1} \mathrm{H}$-NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.62(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.86\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.09-5.06(\mathrm{~m}, 1 \mathrm{H}), 5.06-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.34(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.32$ (ddd, $J=3.6,4.9,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.59$ $(\mathrm{mc}, 2 \mathrm{H}), 2.47-2.35(\mathrm{~m}, 3 \mathrm{H}), 2.31(\mathrm{dd}, J=7.6,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=201.8,172.8,159.2,139.9,130.5,129.5,114.9,113.8$, $79.9,70.5,55.3,51.5,47.6,39.6,39.1,35.0,27.1,15.3$.

IR (neat, v / cm^{-1}): 2952m, 2935m, 1732s, 1612m, 1512s, 1462w, 1438m, 1373w, 1302m, $1249 \mathrm{~s}, 1172 \mathrm{~m}, 1065 \mathrm{w}, 1034 \mathrm{~m}, 917 \mathrm{w}, 821 \mathrm{~m}$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 341.1723$, found: 341.1725 .

89

1-($(1 E, 3 R, 4 S, 5 S, 7 S, 8 E, 10 E)$-1-Iodo-3-methoxy-2,4,8-trimethyl-7-((triisopropyl-silyl)oxy)hexadeca-1,8,10,15-tetraen-5-yl) 7-methyl (R, E)-5-((2R,3R)-2-((4-methoxybenzyl)oxy)-3-methylpent-4-en-1-yl)hept-2-enedioate (89): To a mixture of $\mathrm{LiCl}(0.9 \mathrm{mg}, 21.2 \mu \mathrm{~mol}, 1.35$ equiv) and $\mathbf{S 1 8}(12.3 \mathrm{mg}, 15.7 \mu \mathrm{~mol}, 1.0$ equiv) was added at rt a stock solution of DBU ($2.63 \mu \mathrm{~L}, 17.4 \mu \mathrm{~mol}, 1.10$ equiv) in MeCN ($0.3 \mathrm{~mL}, 57.5 \mathrm{~mm}$). After stirring the reaction mixture for 15 min at rt , a solution of $95(6.7 \mathrm{mg}, 19.2 \mu \mathrm{~mol}$, 1.22 equiv) in THF (0.9 mL) was added dropwise at $0^{\circ} \mathrm{C}$. After stirring for 2 h at rt , more $\mathrm{LiCl}(1.0 \mathrm{mg}, 23.6 \mu \mathrm{~mol}, 1.5$ equiv) and DBU solution ($0.21 \mathrm{~mL}, 57.5 \mathrm{~mm}$ in MeCN , $12.1 \mu \mathrm{~mol}, 0.77$ equiv) were added. Stirring was continued for 1 h until TLC indicated complete conversion of the phosphonate. The yellowish reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography (hexane/EtOAc, 7:1) to give $\mathbf{8 9}$ ($12.3 \mathrm{mg}, 78 \%$) as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.37$ (hexane/EtOAc, 7:1).
$[\alpha] \mathrm{D}^{24}=+32.3^{\circ}\left[c=0.615, \mathrm{CHCl}_{3}\right]$.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.26(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~m} \mathrm{c}$, 1H), 6.16 (s, 1H), 6.11 (dd, $J=10.8,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92-5.74(\mathrm{~m}, 3 \mathrm{H}), 5.70(\mathrm{~d}, J=15.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.59\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.09-4.91(\mathrm{~m}, 4 \mathrm{H}), 4.77$ (ddd, $\left.J=1.6,4.0,9.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.56(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.37(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.31$ $(\mathrm{m}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.57\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.34-2.17(\mathrm{~m}, 4 \mathrm{H}), 2.17-1.98(\mathrm{~m}, 6 \mathrm{H}), 1.85-1.74(\mathrm{~m}$, 1 H), 1.83 (d, J = $0.9 \mathrm{~Hz}, 3 \mathrm{H}$), 1.73-1.63 (m, 1H), 1.67 (s, 3H), 1.53-1.34 (m, 4H), 1.07-0.96 (m, 24H), $0.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.9,165.3,159.1,146.5,145.8,140.1,138.7,137.2$, $134.1,130.6,129.4,126.2,125.9,123.9,114.8,114.6,113.8,87.6,80.0,78.9,76.5,72.3$, $70.7,56.7,55.3,51.4,39.9,39.8,38.7,35.9,35.8,34.9,33.2,32.4,31.4,28.6,19.7,18.2$, 18.1, 15.3, 12.5, 11.5, 9.7.

IR (neat, v / cm^{-1}): 2940s, 2866m, 1738s, 1718s, 1653w, 1613w, 1513m, 1462m, 1379w, $1249 \mathrm{~s}, 1172 \mathrm{~m}, 1088 \mathrm{~s}, 1058 \mathrm{~m}, 1011 \mathrm{w}, 965 \mathrm{w}, 913 \mathrm{~m}, 883 \mathrm{~m}, 683 \mathrm{~m}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{51} \mathrm{H}_{85} \mathrm{INO}_{8} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 994.5084, found: 994.5097.

Methyl (E)-2-methylhex-2-en-4-ynoate (97):

Oxidation: To a solution of 2-butyn-1-ol (96) ($3.89 \mathrm{~mL}, 51.6 \mathrm{mmol}, 1.20 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (160 mL) were added molecular sieves (3 A , beads) and activated MnO_{2} ($89.8 \mathrm{~g}, 1.03 \mathrm{~mol}$, 24.0 eq) at $0^{\circ} \mathrm{C}$. The cooling bath was removed and the suspension was stirred for 1.5 h at rt.

Wittig reaction: A solution of ylide $17(15.0 \mathrm{~g}, 43.1 \mathrm{mmol}, 1.00 \mathrm{eq})$ was added at rt to the black suspension obtained in the oxidation. Then the mixture was heated to reflux $\left(50^{\circ} \mathrm{C}\right.$ oil bath) for 1 h 45 min and then filtered through a pad of celite (topped with a few mm of silica). The pad was rinsed thoroughly with ether, the combined filtrates were concentrated under reduced pressure and the residue was purified by column chromatography (pent/Et2 $\mathrm{O} 15: 1 \rightarrow 10: 1 \rightarrow 5: 1$) to afford ester 97 as a colourless liquid ($2.71 \mathrm{~g}, 45 \%$).

TLC (hexane/EtOAc, 5:1): $\mathrm{R}_{f}=0.52$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=6.60\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.07\left(\mathrm{~m}_{\mathrm{c}}, 3 \mathrm{H}\right), 2.03(\mathrm{dd}$, $J=0.6 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): ~ \delta=167.8,137.6,120.5,99.2,76.6,52.0,15.1,4.9$.
IR (neat, v / cm^{-1}) 2994, 2952, 2920, 2849, 2367, 2357, 2221, 1712 (s), 1618, 1435, 1386, 1348, 1337, 1256 (s), 1191, 1175, 1118 (s), 1017, 974, 944, 891, 827, 802, 745 (s), 690, 512, 481, 439, 425, 409.

HRMS (EI): m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$ [M] ${ }^{+}$: 138.0676; found: 138.0676.

(E)-2-methylhex-2-en-4-ynal (99):

Reduction: To a solution of ester $97(2.71 \mathrm{~g}, 19.6 \mathrm{mmol}, 1.00 \mathrm{eq})$ in ether (230 mL) was added LiAlH_{4} ($774 \mathrm{mg}, 20.4 \mathrm{mmol}, 1.04 \mathrm{eq}$) in small portions at $0^{\circ} \mathrm{C}$. The suspension was stirred at the same temperature for 30 min and the reaction was then quenched by successive addition of $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL}), 10 \%$ aq $\mathrm{NaOH}(30 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(90 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with ether ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude allylic alcohol 98 thus obtained was used for the next step without purification.

Oxidation: To a solution of the crude allylic alcohol 98 (ca. $2.16 \mathrm{~g}, 19.6 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(68 \mathrm{~mL})$ were added molecular sieves ($3 \AA$, beads) and activated $\mathrm{MnO}_{2}(34.1 \mathrm{~g}$, $392 \mathrm{mmol}, 20.0 \mathrm{eq})$ at rt . The suspension was stirred for 10 min at the same temperature and then filtered through a pad of Celite, topped with a few mm of silica. The filter was washed thoroughly with $\mathrm{Et}_{2} \mathrm{O}$, the combined filtrates were concentrated under reduced pressure and the residue was purified by column chromatography (Pent/Et $\mathrm{E}_{2} \mathrm{O}: 1$) to afford aldehyde 99 ($1.84 \mathrm{~g} \mathrm{95} \mathrm{\%} \mathrm{wt/wt} \mathrm{along} \mathrm{with} \mathrm{Et}_{2} \mathrm{O}, 1.75 \mathrm{~g}, 82 \%$) as a pale yellow liquid.

TLC (hexane/EtOAc, 5:1): $\mathrm{R}_{f}=0.53$
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.44(\mathrm{~s}, 1 \mathrm{H}), 6.32\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.14(\mathrm{dd}, J=0.5 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.91(\mathrm{dd}, J=0.5 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{\mathbf{1 3}} \mathbf{C}\{\mathbf{1 H}\}$-NMR (CDCl3, 100.6 MHz): $\delta=194.4,147.7,130.2,105.1,76.3,11.5,5.2$.
HRMS: m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 109.0648$; found: 109.0653.

(E)-2-Methylhex-2-en-4-yn-1-ol (98): Propyne was condensed into a Schlenk tube at $-78^{\circ} \mathrm{C}$, then DIPEA ($17.5 \mathrm{~mL}, 20 \mathrm{eq}$) and CuI ($235 \mathrm{mg}, 1.01 \mathrm{mmol}, 20 \mathrm{~mol} \%$) were added. To this suspension was added a solution of the vinyl iodide $102(1.00 \mathrm{~g}, 5.05 \mathrm{mmol}$, 1.00 eq) in THF (1 mL , rinsed with $2 \times 1 \mathrm{~mL}$), followed by THF (7 mL) and the $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($532 \mathrm{mg}, 0.758 \mathrm{~mol}, 15 \mathrm{~mol} \%$) at $-78^{\circ} \mathrm{C}$. After 15 min stirring at $-78^{\circ} \mathrm{C}$, the reaction was allowed to warm to rt and stirred overnight. Reaction control by HPLC indicated full conversion. The reaction was diluted with ether (20 mL) and washed with acetic acid (3 m , 35 mL). Then the layers were separated and the aqueous phase was extracted with ether $(2 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with NaHCO_{3}, dried over MgSO_{4} and concentrated under reduced pressure. The crude was then purified by column chromatography (pent:Et ${ }_{2} \mathrm{O} 1: 1$) to afford the desired product $98(662 \mathrm{mg}$) as an orange oil. This was further purified by Kugelrohr distillation ($90-100^{\circ} \mathrm{C}$ at $15-8 \mathrm{mbar}$) to afford 98 as a yellow oil ($350 \mathrm{mg}, 63 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=5.51(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{bs}, 2 \mathrm{H}), 1.99(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.87$ (bs, 3H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): \delta=148.2,105.4,89.7,76.7,67.0,16.2,4.4$.

(1E,3R,4R,7S,8E)-7-Hydroxy-1-iodo-3-methoxy-2,4,8-trimethyldodeca-1,8-dien-10-yn-5-one (100): A solution of (+)-DIP-Cl ($342 \mathrm{mg}, 1.07 \mathrm{mmol}, 2.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.4 mL) was cooled to $-78^{\circ} \mathrm{C}$. Then NEt 3 was added ($0.177 \mathrm{~mL}, 1.28 \mathrm{mmol}, 2.40 \mathrm{eq}$), followed by a solution of ketone 27 ($150 \mathrm{mg}, 0.532 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.2 mL , rinsed with $2 \times 0.2 \mathrm{~mL}$). After a few min a white precipitate formed, which rendered the mixture unstirrable. After 1.5 h the cooling bath was removed and, a few minutes later, replaced by an ice bath. This led to a thick suspension, which was easily stirrable. After 5 min at $0^{\circ} \mathrm{C}$, the mixture was recooled to $-78^{\circ} \mathrm{C}$. After a total of 3 h 30 min , a solution of aldehyde 99 (115 mg , $1.06 \mathrm{mmol}, 2.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL}$, rinsed with $2 \times 0.2 \mathrm{~mL})$ was added. The orange mixture was stirred for another 50 min at $-78^{\circ} \mathrm{C}$, and was then stored in a freezer $\left(-18^{\circ} \mathrm{C}\right)$ for 17 h . The reaction was then quenched with pH 7 phosphate buffer and the layers were separated. The aqueous phase was diluted with phosphate buffer and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined extracts were concentrated under reduced pressure. The residue was dissolved in $\mathrm{MeOH}(3 \mathrm{~mL})$ and pH 7 phosphate buffer (0.6 mL) was added. The mixture was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 0.75 \mathrm{~mL})$ was added. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 min and at rt for 50 min . It was then poured into water (40 mL), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, the layers were separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc 5:1) to afford 100 ($352 \mathrm{mg}, 43 \% \mathrm{wt} / \mathrm{wt}$ along with isopinocampheol/Et 2 O/EtOAc, $151 \mathrm{mg}, 73 \%$ dr, nd) as a yellow oil which crystallized in a freezer $\left(-18^{\circ} \mathrm{C}\right)$.

TLC (hexane/EtOAc, 5:1): $\mathrm{R}_{f}=0.17$
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.22\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.57\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.47\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.83(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{qd}, J=7.0 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$,
2.68-2.51 (m, 2H), $1.99(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.85(\mathrm{bs}, 3 \mathrm{H}), 1.75(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=212.5,148.8,145.3,106.3,90.4,86.3,80.6,76.6,71.0$, 57.0, 50.1, 47.6, 19.9, 15.4, 12.1, 4.4 .

HRMS: m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{INaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 413.0584$; found: 413.0587.

R-Mosher ester S28:

Purification of the starting material: Isopinocampheol was removed from 100 at a rotavap ($40^{\circ} \mathrm{C}, 10^{-2} \mathrm{mbar}$). Subsequent column chromatography (hexane/EtOAc 5:1) delivered 100 as a colourless oil.

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of (S)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoic acid ($43.2 \mathrm{mg}, 0.185 \mathrm{mmol}, 1.50 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{~mL}$) over molecular sieves (beads, $3 \AA$) was added CME-carbodiimide ($93.8 \mathrm{mg}, 0.221 \mathrm{mmol}, 1.80 \mathrm{eq}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min , then a solution of the alcohol $\mathbf{1 0 0}$ ($48.0 \mathrm{mg}, 0.123 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.4 mL) was added. The cooling bath was removed and DMAP ($1.5 \mathrm{mg}, 10 \mathrm{~mol} \%$) was added. As the conversion was incomplete after 1.5 h , the mixture was stirred at rt overnight. This did apparently not lead to any further conversion. Thus the suspension was directly applied on a silica gel column and purified (hexane/EtOAc 10:1) to afford ester S28 as a colourless oil containing inseparable and unidentified impurities (21.6 mg , 29\%). Furthermore some starting material was recovered ($26.9 \mathrm{mg}, 56 \%$).

TLC (hexane/EtOAc, 5:1): $\mathrm{R}_{f}=0.39$
$[\boldsymbol{\alpha}]_{\mathbf{D}^{\mathbf{2 4}}}=-2.84\left(c=1.08, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}-$ NMR (400.1 MHz, CDCl $_{3}$): $\delta=7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 3 \mathrm{H}), 6.18\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.89$ $(\mathrm{dd}, J=3.2 \mathrm{~Hz}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.65\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.72(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.50\left(\mathrm{~m}_{\mathrm{c}}, 3 \mathrm{H}\right), 3.14(\mathrm{~s}$, $3 H$), 2.97 (dd, $J=9.4 \mathrm{~Hz}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.61 (qd, $J=7.0 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.47 (dd, $J=3.4 \mathrm{~Hz}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.87$ (bs, 3 H$), 1.70(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=206.8,165.2,145.0,143.9,132.3,129.5,128.3$ (2C), 127.5 (2C), 110.7, 92.3, 85.9, 80.6, 76.0, 74.6, 56.9, 55.4, 49.6, 45.1, 20.0, 15.2, 11.7, 4.5 (quartetts of CCF_{3} and CCF_{3} not assigned).

IR (neat, v / cm^{-1}): 2983, 2936, 2875, 2849, 1749s, 1719, 1452, 1377, 1270s, 1253s, 1168s, $1120,1083,1018 \mathrm{~s}, 992,965,917,866,828,765,718 \mathrm{~s}, 698,643,510,493,466,418,404$. HRMS Calcd. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{INaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} m / z 629.0982$. Found: 629.0980 .

S-Mosher ester S29:

Purification of the starting material: Isopinocampheol was removed from 100 at a rotavap ($40^{\circ} \mathrm{C}, 10^{-2} \mathrm{mbar}$). Subsequent column chromatography (hexane/EtOAc 5:1) delivered 100 as a colourless oil.

To a cooled ($0^{\circ} \mathrm{C}$) solution of (R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoic acid ($43.2 \mathrm{mg}, 0.185 \mathrm{mmol}, 1.50 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{~mL}$) over molecular sieves (beads, $3 \AA$) was added CME-carbodiimide ($93.8 \mathrm{mg}, 0.221 \mathrm{mmol}, 1.80 \mathrm{eq}$). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min , then a solution of the alcohol $100(48.0 \mathrm{mg}, 0.123 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.4 mL) was added. The cooling bath was removed and DMAP ($1.5 \mathrm{mg}, 10 \mathrm{~mol} \%$) was added. As the conversion was incomplete after 1.5 h , the mixture was stirred at rt overnight and the suspension was directly applied onto a silica gel column and purified (hexane/EtOAc 10:1), which afford ester S29 as a colourless oil containing inseparable and unidentified impurities ($11.4 \mathrm{mg}, 15 \%$). Furthermore some starting material was recovered ($27.1 \mathrm{mg}, 56 \%$).

TLC (hexane/EtOAc, 5:1): $\mathrm{R}_{f}=0.39$
$[\boldsymbol{\alpha}]_{\mathbf{D}^{24}}=+54.7\left(c=0.57, \mathrm{CHCl}_{3}\right)$
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 3 \mathrm{H}), 6.20\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.79$ (dd, $J=2.6 \mathrm{~Hz}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.51\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.81(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49\left(\mathrm{~m}_{\mathrm{c}}, 3 \mathrm{H}\right), 3.16$ (s, 3 H), 2.99 (dd, $J=9.9 \mathrm{~Hz}, J=18.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 ($\mathrm{qd}, J=7.0 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.49 (dd, $J=2.8 \mathrm{~Hz}, J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{bs}, 3 \mathrm{H}), 1.72(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl 3): $\delta=207.4,165.3,145.0,144.0,132.3,129.5,128.3$ (2C), 127.4 (2C), 110.1, 92.0, 86.0, 80.7, 76.0, 74.6, 57.0, 55.5, 49.7, 45.3, 20.0, 15.1, 11.8, 4.5 (quartetts of CCF_{3} and CCF_{3} not assigned).

IR (neat, v / cm^{-1}): 2982, 2935, 2920, 2878, 2851, 2828, 1751s, 1717s, 1588, 1452, 1377, 1271s, 1255s, 1169, 1121s, 1086s, 1016s, 991s, 965, 918, 826, 765, 721s, 698, 666, 532, 498, 473, 459, 428, 406.
HRMS Calcd. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{INaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} m / z$ 629.0982. Found: 629.0975.

(1E,3R,4S,5S,7S,8E)-1-Iodo-3-methoxy-2,4,8-trimethyldodeca-1,8-dien-10-yne-5,7diol (S30): A solution of (NMe_{4})BH(OAc$)_{3}$ (455 mg , ca. 4.65 eq) in $\mathrm{MeCN}(1.5 \mathrm{~mL}$) and AcOH (1.5 mL) was cooled to $-40^{\circ} \mathrm{C}$ (MeCN/dry ice). To the frozen mixture was added a solution of ketone 100 ($145 \mathrm{mg}, 372 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$) in MeCN (0.5 mL , rinsed with $2 \times 0.4 \mathrm{~mL}$). The resulting thick slurry was stirred for a few min at the same temperature and was then stored in a freezer ($-18^{\circ} \mathrm{C}$) for 19.5 h . The suspension was allowed to warm to rt and stirred for another 1 h ; Rochelle salt (aq. sat.) was then added, leading to the immediate formation of a white suspension. This mixture was stirred at rt for 1 h . Then it was diluted with water, some $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the acetic acid was neutralized with $\mathrm{NaHCO}_{3}(\mathrm{~s})$. As soon as the gas evolution had stopped, the layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/Et2O 2:1 \rightarrow Hexane/EtOAc 1:1) to afford S30 (143 mg, 91\% wt/wt along with EtOAc, $131 \mathrm{mg}, 90 \%, 1,3-$ syn isomer not detectable by NMR) as a yellow oil.

TLC (hexane/EtOAc, 1:1): $\mathrm{R}_{f}=0.20$
$[\alpha] \mathbf{D}^{24}=+30.9\left(c=1.05, \mathrm{CHCl}_{3}\right)$
${ }^{\mathbf{1}} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.18\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.63\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.40\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.95(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.00 (d, $J=2.3 \mathrm{~Hz}, 3 \mathrm{H}$), 1.85 (bs, 3H), 1.80-1.71 (m, 3H), 1.76 (d, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}$), 0.84 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=150.8,145.1,105.5,90.1,86.6,78.3,76.7,73.3,71.5,57.3$, 40.7, 38.6, 21.8, 15.8, 11.1, 4.4.

IR (neat, v / cm^{-1}): $3408 \mathrm{br}, 2976,2936,2914,2851,2829,2365,2353,2342,2331,171738$, $1619,1441,1374,1242 \mathrm{~s}, 1193,1112,1088 \mathrm{~s}, 1046 \mathrm{~s}, 1008,957,936,848,810,785,680$, 669, 636, 603, 532, 513, 501, 489, 475.

HRMS: m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{INaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 415.0741; found: 415.0740.

(1E,3R,4S,5S,7S,8E)-1-Iodo-3-methoxy-2,4,8-trimethyl-7-((triisopropylsilyl)-oxy)dodeca-1,8-dien-10-yn-5-ol (S31): To a solution of alcohol S30 (1.15 g, 2.93 mmol , 1.00 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(79 \mathrm{~mL}$) over molecular sieves ($3 \AA$ beads) was added 2,6-lutidine ($1.71 \mathrm{~mL}, 14.7 \mathrm{mmol}, 5.00 \mathrm{eq}$) at rt. The mixture was stirred at rt for 5 min , then it was cooled to $-78{ }^{\circ} \mathrm{C}$ and, after another 5 min stirring, TIPSOTf ($867 \mu \mathrm{~L}, 3.22 \mathrm{mmol}, 1.10 \mathrm{eq}$) was added. After stirring at $-7{ }^{\circ} \mathrm{C}$ for 1 h the reaction was quenched with NaHCO_{3} (sat. aq.), the layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (pent/Et2O 10:1 \rightarrow hexane/Et2O 7:1) to afford the desired product S31 as a colourless oil (1.56 g, 97\%).

TLC (hexane/EtOAc, 5:1): $\mathrm{R}_{f}=0.53$
$[\boldsymbol{\alpha}]_{\mathbf{D}^{24}}=+12.95\left(c=0.97, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$-NMR (400.1 MHz, CDCl $_{3}$): $\delta=6.10\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.65\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.53(\mathrm{t}, \mathrm{J}=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ $(\mathrm{d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, 3H), 1.81 (bs, 3H), 1.76-1.67 (m, 3H), 1.74 (d, J = $1.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.09-1.04 (m, 21H), 0.81 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=149.5,146.1,106.3,90.2,86.1,77.8,76.7,75.6,69.8,57.3$, $41.3,38.3,21.3,18.0$ (3C), 16.3, 12.3 (6C), 9.9, 4.5.

IR (neat, v / cm^{-1}): 3515br, 2942, 2893, 2866, 2369, 2358, 2344, 2333, 1620, 1463, 1380, $1255,1193,1165,1089 \mathrm{~s}, 1063 \mathrm{~s}, 1012,997,950,920,882 \mathrm{~s}, 854,785,755,744,678,658$, 601, 567, 495, 479, 451, 430, 418, 407.

HRMS: m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{INaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 571.2075$; found: 571.2088.

(1E,3R,4S,5S,7S,8E)-1-Iodo-3-methoxy-2,4,8-trimethyl-7-((triisopropylsilyl)oxy)-dodeca-1,8-dien-10-yn-5-yl 2-(diethoxyphosphoryl)acetate (101): To a cooled ($0^{\circ} \mathrm{C}$) solution of diethylphosphonoacetic acid (55) ($55 \mu \mathrm{~L}, 0.345 \mathrm{mmol}, 1.50 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) over molecular sieves (beads, $3 \AA$) was added CME-carbodiimide (175 mg , $0.413 \mathrm{mmol}, 1.80 \mathrm{eq})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min , then a solution of alcohol S31 ($126 \mathrm{mg}, 0.230 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL}$, rinsed with $0.9 \mathrm{~mL}, 0.5 \mathrm{~mL}$) was added. The cooling bath was removed and DMAP ($2.8 \mathrm{mg}, 10 \mathrm{~mol} \%$) was added. After 3 h the mixture was concentrated under reduced pressure. The residue was purified by column chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$:acetone $30: 1 \rightarrow 15: 1$) to afford the ester $\mathbf{1 0 1}(137 \mathrm{mg}$, 82\%) as a pale yellow oil.

TLC ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone, 10:1): $\mathrm{R}_{f}=0.63$
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 4}}=+28.41\left(c=0.995, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$-NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.15\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 5.32-5.28(\mathrm{~m}, 1 \mathrm{H}), 4.69(\mathrm{ddd}, J=1.2 \mathrm{~Hz}$, $J=4.4 \mathrm{~Hz}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.10(\mathrm{~m}, 4 \mathrm{H}), 4.07(\mathrm{dd}, J=5.9 \mathrm{~Hz}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{ddd}, J=14.5 \mathrm{~Hz}, J=21.4 \mathrm{~Hz}, J=30.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-1.92$ (m, 1H), 1.96 (d, J = 2.1 Hz, 3H), 1.91-1.77 (m, 1H), 1.81 (bs, 6H), 1.73-1.63 (m, 1H), 1.33 ($\left.\mathrm{m}_{\mathrm{c}}, 6 \mathrm{H}\right), 1.73-1.63(\mathrm{~m}, 21 \mathrm{H}), 0.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=165.1(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 150.9,146.5,106.5,89.7,87.1,78.9$, $76.8,76.0,73.6,62.53,62.46,56.7,39.0,35.8,34.3(\mathrm{~d}, J=134 \mathrm{~Hz}), 19.7,18.13$ (2C), 18.05, $16.35(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 16.31(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 13.7,12.4(6 \mathrm{C}), 9.7,4.4$.

IR (neat, $\mathrm{v} / \mathrm{cm}^{-1}$): 2963, 2942, 2893, 2866, 1734, 1463, 1384, 1261, 1163, 1089, 1051 (s), 1024 (s), 966, 883, 856, 811, 784, 734, 682, 654, 620, 572, 501, 491, 477, 461, 446, 428, 419, 408.
HRMS: m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{56} \mathrm{INaO}_{7} \mathrm{PSi}[\mathrm{M}+\mathrm{Na}]^{+}: 749.2470$; found: 749.2476.

A 43.3 mm solution of the Seyferth-Gilbert reagent (dimethyl (diazomethyl)phosphonate) in THF was prepared as follows: To a solution of diazo phosphonate 102 (13.0 mg , 0.09 mmol , 1.1 equiv) in THF (2.0 mL) was added solid potassium tert-butoxide ($11.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.2$ equiv) at $-78^{\circ} \mathrm{C}$ in one portion. After stirring at $-78^{\circ} \mathrm{C}$ for $30 \mathrm{~min}, 0.16 \mathrm{~mL}$ of the solution (1.1 equiv of Seyferth-Gilbert reagent) were added at $78{ }^{\circ} \mathrm{C}$ to a solution of crude $66(2.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 1.0$ equiv) in THF (0.5 mL). After stirring for 2 h at $-78^{\circ} \mathrm{C}$, the reaction mixture was quenched with pH 7 buffer (2 mL). The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and brine. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (hexane/EtOAc, 5:1) to afford $\mathbf{1 0 3}$ ($1.2 \mathrm{mg}, 43 \%$) as a colorless oil. The analytical data were identical to those reported in literature. ${ }^{22}$
$\mathbf{R}_{\boldsymbol{f}}=0.32$ (hexane/EtOAc, 5:1).
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.68-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.36(\mathrm{~m}, 6 \mathrm{H}), 4.11$ (ddd, $J=2.9$, $6.9,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.74\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.67(\mathrm{ddd}, J=2.2,5.2,17.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.26-2.13 (m, 2H), $2.11(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.27$ (m, 1H), 1.28 (d, J= $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.7,135.5,133.5,129.8,127.7,83.9,82.2,71.3,60.8$, 38.6, 36.4, 32.1, 32.0, 28.2, 26.9, 19.2, 17.0.

HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{NO}_{3} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 452.2615$, found: 452.2628 .

[^20]

104
(4R,6R)-4-(2-((tert-Butyldiphenylsilyl)oxy)ethyl)-6-((R)-4,4-dibromobut-3-en-2-yl)tetrahydro-2H-pyran-2-one (104): To a solution of CBr_{4} ($408 \mathrm{mg}, 1.23 \mathrm{mmol}$, 1.8 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2.5 \mathrm{~mL}\right.$) was added at $0^{\circ} \mathrm{C}$ triphenylphosphine ($645 \mathrm{mg}, 2.46 \mathrm{mmol}$, 3.6 equiv). After stirring for a few minutes at $0^{\circ} \mathrm{C}$, the yellow reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and a solution of $\mathbf{1 0 3}\left(300 \mathrm{mg}, 0.68 \mathrm{mmol}, 1.0\right.$ equiv, crude) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.4 \mathrm{~mL})$ was added dropwise. After stirring for 45 min at $-78^{\circ} \mathrm{C}$, the reaction mixture was diluted with sat. $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, $15: 1 \rightarrow 10: 1 \rightarrow 5: 1$) to afford 104 (325 mg , 80% over 2 steps) as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.47$ (hexane/EtOAc, 5:1)
$[\alpha] \mathbf{D}^{24}=-20.2^{\circ}\left[c=0.189, \mathrm{CHCl}_{3}\right]$
${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.69-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.34(\mathrm{~m}, 6 \mathrm{H}), 6.38(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, 1 H), 4.14 (ddd, $J=2.8,5.5,11.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.71\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$), 2.72-2.59 (m, 2H), $2.16\left(\mathrm{~m}_{\mathrm{c}}\right.$, $1 \mathrm{H}), 2.06(\mathrm{dd}, J=10.9,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.12(\mathrm{~m}$, 1 H), $1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=170.7,139.1,135.5,133.5,133.4,129.8,127.7,90.1,81.6$, 60.7, 43.2, 38.6, 36.3, 32.7, 28.4, 26.9, 19.1, 13.7.

IR (neat, v / cm^{-1}): $3070 \mathrm{w}, 2930 \mathrm{~m}, 2857 \mathrm{w}, 1736 \mathrm{~s}, 1471 \mathrm{w}, 1428 \mathrm{~m}, 1388 \mathrm{w}, 1227 \mathrm{~m}, 1107 \mathrm{~s}$, $1007 \mathrm{~m}, 822 \mathrm{~m}, 787 \mathrm{~m}, 738 \mathrm{~s}, 701 \mathrm{~s}, 613 \mathrm{~m}, 504 \mathrm{~s}$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{Br}_{2} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 615.0536$, found: 615.0545 .

105

tert-Butyl(2-((2R,4R,6R)-2-(tert-butyldimethylsilyloxy)-6-((R)-4,4-dibromobut-3-en-2-yl)tetrahydro-2H-pyran-4-yl)ethoxy)diphenylsilane (105): To a solution of

 104 ($331 \mathrm{mg}, 0.56 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added dropwise at $-78^{\circ} \mathrm{C}$ DIBAL ($0.56 \mathrm{~mL}, 0.67 \mathrm{mmol}, 1.20$ equiv, 1.2 m in toluene). The mixture was stirred at the same temperature for 1 h . Because incomplete conversion was observed according to TLC, more DIBAL ($46.4 \mu \mathrm{~L}, 0.1$ equiv) was added. After stirring for 30 min at $-78^{\circ} \mathrm{C}$, the reaction mixture was quenched with sat. Rochelle salt (25 mL) and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After stirring for 15 min at rt , the layers were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$ and the combined organic extracts were washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure. The crude hemiacetal (353 mg , $>100 \%$) was used for the next step without further purification.$\mathbf{R}_{\mathbf{f}}=0.39$ (hexane/EtOAc, 5:1)

To a solution of the above hemiacetal (332 mg , $0.56 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL}$) was added at rt imidazole ($49.3 \mathrm{mg}, 0.72 \mathrm{mmol}, 1.30$ equiv) followed by TBSCl (101 mg , $0.67 \mathrm{mmol}, 1.20$ equiv). Upon addition of the TBSCl, a colorless precipitate formed immediately. After stirring for 3 h at rt , the reaction mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ $(15 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 10 mL). The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified by column chromatography (hexane/EtOAc, 40:1) to furnish $\mathbf{1 0 5}$ (345 mg , 87% over two steps) as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.24$ (hexane/EtOAc, 30:1)
$[\alpha]{ }_{\mathrm{D}}{ }^{24}=-3.9^{\circ}\left[c=0.565, \mathrm{CHCl}_{3}\right]$
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.69-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 6 \mathrm{H}), 6.28(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.63(\mathrm{dd}, J=2.0,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{ddd}, J=1.8,6.7,11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.56\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.84-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.42(\mathrm{~m}, 3 \mathrm{H}), 1.09-0.98(\mathrm{~m}, 4 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$, 0.97-0.85 (m, 1H), $0.91(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=141.2,135.6,133.9,129.6,127.6,97.2,88.5,77.2,61.2$, $43.4,40.4,39.0,34.9,30.8,26.9,25.8,19.2,18.1,14.7,-3.9,-5.2$.
IR (neat, v / cm^{-1}): $3072 \mathrm{w}, 2930 \mathrm{~s}, 2857 \mathrm{~m}, 1472 \mathrm{~m}, 1428 \mathrm{~m}, 1389 \mathrm{~m}, 1249 \mathrm{~m}, 1173 \mathrm{~m}, 1111 \mathrm{~s}$, $1077 \mathrm{~m}, 1054 \mathrm{w}, 836 \mathrm{~s}, 785 \mathrm{~s}, 737 \mathrm{~m}, 702 \mathrm{~s}, 616 \mathrm{w}, 506 \mathrm{~m}$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{Br}_{2} \mathrm{KO}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{K}]^{+}$: 747.1297, found: 747.1315.

106
tert-Butyl(2-((2R,4R,6R)-2-(tert-butyldimethylsilyloxy)-6-((R)-pent-3-yn-2-yl)tetrahydro-2H-pyran-4-yl)ethoxy)diphenylsilane (106): To a solution of 105 (294 mg , 0.41 mmol .1 .0 equiv) in THF (1.9 mL) was added at $-78^{\circ} \mathrm{C} n$-BuLi $(0.85 \mathrm{~mL}$, $1.37 \mathrm{mmol}, 3.3$ equiv, 1.6 m in hexane). The reaction mixture was allowed to warm to rt over 45 min , then MeI ($85 \mu \mathrm{~L}, 1.37 \mathrm{mmol}, 3.3$ equiv) was added rt to the yellowish reaction mixture. After stirring for 1.25 h at rt , the bright yellow reaction mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The layers were separated and the organic layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($2 \times 30 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography (hexane/Et $20,70: 1 \rightarrow 30: 1$) to give 106 ($210 \mathrm{mg}, 90 \%$) as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.37$ (hexane/ $\mathrm{Et}_{2} \mathrm{O}, 30: 1$)
$[\alpha] \mathrm{D}^{24}=+10.8^{\circ}\left[c=0.409, \mathrm{CHCl}_{3}\right]$
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.71-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.34(\mathrm{~m}, 6 \mathrm{H}), 4.64(\mathrm{dd}, J=1.9$, $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dt}, J=1.8,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{ddd}, J=1.8,8.7,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right)$, $1.96(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.62-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.22$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$), 1.09-0.96 (m, 1H), 1.05 (s, 9H), 0.93-0.80 (m, 1H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}$, $3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=135.5,134.0,129.6,127.6,97.1,81.1,78.8,77.2,61.3$, $40.4,39.1,35.7,31.9,30.8,26.9,25.8,19.2,18.2,18.1,3.6,-4.0,-5.3$.

IR (neat, v / cm^{-1}): $2929 \mathrm{~m}, 2857 \mathrm{~m}, 1472 \mathrm{w}, 1428 \mathrm{~m}, 1389 \mathrm{~m}, 1250 \mathrm{w}, 1174 \mathrm{~m}, 1158 \mathrm{~m}, 1108 \mathrm{~s}$, 1078s, 1007m, 939w, 900w, 835s, 780s, 737m, 701s, 614m, 504s, 490m.

HRMS (ESI): m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{NaO}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 587.3347$, found: 587.3344.

(4R,6R)-4-(2-Hydroxyethyl)-6-((R)-pent-3-yn-2-yl)tetrahydro-2H-pyran-2-ol (107) and (4R)-4-((2R,3R)-2-hydroxy-3-methylhex-4-yn-1-yl)tetrahydro-2H-pyran-2-ol (108): To a solution of $\mathbf{1 0 6}(52.4 \mathrm{mg}, 92.8 \mu \mathrm{~mol}, 1.0$ equiv) in THF (0.95 mL) was added at $0{ }^{\circ} \mathrm{C}$ TBAF ($0.40 \mathrm{~mL}, 0.40 \mathrm{mmol}, 4.3$ equiv, 1.0 m in THF) and AcOH ($22.7 \mu \mathrm{~L}$, $0.40 \mathrm{mmol}, 4.3$ equiv). After stirring for 16 h at rt , the reaction mixture was diluted with EtOAc and quenched at $0^{\circ} \mathrm{C}$ with sat. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and EtOAc $(15 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc ($2 \times 15 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, $1: 1 \rightarrow 1: 2 \rightarrow 0: 1$) to give $\mathbf{1 0 7} / \mathbf{1 0 8}(22.7 \mathrm{mg}$, quant., $2: 1$) as a colorless oil.
$\mathbf{R}_{f}=0.47$ (EtOAc).
HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 235.1305$, found: 235.1306.

2-(($4 S, 6 R)$-2-0xo-6-((R)-pent-3-yn-2-yl)tetrahydro-2H-pyran-4-yl)acetaldehyde (109):

BAIB/TEMPO: To a solution of $\mathbf{1 0 7 / 1 0 8}(20.4 \mathrm{mg}, 96.1 \mu \mathrm{~mol}, 1.0$ equiv, mixture of acetals) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.65 mL) was added at rt TEMPO ($2.9 \mathrm{mg}, 19 \mathrm{~mol} \%$) and BAIB (67.8 mg , $210 \mu \mathrm{~mol}, 2.2$ equiv). The yellowish reaction mixture was stirred at rt for 45 min . $\mathrm{Yb}(\mathrm{OTf}) 3$ ($2.3 \mathrm{mg}, 3.9 \mathrm{~mol} \%$) was added at $0^{\circ} \mathrm{C}$ and stirring was continued at rt for 45 min . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and quenched with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (2 mL). Brine (15 mL) was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 10 mL). The combined organic extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, $1: 1 \rightarrow 1: 2$) to give aldehyde $\mathbf{1 0 9}$ ($12.0 \mathrm{mg}, 62 \%$ over 2 steps) and hydroxy lactone 110 ($2.6 \mathrm{mg}, 13 \%$, impure).
$\mathbf{R}_{\boldsymbol{f}}=0.32$ (hexane/EtOAc 1:1)
$[\boldsymbol{\alpha}]_{\mathrm{D}^{24}}=+33.4^{\circ}\left[c=0.760, \mathrm{CHCl}_{3}\right]$
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.77(\mathrm{~s}, 1 \mathrm{H}), 4.11$ (ddd, $J=3.0,7.1,11.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.77
(ddd, $J=1.9,5.6,17.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.67 ($\mathrm{dtt}, J=2.4,4.7,9.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.61-2.47 (m, 3H), 2.26 $\left(\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.12(\mathrm{dd}, J=10.4,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.36\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.22(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=199.6,170.0,82.4,78.9,78.4,49.7,35.8,32.2,31.9,25.7$, 17.4, 3.5.

IR (neat, v / cm^{-1}): 2921m, 2857w, 2729w, 1722s, 1444m, 1384m, 1359, 1236s, 1185m, 1081s, 1029m, 1010m, 968w.

HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 231.0992$, found: 231.0991 .

110
$\mathbf{R}_{f}=0.16$ (hexane/EtOAc 1:1)
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.43$ (ddd, $J=3.9,4.9,11.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.28 (ddd, $J=3.7$, $10.8,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.60\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.76\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.56\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.37-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.98$ $(\mathrm{m}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.71(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 233.1148$, found: 233.1151.

tert-Butyl($((2 R, 4 R, 6 R)-6-((R)-1-(t e r t-b u t y l d i m e t h y l s i l y l o x y) p r o p a n-2-y l)-4-(2-$ ((tert-butyldiphenylsilyl)oxy)ethyl)tetrahydro-2H-pyran-2-yl)oxy)diphenylsilane

 (111): To a mechanically stirring solution of 57 (10.7 g , $33.8 \mathrm{mmol}, 1.0$ equiv) in 380 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise at $-78^{\circ} \mathrm{C}$ DIBAL ($61.0 \mathrm{~mL}, 73.2 \mathrm{mmol}$, 2.2 equiv, 1.2 m in toluene) over 30 min . After the addition was complete, a thick colorless precipitate was formed. After stirring for 2 h at $-78^{\circ} \mathrm{C}$, the reaction mixture was quenched by addition of sat. Rochelle salt (400 mL) and stirred over night at rt. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \times 150 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. The crude hemiacetal $(11.9 \mathrm{~g})$ was used for the next step without further purification. $\mathbf{R}_{\boldsymbol{f}}=0.59$ (EtOAc). A stirred solution of the above hemiacetal (11.9 g , crude) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (275 mL) was treated at rt with TBDPSCl ($21.0 \mathrm{~mL}, 81.2 \mathrm{mmol}, 2.4$ equiv) followed by imidazole (5.85 g , $85.9 \mathrm{mmol}, 2.5$ equiv). After stirring at rt for 2.5 h , the reaction mixture was quenched with brine (200 mL) and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 100 mL). The combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography (hexane/Et20, 60:1 \rightarrow 30:1) to give 111 ($24.7 \mathrm{~g}, 1.4 \% \mathrm{wt} / \mathrm{wt} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 24.3 g, 90\% over 2 steps, single isomer) as a colorless oil.$\mathbf{R}_{\boldsymbol{f}}=0.45$ (hexane/Et2 $\mathrm{O}, 30: 1$)
$[\alpha]_{\mathrm{D}^{24}}=+3.0^{\circ}\left[c=0.415, \mathrm{CHCl}_{3}\right]$
${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.84-7.60(\mathrm{~m}, 8 \mathrm{H}), 7.49-7.23(\mathrm{~m}, 12 \mathrm{H}), 4.63(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.69(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.45 (dd, $J=5.2,9.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35 (dd, $J=6.9,9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.15 (dd, $J=4.7,11.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.82 (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.71-1.56 (m, 2H), 1.52 (dd, $J=6.4$, $12.9 \mathrm{~Hz}, 2 \mathrm{H}$), $1.42(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.26-1.13(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.00-$ $0.92(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}),-0.02(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=135.8,135.6,135.5,134.0,133.9,129.6,129.5,129.4$, $127.6,127.5,127.3,97.0,76.1,65.7,61.4,40.8,40.6,39.3,34.7,31.0,26.9,26.8,25.9,19.2$, 19.1, 18.2, 12.3,-5.4.

IR (neat, v / cm^{-1}): $3072 \mathrm{w}, 2955 \mathrm{~m}, 2930 \mathrm{~m}, 2857 \mathrm{~m}, 1472 \mathrm{~m}, 1428 \mathrm{~m}, 1389 \mathrm{~m}, 1362 \mathrm{w}, 1264 \mathrm{~m}$, 1106s, 836m, 823m, 737s, 700s, 613m, 504s, 489s.

HRMS (ESI): m / z calcd for $\mathrm{C}_{48} \mathrm{H}_{74} \mathrm{NO}_{4} \mathrm{Si}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 812.4920$, found: 812.4921.

(R)-2-((2R,4R,6R)-6-((tert-Butyldiphenylsilyl)oxy)-4-(2-((tert-butyldiphenyl-silyl)oxy)ethyl)tetrahydro-2H-pyran-2-yl)propan-1-ol (S32): To a solution of 111 ($1.74 \mathrm{~g}, 2.19 \mathrm{mmol}, 1.0$ equiv) in THF/water ($4: 1,22 \mathrm{~mL}$) was added at rt sodium periodate ($2.81 \mathrm{~g}, 13.1 \mathrm{mmol}, 6.0$ equiv). After stirring for 16 h at rt , the reaction mixture was quenched with water (50 mL) and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, 10:1 $\rightarrow 5: 1 \rightarrow 2: 1$) to give $\mathbf{S 3 2}$ ($1.30 \mathrm{~g}, 87 \%, 3 \% \mathrm{wt} / \mathrm{wt} \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$) as a colorless oil.
$\mathbf{R}_{f}=0.20$ (hexane/EtOAc, 10:1)
$[\alpha]_{\mathrm{D}^{24}}=+0.1^{\circ}\left[c=0.420, \mathrm{CHCl}_{3}\right]$.
${ }^{1} \mathbf{H}$-NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.79-7.60(\mathrm{~m}, 8 \mathrm{H}), 7.47-7.32(\mathrm{~m}, 12 \mathrm{H}), 4.60(\mathrm{dd}, \mathrm{J}=2.1$, $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=0.9,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{dd}, J=7.9,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=4.6$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{ddd}, J=1.9,3.6,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.56(\mathrm{~m}, 2 \mathrm{H})$, $1.51(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.36-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$, 1.06-0.94 (m, 1H), $0.78(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=135.7,135.6,135.5,133.9,133.8,133.7,129.7,129.6$, 127.6, 127.4, 97.2, 77.0, 65.6, 61.3, 40.4, 39.2, 39.0, 33.0, 30.9, 26.9, 26.8, 19.2, 19.0, 11.5.

IR (neat, v / cm^{-1}): $3427 \mathrm{br}, 3071 \mathrm{w}, 2930 \mathrm{~m}, 2857 \mathrm{~m}, 1472 \mathrm{~m}, 1428 \mathrm{~m}, 1389 \mathrm{~m}, 1110 \mathrm{~s}, 1026 \mathrm{~m}$, 938w, 902w, 822m, 804m, 739s, 701s, 613s, 505s.
HRMS (ESI): m / z calcd for $\mathrm{C}_{42} \mathrm{H}_{56} \mathrm{NaO}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 703.3609$, found: 703.3608.

(S)-2-((2R,4R,6R)-6-((tert-Butyldiphenylsilyl)oxy)-4-(2-((tert-
butyldiphenylsilyl)oxy)ethyl)tetrahydro-2H-pyran-2-yl)propanal (S33):

Dess-Martin oxidation: To a solution of 32 ($90.2 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.6 mL) was added at $0^{\circ} \mathrm{C}$ Dess-Martin periodinane ($67.4 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.2$ equiv) in one portion. After stirring for 1.5 h at $0^{\circ} \mathrm{C}$, sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(12 \mathrm{~mL})$, sat. $\mathrm{NaHCO}_{3}(12 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ were added to the reaction mixture. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, 10:1) to give S33 (87.2 mg, 9\% $\mathrm{wt} / \mathrm{wt} \mathrm{CH}_{2} \mathrm{Cl}_{2}, 79.3 \mathrm{mg}, 88 \%$) as a colorless oil.

Swern oxidation: To a solution of oxalyl chloride ($3.35 \mathrm{~mL}, 39.6 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise a solution of DMSO ($5.63 \mathrm{~mL}, 79.3 \mathrm{mmol}$, 3.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. After stirring at $-78^{\circ} \mathrm{C}$ for 20 min , a solution of $\mathbf{S 3 2 (1 8 . 4 \mathrm { g } \text { , }}$ $2 \% \mathrm{wt} / \mathrm{wt} \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 18.0 \mathrm{~g}$, 26.4 mmol , 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(180 \mathrm{~mL})$ was added dropwise over 1 h . The resultant cloudy mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h , and then TEA ($14.7 \mathrm{~mL}, 106 \mathrm{mmol}, 4.0$ equiv) was added slowly and the reaction mixture was allowed to warm to room temperature (1.5 h). The reaction was quenched with water (350 mL) , and the layers were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 60 \mathrm{~mL}$) and the combined organic phases were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by column chromatography (hexane/EtOAc, 10:1) to afford $\mathbf{S 3 3}$ (17.81 g, 3\% wt/wt CH2Cl $/ \mathrm{EtOAc}, 17.26 \mathrm{~g}$. 96\%) as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.58$ (hexane/EtOAc, 10:1)
$[\alpha] \mathrm{D}^{24}=+16.4^{\circ}\left[c=0.540, \mathrm{CHCl}_{3}\right]$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.42(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.58(\mathrm{~m}, 8 \mathrm{H}), 7.47-7.30(\mathrm{~m}$, 12 H), 4.62 (dd, $J=2.0,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dt}, J=2.6,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.46$ (ddd, $J=1.7,4.7$, $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.23\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.85(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.68\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.49(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $1.39(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.25-1.13(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, 3 H), 0.99-0.86 (m, 1H).
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=204.2,135.8,135.6,135.5,133.8,133.7,129.6,127.6$, $127.5,127.3,97.0,74.4,61.1,50.7,40.2,39.0,34.2,30.7,26.9,26.8,19.2,19.1,8.6$.
IR (neat, v / cm^{-1}): $3071 \mathrm{w}, 2932 \mathrm{~m}, 2858 \mathrm{~m}, 1727 \mathrm{~m}, 1469 \mathrm{w}, 1428 \mathrm{~m}, 1389 \mathrm{~m}, 1171 \mathrm{w}, 1109 \mathrm{~s}$, 1002w, 903w, 822m, 739m, 703s, 612m, 506s.
HRMS (ESI): m / z calcd for $\mathrm{C}_{42} \mathrm{H}_{54} \mathrm{NaO}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 701.3453$, found: 701.3455 .

112
tert-Butyl(2-($(2 R, 4 R, 6 R)$-2-($($ tert-butyldiphenylsilyl)oxy)-6-((R)-4,4-dibromobut-3-en-2-yl)tetrahydro-2H-pyran-4-yl)ethoxy)diphenylsilane (112): To a solution of CBr_{4} ($69.7 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.8$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$ triphenylphosphine ($110 \mathrm{mg}, 0.42 \mathrm{mmol}, 3.6$ equiv). After stirring for a few minutes at $0^{\circ} \mathrm{C}$, the yellow reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and a solution of $\mathbf{S 3 3}$ (79.3 mg , 0.12 mmol , 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 0.5 \mathrm{~mL}$) was added dropwise. After stirring for 1 h at the same temperature, the reaction mixture was diluted with sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \times 15 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (hexane/EtOAc, $30: 1 \rightarrow 20: 1$) to give 112 ($97.5 \mathrm{mg}, 1.2 \% \mathrm{wt} / \mathrm{wt}_{\mathrm{CH}}^{2} \mathrm{Cl}_{2}$, $96.3 \mathrm{mg}, 99 \%$) as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.62$ (hexane/EtOAc, 20:1)
$[\alpha]_{\mathrm{D}^{24}}=+5.2^{\circ}\left[c=0.535, \mathrm{CHCl}_{3}\right]$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.83-7.60(\mathrm{~m}, 8 \mathrm{H}), 7.50-7.32(\mathrm{~m}, 12 \mathrm{H}), 6.07(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.59(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{dd}, J=6.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~m} \mathrm{c}$, $1 \mathrm{H}), 1.83(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{brs}, 1 \mathrm{H}), 1.57-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H})$, 1.23-1.14 (m, 1H), $1.11(\mathrm{~s}, 9 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.99-0.87(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=141.3,135.8,135.6,135.5,133.9,133.7,129.7,129.6$, $129.5,127.6,127.4,97.1,88.1,76.8,61.2,43.2,40.3,39.0,34.8,30.7,26.9,26.8,19.2,19.1$, 14.1.

IR (neat, v / cm^{-1}): $3071 \mathrm{w}, 2932 \mathrm{~m}, 2858 \mathrm{~m}, 1469 \mathrm{w}, 1428 \mathrm{~m}, 13893,1110 \mathrm{~s}, 1078 \mathrm{~s}, 1003 \mathrm{w}$, 823m, 739m, 703s, 612m, 505s.

HRMS (ESI): m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{54} \mathrm{Br}_{2} \mathrm{KO}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{K}]^{+}: 871.1610$, found: 871.1612.

tert-Butyl(2-((2R,4R,6R)-2-((tert-butyldiphenylsilyl)oxy)-6-((R)-pent-3-yn-2-yl)tetrahydro-2H-pyran-4-yl)ethoxy)diphenylsilane (S34): To a solution of 112 ($3.55 \mathrm{~g}, 2 \% \mathrm{wt} / \mathrm{wt} \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 3.48 \mathrm{~g}, 1.46 \mathrm{mmol} .1 .0$ equiv) in THF (24 mL) was added at $-78{ }^{\circ} \mathrm{C} n-\mathrm{BuLi}(8.8 \mathrm{~mL}, 14.1 \mathrm{mmol}, 3.4$ equiv, 1.6 m in hexane). The reaction mixture was allowed to warm to rt over night in the cooling bath (over 16 h); then MeI (0.88 mL , $14.1 \mathrm{mmol}, 3.4$ equiv) was added at rt to the yellow reaction mixture. After stirring for 3.5 h at rt , the reaction mixture was poured into a sat. solution of $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$ and was diluted with $\mathrm{Et}_{2} \mathrm{O}$ (100 mL). The layers were separated and the organic layer was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(2 \mathrm{x} 80 \mathrm{~mL}\right.$). The combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography (hexane/Et2 $\mathrm{O}, 70: 1 \rightarrow 30: 1$) to give $\mathbf{S 3 4}$ ($2.75 \mathrm{~g}, 2.2 \% \mathrm{wt} / \mathrm{wt}_{\mathrm{CH}}^{2} \mathrm{Cl}_{2}, 2.69 \mathrm{~g}, 94 \%$) as a colorless oil.
$\mathbf{R}_{\boldsymbol{f}}=0.44$ (hexane/EtOAc, 30:1)
$[\alpha] \mathbf{D}^{24}=+10.3^{\circ}\left[c=0.580, \mathrm{CHCl}_{3}\right]$
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.86-7.57(\mathrm{~m}, 8 \mathrm{H}), 7.47-7.29(\mathrm{~m}, 12 \mathrm{H}), 4.60(\mathrm{dd}, J=2.0$, $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.93\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.40\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.93(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.80(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.63\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.51\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 1.27-1.13(\mathrm{~m}$, 1 H), 1.09 ($\mathrm{s}, 9 \mathrm{H}$), 1.08 ($\mathrm{m}, ~ 3 \mathrm{H}$), 1.04 ($\mathrm{s}, 9 \mathrm{H}$), 0.93-0.79 (m, 1H).
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=135.8,135.6,135.5,134.0,133.9,133.7,129.6,129.5$, $127.6,127.5,127.4,97.1,81.0,78.7,77.1,61.4,40.3,39.1,35.7,32.0,30.7,26.9,26.8,19.2$, 19.1, 18.1, 3.5.

IR (neat, v / cm^{-1}): 3071w, 2931m, 2857m, 1472w, 1428m, 1389w, 1111s, 1078m, 1008w, 823m, 700s, 615m, 507s.
HRMS (ESI): m / z calcd for $\mathrm{C}_{44} \mathrm{H}_{56} \mathrm{NaO}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 711.3660$, found: 711.3670 .

(4R,6R)-4-(2-Hydroxyethyl)-6-((R)-pent-3-yn-2-yl)tetrahydro-2H-pyran-2-ol (107) and (4R)-4-((2R,3R)-2-hydroxy-3-methylhex-4-yn-1-yl)tetrahydro-2H-pyran-2-ol (108): To a solution of $\mathbf{S 3 4}(5.53 \mathrm{~g}, 8.03 \mathrm{mmol}, 1.0$ equiv) in THF (83 mL) was added at $0^{\circ} \mathrm{C}$ AcOH ($1.61 \mathrm{~mL}, 28.1 \mathrm{mmol}, 3.5$ equiv) and TBAF $(28.0 \mathrm{~mL}, 28.0 \mathrm{mmol}$, 3.5 equiv, 1.0 m in THF). After stirring for 16 h at rt , the reaction mixture was diluted with EtOAc and quenched at $0^{\circ} \mathrm{C}$ with sat. $\mathrm{NaHCO}_{3}(60 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 40 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc, 1:1 $\rightarrow 0: 1$) to give $\mathbf{1 0 7 / 1 0 8}(1.84 \mathrm{~g}$, including residual solvent) as a colorless oil.

2-(($4 S, 6 R)$-2-0xo-6-((R)-pent-3-yn-2-yl)tetrahydro-2H-pyran-4-yl)acetaldehyde (109): To a solution of $\mathbf{1 0 7 / 1 0 8}$ ($1.42 \mathrm{~g}, 7.2 \% \mathrm{wt} / \mathrm{wt}$ solvent, $1.32 \mathrm{~g}, 6.20 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(84 \mathrm{~mL})$ over molecular sieves (6.54 g powder, $4 \AA$) was added at rt NMO ($2.01 \mathrm{~g}, 14.9 \mathrm{mmol}, 2.4$ equiv). After stirring for 20 min at rt, TPAP (392 mg , $1.12 \mathrm{mmol}, 18 \mathrm{~mol} \%$) was added at $0^{\circ} \mathrm{C}$ in one portion and stirring was continued for 40 min at rt . The reaction mixture was directly purified by column chromatography (hexane/EtOAc, 2:1 \rightarrow 1:1) to give 109 ($652 \mathrm{mg}, 99 \% \mathrm{wt} / \mathrm{wt} \mathrm{CH} \mathrm{Cl}_{2}, 646 \mathrm{mg}, 50 \%$ over 2 steps) as a colorless oil. The analytical data were identical to those reported (vide supra).

(1E,3R,4S,5S,7S,8E)-1-Iodo-3-methoxy-2,4,8-trimethyl-7-((triisopropylsilyl)oxy)-dodeca-1,8-dien-10-yn-5-yl (E)-4-((4R,6R)-2-oxo-6-((R)-pent-3-yn-2-yl)tetra-hydro-2H-pyran-4-yl)but-2-enoate (113): To LiCl ($99.0 \mathrm{mg}, 2.34 \mathrm{mmol}, 1.05 \mathrm{eq}$) was added a solution of phosphonate 101 ($1.62 \mathrm{~g}, 2.23 \mathrm{mmol}, 1.00 \mathrm{eq}$) in MeCN (15 mL), followed by DBU ($349 \mu \mathrm{~L}, 2.24 \mathrm{mmol}, 1.05 \mathrm{eq}$). After 20 min stirring at rt, the pale yellow turbid mixture was cooled to $0^{\circ} \mathrm{C}$. After 25 min , a solution of aldehyde 109 (556 mg , $2.67 \mathrm{mmol}, 1.20 \mathrm{eq}$) in THF (17 mL) was added. The cooling bath was removed and the resulting yellow solution was stirred at rt for 3 h . Then the mixture was concentrated in vacuo and the residue was purified by column chromatography (hexane/EtOAc 5:1 $\rightarrow 1: 1$) to afford diyne 113 ($1.44 \mathrm{~g}, 98 \% \mathrm{wt} / \mathrm{wt}$ along with $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.41 \mathrm{~g}, 81 \%$) as a colourless oil. In addition, part of phosphonate 101 was recovered ($116 \mathrm{mg}, 94 \% \mathrm{wt} / \mathrm{wt}$ along with ether and EtOAc, $110 \mathrm{mg}, 7 \%$).

TLC (hexane/EtOAc, 5:1): $\mathrm{Rf}_{\mathrm{f}}=0.24$
$[\alpha]_{\mathrm{D}^{24}}=+23.6^{\circ}\left[c=0.905, \mathrm{CHCl}_{3}\right]$
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.81(\mathrm{td}, J=7.3,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.33 (brs, 1H), 4.77 (ddd, $J=1.5,4.0,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.06 (ddd, $J=3.0,7.2,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 2.77-2.61(\mathrm{~m}, 2 \mathrm{H})$, 2.32-2.18 (m, 3H), 2.17-2.00 (m, 3H), 1.95 (d, $J=2.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.88-1.76 (m, 1H), 1.82 (d, J $=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.29(\mathrm{~m}, 1 \mathrm{H})$, $1.23(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{brs}, 21 \mathrm{H}), 0.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=170.2,165.3,150.9,146.4,144.2,124.2,106.5,89.4,87.5$, 82.5, 79.0, 78.9, 78.5, 76.9, 75.2, 72.5, 56.7, 38.8, 38.7, 36.1, 35.9, 32.3, 32.0, 30.7, 19.7, 18.2, 18.1, 17.5, 14.0, 12.4, 9.7, 4.5, 3.5.

IR (neat, v/cm¹): 2941m, 2922m, 2866m, 1737s, 1718s, 1656w, 1462m, 1381m, 1246m, 1085s, 1059s, 1005m, 884m, 680m.

HRMS (ESI): m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{65} \mathrm{INO}_{6} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 798.3620$; found: 798.3632.

$(1 R, 3 E, 7 S, 9 S, 12 E, 14 R, 15 R)-7-((2 S, 3 R, E)-5-I o d o-3-m e t h o x y-4-m e t h y l p e n t-4-e n-2-$ yl)-10,14-dimethyl-9-((triisopropylsilyl)oxy)-6,16-dioxabicyclo[13.3.1]nonadeca-3,12-diene-10-yn-5,17-dione (116):

Using Mo-complex 114: A suspension of the Mo-complex 114 ($37.3 \mathrm{mg}, 31.3 \mu \mathrm{~mol}$, $35 \mathrm{~mol} \%$) and $\mathrm{MnCl}_{2}(3.94 \mathrm{mg}, 31.3 \mu \mathrm{~mol}, 35 \mathrm{~mol} \%$) in toluene (1.86 mL) was heated to $80^{\circ} \mathrm{C}$ for 30 min . Then an aliquot corresponding to $10 \mathrm{~mol} \%$ catalyst was used.

To a suspension of the diyne 113 ($34.9 \mathrm{mg}, 44.7 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$) and molecular sieves ($255 \mathrm{mg}, 5 \AA$ powdered) in toluene (9.5 mL) was added the above catalyst solution ($10 \mathrm{~mol} \%$) at rt and the mixture was heated to reflux ($125^{\circ} \mathrm{C}$ oil bath) for 2 h 45 min ; at this point reaction monitoring by ESI-MS indicated full conversion. The mixture was then allowed to cool to rt and stored in a freezer $\left(-18{ }^{\circ} \mathrm{C}\right)$ overnight. It was then filtered through a short pad of silica (in a 20 mL syringe), which was rinsed thoroughly with EtOAc. The combined filtrates were concentrated under reduced pressure and the residue was purified by column chromatography (hexane/EtOAc 4:1 $\rightarrow 3: 1$) to afford the macrocyclic dienyne 116 ($22.5 \mathrm{mg}, 69 \%$) as a pale brown foam.

Using Mo-complex 115: A suspension of the Mo-complex 115 ($165 \mathrm{mg}, 135 \mu \mathrm{~mol}$, $15 \mathrm{~mol} \%$) and $\mathrm{MnCl}_{2}\left(17.0 \mathrm{mg}, 135 \mu \mathrm{~mol}, 15 \mathrm{~mol} \%\right.$) in toluene (3 mL) was heated to $80^{\circ} \mathrm{C}$ for 30 min and then added via cannula (rinsed with $2 \times 1 \mathrm{~mL}$) to a suspension of the diyne 113 ($705 \mathrm{mg}, 903 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$) and molecular sieves ($5.2 \mathrm{~g}, 5 \AA$ powdered) in toluene (150 mL); the latter had been prestirred at rt for 20 min . The resulting mixture was then heated to $125{ }^{\circ} \mathrm{C}$ for 27 h with stirring (oil bath). Regular reaction monitoring by ESI-MS indicated the reaction to proceed very slowly and not go to completion. The mixture was filtered through a pad of silica, which was rinsed thoroughly with EtOAc. The combined
filtrates were concentrated under reduced pressure and the crude product was purified by column chromatography (hexane/EtOAc 3:1) to afford the macrocyclic dienyne 116 ($365 \mathrm{mg}, 56 \%$). In addition, a mixture containing the starting material, side product S35 and the desired product $\mathbf{1 1 6}(94.9 \mathrm{mg}$, ca. $3.6 / 2.2 / 1 \mathbf{1 1 3} / \mathbf{S 3 5} / \mathbf{1 1 6}$) was isolated.

In a second experiment conducted on the same scale of 113, pure 116 was obtained in 31% yield (204 mg) as a bright brown solid. In addition, two mixed fractions of 116/S35 (76.5 mg , containing 48.8 mg of $\mathbf{1 1 6}$) and of $\mathbf{1 1 5} / \mathbf{S 3 5}$ (179 mg) were isolated. The reasons for the discrepancy between the two experiments, which were performed under ostensibly identical conditions, is unclear.

TLC (hexane/EtOAc, 1:1): $\mathrm{R}_{f}=0.55$
$[\boldsymbol{\alpha}] \mathbf{D}^{24}=-13.9\left(c=0.83, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}-$ NMR ($500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.79(\mathrm{ddd}, J=5.6 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}$, $J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.40(\mathrm{dd}, J=3.2 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.03-3.93 (m, 2H), $3.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.80\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.72(\mathrm{ddd}, J=2.2 \mathrm{~Hz}$, $J=5.0 \mathrm{~Hz}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{ddd}, J=3.2 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, J=14.0 \mathrm{~Hz}$, 1 H), 2.22 (dd, $J=11.5 \mathrm{~Hz}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.89$ (d, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.82 (d, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.71 (dd, $J=4.1 \mathrm{~Hz}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.27 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.11(\mathrm{~m}, 1 \mathrm{H}), 1.09-0.99(\mathrm{~m}, 21 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.2,165.2,152.4,147.4,145.0,125.2,106.5,93.3,88.4,83.1$, $81.9,79.0,77.3,72.8,56.5,38.8,37.2,36.3,35.2,34.0,31.3,29.9,19.0,18.1$ (2C), 18.0, 17.0, 13.6, 12.3 (6C), 9.7.

IR (neat, v / cm^{-1}): 2959, 2940, 2891, 2866, 1737 (s), 1716 (s), 1652, 1461, 1384, 1323, 1258, 1219, 1185, 1158, 1122, 1082 (s), 1059 (s), 1011, 997, 984, 961, 884, 849, 800, 785, 756, 684, 602, 533, 517, 476, 461, 444.

HRMS (ESI): m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{55} \mathrm{INaO}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 749.2705$; found: 749.2723.

($1 E, 3 R, 4 S, 5 S, 7 S, 8 E$)-1-Iodo-3-methoxy-2,4,8-trimethyl-7-((triisopropylsilyl)-oxy)dodeca-1,8-dien-10-yn-5-yl (E)-4-($(4 R, 6 R)$-2-oxo-6-((R)-4-(p-methoxy)-phenylbut-3-yn-2-yl)tetrahydro-2H-pyran-4-yl)but-2-enoate (S35):
$\mathbf{R}_{\boldsymbol{f}}=0.33$ (hexane/EtOAc, 3:1)
$[\alpha] \mathrm{D}^{24}=+37.6^{\circ}\left[c=0.125, \mathrm{CHCl}_{3}\right]$
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.77(\mathrm{~m}, 3 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.80$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.11(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.79\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 4.19\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.79$ $(\mathrm{s}, 3 \mathrm{H}), 3.38(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.96\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.76-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.19(\mathrm{~m}$, $3 \mathrm{H}), 2.19-2.07(\mathrm{~m}, 3 \mathrm{H}), 1.93(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.70$ $(\mathrm{m}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-0.99(\mathrm{~m}, 21 \mathrm{H}), 0.90$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.2,165.1,159.4,151.0,146.4,143.8,133.0,124.3$, $115.1,113.9,106.1,89.3,87.7,87.3,83.3,82.2,79.2,76.4,72.5,70.3,56.6,55.2,38.7,38.6$, $35.9,35.6,32.9,32.0,30.6,19.5,18.2,18.0,17.3,16.7,12.4,9.8,4.7$.

IR (neat, v / cm^{-1}): $2924 \mathrm{~m}, 2865 \mathrm{~m}, 1737 \mathrm{~m}, 1719 \mathrm{~m}, 1655 \mathrm{w}, 1607 \mathrm{w}, 1510 \mathrm{~m}, 1462 \mathrm{~m}, 1379 \mathrm{w}$, 1248s, 1173w, 1085s, 1058s, 1030m, 883m, 832m, 804m, 683m.
HRMS (ESI): m / z calcd for $\mathrm{C}_{45} \mathrm{H}_{65} \mathrm{INaO}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 895.3436$, found: 895.3424.

(1R,3E,7S,9S,10E,12Z,14R,15R)-7-((2S,3R,E)-5-Iodo-3-methoxy-4-methylpent-4-en-2-yl)-10,14-dimethyl-9-((triisopropylsilyl)oxy)-6,16-dioxabicyclo-
[13.3.1]nonadeca-3,10,12-triene-5,17-dione (117): To alkyne 116 ($323 \mathrm{mg}, 444 \mu \mathrm{~mol}$, 1.00 eq) was added $\mathrm{Co}_{2}(\mathrm{CO})_{8}(304 \mathrm{mg}, 889 \mu \mathrm{~mol}, 2.00 \mathrm{eq})$ in a glovebox and the mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$ at rt . After stirring at rt for 4 h , the reaction did not proceed any further. The solvent evaporated and crude 116A was dried under reduced pressure (affording a dark brown foam), then N -ethylpiperidine hypophosphite was added in a glovebox, benzene (19 mL) was added and the mixture was heated to reflux for 1.5 h . Afterwards it was passed through a plug of silica eluting with hexane/EtOAc 1:1 $(100 \mathrm{~mL})$ and the plug was rinsed with EtOAc ($2 \times 100 \mathrm{~mL}$). Evaporation of the solvent and drying of the residue under reduced pressure gave a mixture of the parent alkyne 116 and the desired olefin 117 as a pale brown foam (293 mg). ${ }^{1} \mathrm{H}$-NMR measurement failed, probably due to paramagnetic cobalt being present. The conversion was estimated to be 50\% from ESI-MS and from a former experiment, where NMR-analysis was possible.
$2^{\text {nd }}$ Cycle: To a solution of the above mixture (estimated to containe 146 mg alkyne 116, $0.201 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added $\mathrm{Co}_{2}(\mathrm{CO})_{8}(137 \mathrm{mg}$, 2 equiv); the solution was stirred for 3.5 h and then stored in a freezer overnight. The solvent was evaporated and the residue was dried under reduced pressure. To the resulting dark brown foam was added N -ethylpiperidine hypophosphite ($360 \mathrm{mg}, 10 \mathrm{eq}$), benzene (9 mL) was added and the mixture was refluxed for 40 min . It was then filtered through a plug of silica (hexane/EtOAc 1:1) to afford a mixture of $\mathbf{1 1 6}$ and $\mathbf{1 1 7}$ (273 mg). The conversion was again estimated to be around 50%.

3rd Cycle: To the mixture obtained above (estimated 68 mg alkyne 153, 1.00 eq) was added $\mathrm{Co}_{2}(\mathrm{CO})_{8}(64 \mathrm{mg}, 2.00 \mathrm{eq})$ in a glovebox and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ was added at rt. After stirring for 1 h , the solvent was evaporated and the residue was dried under reduced
pressure. To the dark brown foam was added N -ethylpiperidine hypophosphite (168 mg , 10 eq) in a glovebox followed by benzene (4 mL) and the mixture was refluxed for 40 min . After filtration through a plug of silica (hexane/EtOAc 1:1) the solvent was evaporated and the residue was purified by column chromatography (hexane/EtOAc 3:1) to afford the desired olefin 117 ($239 \mathrm{mg}, 74 \% ; \mathbf{1 1 7} / \mathbf{1 1 6} 20 / 1$) as a beige foam.

TLC (hexane/EtOAc, 2:1): $\mathrm{R}_{f}=0.38$
$[\boldsymbol{\alpha}]_{\mathbf{D}^{24}}=-33.3^{\circ}\left[c=0.640, \mathrm{CHCl}_{3}\right]$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.65(\mathrm{ddd}, J=4.7,10.9,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.25(\mathrm{dd}, J=11.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=10.6$, $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 3.80(\mathrm{dt}, J=3.6,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}$, 3 H), 2.79-2.63 (m, 1H), 2.73 (dd, $J=7.5,17.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.55\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.33\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.28$ (dd, $J=6.5,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H})$, 1.15-1.04 (m, 25H), 0.98 ($\mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.6,166.0,147.2,144.8,139.7,130.7,126.1,125.4$, $119.2,88.3,81.6,79.7,73.5,71.8,56.4,39.1,38.8,38.7,35.9,32.8,32.3,28.5,18.8,18.2$, 18.1, 17.2, 15.0, 12.4, 10.0.

IR (neat, v / cm^{-1}): 2926s, 2866s, 1714s, 1654w, 1461m, 1379m, 1326w, 1255m, 1220m, 1160w, 1118w, 1083m, 1010w, 884w, 753w, 679w.

HRMS (ESI): m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{57} \mathrm{IKO}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{K}]^{+}: 767.2601$; found: 767.2605.

(1R,3E,7S,9S,10E,12E,14R,15R)-7-((2S,3R,E)-5-Iodo-3-methoxy-4-methylpent-4-en-2-yl)-10,14-dimethyl-9-((triisopropylsilyl)oxy)-6,16-dioxabicyclo-
[13.3.1]nonadeca-3,10,12-triene-5,17-dione (4): A stock solution containing thiophenol ($10.75 \mathrm{mg}, 97.6 \mu \mathrm{~mol})$ and AIBN ($16.0 \mathrm{mg}, 97.6 \mu \mathrm{~mol}$) in benzene (1.8 mL) was prepared. Then an aliquot ($0.1 \mathrm{~mL}, 0.2$ equiv AIBN, 0.2 equiv PhSH) was added to a solution of the cis diene 117 ($18.8 \mathrm{mg}, 25.8 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$) in benzene (1.2 mL); the solution was degassed ($2 \times$ freeze/pump) and then heated to reflux for 2 d . The solvent was evaporated and the residue was purified by column chromatography (hexane/EtOAc 3:1) to afford the desired (E, E)-diene 4 ($16.9 \mathrm{mg}, 97 \% \mathrm{wt} / \mathrm{wt}$ along with EtOAc, 16.5 mg , 88\%, $E / Z 20 / 1$).

TLC (hexane/EtOAc, 2:1): $\mathbf{R}_{\boldsymbol{f}}=0.38$
$[\alpha] \mathbf{D}^{24}=+10.6^{\circ}\left(c=0.305, \mathrm{CHCl}_{3}\right)$
${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.75$ (ddd, $J=4.8 \mathrm{~Hz}, J=11.0 \mathrm{~Hz}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.22 $(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{bd}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dd}$, $J=0.7 \mathrm{~Hz}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J=9.6 \mathrm{~Hz}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=3.0 \mathrm{~Hz}$, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=3.3 \mathrm{~Hz}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{ddd}, J=2.7 \mathrm{~Hz}, J=9.8 \mathrm{~Hz}$, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.16(\mathrm{~s}, 3 \mathrm{H}), 2.76$ (ddd, $J=2.1 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}$, $J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{qd}$, $J=2.4 \mathrm{~Hz}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{~d}, J=0.9 \mathrm{~Hz}$, $3 \mathrm{H}), 1.60(\mathrm{dd}, J=3.2 \mathrm{~Hz}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.14-0.98(\mathrm{~m}, 21 \mathrm{H}), 0.96$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$), $0.68(\mathrm{td}, J=12.0 \mathrm{~Hz}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.4,165.6,147.2,146.0,139.9,133.5,130.0,124.7$, $124.6,88.5,83.4,79.3,78.6,73.6,56.5,45.3,38.7,38.2,36.9,34.6,34.3,29.8,18.9,18.2$ (2C), 18.1, 16.6, 12.4 (6C), 11.2, 9.8.
IR (neat, v / cm^{-1}): 2938 (s), 2866 (s), 1732 (s), 1650, 1613, 1460, 1383, 1327, 1254, 1222, 1202, 1167, 1124, 1078 (s), 1054 (s), 1011, 980, 885, 838, 800, 785, 763, 755, 746, 682, $656,603,534,507,475,468,453,445,437,428,411$.

HRMS (ESI): m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{57} \mathrm{IKO}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{K}]^{+}: 767.2601$; found: 767.2603.

$(1 R, 3 E, 7 S, 9 S, 10 E, 12 E, 14 R, 15 R)-7-((2 S, 3 R, 4 E, 6 E, 8 E)-3-M e t h o x y-4,8-d i m e t h y l-9-(2-$ methyloxazol-4-yl)nona-4,6,8-trien-2-yl)-10,14-dimethyl-9-((triisopropylsilyl)-oxy)-6,16-dioxabicyclo[13.3.1]nonadeca-3,10,12-triene-5,17-dione (S36): To vinyl iodide 4 ($16.5 \mathrm{mg}, 22.6 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$) was added a solution vinyl stannane 118 (14.1 mg , $45.2 \mu \mathrm{~mol}, 2.00 \mathrm{eq})$ in DMF (1.6 mL) at rt, followed by a solution of $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}(290 \mu \mathrm{~g}$, $1.13 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$ in DMF $(620 \mu \mathrm{~L})$. The pale yellow solution was stirred in the dark overnight, whereafter the colour had changed to dark orange. Reaction monitoring by ESIMS indicated full conversion. Ether (15 mL) and NaHCO_{3} (sat. aq., 15 mL) were added and the layers were separated. The aqueous phase was extracted with ether ($3 \times 10 \mathrm{~mL}$) and the combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc $2: 1 \rightarrow 1: 1$) to afford the desired product $\mathbf{S 3 6}(11.6 \mathrm{mg}$, 68\%) as a yellow oil.

TLC (hexane/EtOAc, 1:1): $\mathrm{R}_{f}=0.54$
$[\boldsymbol{\alpha}] \mathbf{D}^{24}=+130.9^{\circ}\left(c=0.580, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}-$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.55(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{ddd}, J=4.7 \mathrm{~Hz}, J=10.9 \mathrm{~Hz}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.61(\mathrm{dd}, J=10.8 \mathrm{~Hz}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{bs}, 1 \mathrm{H}), 6.20(\mathrm{dd}$, $J=10.9 \mathrm{~Hz}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=9.6 \mathrm{~Hz}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=2.7 \mathrm{~Hz}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.99(\mathrm{dd}, J=3.3 \mathrm{~Hz}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{ddd}, J=2.5 \mathrm{~Hz}, J=9.3 \mathrm{~Hz}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.20$ (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.16(\mathrm{~s}, 3 \mathrm{H}), 2.75$ ($\mathrm{ddd}, J=2.1 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.56-2.49 (m), 2.46 (s, 3H), 2.32-2.19 (m, 2H), 2.19-1.95 (m, 3H), $2.13(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.58$ (m, 3H), $1.75(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.06-0.89(\mathrm{~m}, 24 \mathrm{H}), 0.67\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right)$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta=170.4,165.7,160.9,145.8,140.1,138.7,137.5,137.4$, $136.9,135.9,133.3,130.1,129.3,124.65,124.56,124.1,120.6,89.8,83.4,78.5,73.8,56.1$, $45.3,38.7,38.2,36.9,34.6,34.2,29.8,18.2$ (2C), 18.1, 16.6, 14.4, 13.8, 12.4 (6C), 11.5, 11.2, 10.0; IR (neat, v / cm^{-1}): 2961, 2938, 2893, 2866, 1715 (s), 1649, 1582, 1460, 1383, 1319,

1251, 1220, 1168, 1109, 1077 (s), 1052 (s), 978, 969, 919, 884, 795, 754 (s), 682, 663, 638, 426.
HRMS (ESI): m / z calcd. for $\mathrm{C}_{44} \mathrm{H}_{68} \mathrm{NO}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 750.4760$; found: 750.4768 .

(1R,3E,7S,9S,10E,12E,14R,15R)-9-Hydroxy-7-($(2 S, 3 R, 4 E, 6 E, 8 E)$-3-methoxy-4,8-dimethyl-9-(2-methyloxazol-4-yl)nona-4,6,8-trien-2-yl)-10,14-dimethyl-6,16-dioxabicyclo[13.3.1]nonadeca-3,10,12-triene-5,17-dione (rhizoxin D) (3): To a solution of TIPS-protected alcohol S36 ($91.0 \mathrm{mg}, 121 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$) in THF (4.6 mL) and pyridine (1.34 mL) was added a solution of $\mathrm{HF} \bullet \mathrm{Py}(2.68 \mathrm{~mL} 70 \%$ as $\mathrm{HF}, 2.06 \mathrm{~g}, 103 \mathrm{mmol}$, $850 \mathrm{eq})$ carefully at $0^{\circ} \mathrm{C}$. The cooling bath was removed after ca. 10 min and the mixture was stirred at rt overnight. The reaction mixture was then poured into water/ether ($90 \mathrm{~mL} / 30 \mathrm{~mL}$) and shaken. The layers were separated and the aqueous phase was extracted with ether ($3 \times 30 \mathrm{~mL}$). The combined organic extracts were washed with NaHCO_{3} (sat. aq.) and CuSO_{4} (sat. aq.) and the combined aqueous layers were re-extracted with ether ($1 \times 10 \mathrm{~mL}$). The combined organic extracts were then dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified by column chromatography (hexane/EtOAc 1:1) to afford 3 ($44.4 \mathrm{mg}, 87 \%$ wt along with EtOAc, $38.8 \mathrm{mg}, 54 \%$) as a pale yellow oil.

TLC (hexane/EtOAc, 1:1): $\mathrm{R}_{f}=0.17$
$[\alpha]_{\mathrm{D}^{24}}=+208.2^{\circ}\left(c=0.172, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.54(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{ddd}, J=4.7 \mathrm{~Hz}, J=11.0 \mathrm{~Hz}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.62(\mathrm{dd}, J=10.9 \mathrm{~Hz}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 6.22(\mathrm{dd}$, $J=11.1 \mathrm{~Hz}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.60$ (dd, $J=0.7 \mathrm{~Hz}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J=9.7 \mathrm{~Hz}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.57$ (dd, $J=3.0 \mathrm{~Hz}$, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.90 (dd, $J=2.8 \mathrm{~Hz}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65 (ddd, $J=2.7 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}$, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.25(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{ddd}, J=2.1 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}$, $J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.14$ (s, 3H), 2.07 (dd, $J=11.5 \mathrm{~Hz}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.95 (ddd, $J=2.6 \mathrm{~Hz}, J=5.1 \mathrm{~Hz}, J=14.2 \mathrm{~Hz}$, 1 H), $1.89(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.78(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.67\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right)$.
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.3,165.6,160.9,145.9,139.2,137.4,136.9,136.8$, $135.9,134.4,129.7,129.3,126.0,124.5,124.3,120.6,89.7,83.2,78.3,74.2,56.2,45.3,38.6$, $38.2,36.8,34.5,32.0,29.8,29.7,16.5,14.3,13.8,11.4,10.9,10.2$.
IR (neat, v / cm^{-1}): 3442, 2965, 2928, 2877, 2822, 1714 (s), 1649, 1580, 1450, 1382, 1322, $1252,1222,1168,1109,1078,1040,1019,971,889,831,754(s), 662,636,593,550,511$, 457, 436, 422.

HRMS (ESI): m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{NNaO}_{7}[\mathrm{M}+\mathrm{K}]^{+}: 616.3245$; found: 616.3245 .

(1R,3E,7S,9S,10E,12E,14R,15R)-9-Hydroxy-7-((2S,3R,4E,6E,8E)-3-methoxy-4,8-dimethyl-9-(2-methyloxazol-4-yl)nona-4,6,8-trien-2-yl)-10,14-dimethyl-6,16-dioxabicyclo[13.3.1]nonadeca-3,10,12-triene-5,17-dione (rhizoxin F) (2): Tо а solution of 3 ($38.8 \mathrm{mg}, 65.3 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$) in benzene (3 mL) was added $t-\mathrm{BuOOH}$ $(14.3 \mu \mathrm{~L} 5.5 \mathrm{M}$ in decane, $78.5 \mu \mathrm{~mol}, 1.20 \mathrm{eq})$ at rt. The mixture was then cooled to $0^{\circ} \mathrm{C}$ and a solution of $\mathrm{VO}(\mathrm{acac})_{2}(0.87 \mathrm{mg}, 5 \mathrm{~mol} \%$) in benzene (1 mL , flask rinsed with $2 \times 0.2 \mathrm{~mL}$) was added, resulting in a red coloring of the solution. The cooling bath was removed after 5-10 min and stirring was continued for 3 h . The colour of the mixture changed from red to pale yellow during this time. Then the reaction was quenched with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, ether was added (10 mL) and the layers were separated. The aqueous phase was extracted with ether ($3 \times 10 \mathrm{~mL}$) and the combined organic extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by column chromatography (hexane/EtOAc 1:1) to afford WF-1360F (2) ($25.8 \mathrm{mg}, 65 \%$) as a pale yellow foam. Preparative HPLC delivered analytically pure $\mathbf{2}$ as a white foam ($11.5 \mathrm{mg}, 29 \%$).
$[\alpha] \mathbf{D}^{24}=+119.60^{\circ}\left(c=0.110, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.53(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{ddd}, J=5.1 \mathrm{~Hz}, J=10.6 \mathrm{~Hz}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.58(\mathrm{dd}, J=10.8 \mathrm{~Hz}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{bs}, 1 \mathrm{H}), 6.09(\mathrm{bd}$, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.68 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.55$ (dd, $J=9.9 \mathrm{~Hz}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.34 (dd, $J=9.3 \mathrm{~Hz}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.61 (dd, $J=3.0 \mathrm{~Hz}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.74 (ddd, $J=2.6 \mathrm{~Hz}$, $J=9.7 \mathrm{~Hz}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 3.06$ (dd, $J=2.1 \mathrm{~Hz}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.78 (ddd, $J=1.6 \mathrm{~Hz}, J=4.7 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.56 (dd, $J=4.6 \mathrm{~Hz}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.03(\mathrm{~m}, 2 \mathrm{H})$, $1.96\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.72\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right)$.
${ }^{13} \mathbf{C}-$ NMR (100.6 MHz, CDCl_{3}): $\delta=169.9,165.3,160.9,146.1,140.2,138.7,137.6,136.7$, $136.5,136.0,129.4,126.5,124.8,124.0,120.7,89.6,82.3,76.9,74.8,65.7,64.9,56.2,45.0$, $38.2,37.9,36.8,33.9,31.6,29.6,16.6,14.3,13.8,12.2,11.4,9.9$.
IR (neat, v / cm^{-1}): $3462 \mathrm{br}, 2974,2928,2873,2857,1716 \mathrm{~s}, 1650,1580,1448,1383,1309$, $1293,1252,1226,1200,1170,1110 \mathrm{~s}, 1077 \mathrm{~s}, 1043 \mathrm{~s}, 981 \mathrm{~s}, 966 \mathrm{~s}, 954,932,878,863,845$, 829, 735s, 702, 635, 547, 484, 446, 427, 406.

HRMS (ESI): m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{NNaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+}: 632.3194$; found: 632.3193.
HPLC ($\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}, 40 / 60 \rightarrow 90 / 10$ in $\left.15 \mathrm{~min}, 1 \mathrm{~mL} / \mathrm{min}, 10 \mu \mathrm{~L}\right): \mathrm{t}_{\mathrm{r}}=8.6 \mathrm{~min}$.

[^0]: mw w.

[^1]: ${ }^{1}$ Keck, G. E.; Giles, R. L.; Cee, V. J., Wager, C. A.; Yu, T.; Kraft, M. B. J. Org. Chem. 2008, 73, 9675-9691.

[^2]: ${ }^{2}$ The analytical data were identical to those reported in the literature: Fürstner A.; Kattnig, E.; Lepage, O. J. Am. Chem. Soc. 2006, 128, 9194-9204.

[^3]: ${ }^{3}$ The analytical data were identical to those reported in the literature: Kanada, R. M.; Itoh, D.; Nagai, M.; Nijima, J.; Asai, N.; Yoshiharu, M.; Abe, S.; Kotake, Y. Angew. Chem. Int. Ed. 2007, 46, 4350-4355.

[^4]: ${ }^{4}$ Keck, G. E.; Giles, R. L.; Cee, V. J., Wager, C. A.; Yu, T.; Kraft, M. B. J. Org. Chem. 2008, 73, 9675-9691.

[^5]: ${ }^{5}$ The analytical data were identical to those reported in the literature: Fürstner A.; Kattnig, E.; Lepage, O. J. Am. Chem. Soc. 2006, 128, 9194-9204.

[^6]: ${ }^{6}$ The analytical data were identical to those reported in the literature: Paquette, L. A.; Guevel, R.;
 Sakamoto, S.; Kim, I. H.; Crawford, J. J. Org. Chem. 2003, 68, 6096-6107.

[^7]: ${ }^{7}$ The analytical data were identical to those reported: Yadav, J. S.; Srihari, P. Tetrahedron Asymmetry 2004, 15, 81-89.

[^8]: ${ }^{8}$ Procedure adapted from Sugiyama, H.; Yokokawa, F.; Shioiri, T. Tetrahedron 2003, 59, 6579-6593.

[^9]: ${ }^{9}$ For the preparation of the Grignard reagent see procedure of 96.

[^10]: ${ }^{10}$ Benzyl ether 38 was prepared according to a literature procedure: Cleary, P. A.; Woerpel, K. A. Org. Lett. 2005, 7, 5531-5533.
 ${ }^{11}$ Procedure adapted from: Smith, A. B. et al. Tetrahedron 2009, 65, 6489-6509.

[^11]: ${ }^{12}$ Epoxide 42 was prepared according to a literature procedure: Muehlbacher, M.; Poulter, C. D. J. Org. Chem. 1988, 53, 1026-1030.

[^12]: ${ }^{13}$ Crimmins, M. T.; DeBaillie, A. C. J. Am. Chem. Soc. 2006, 128, 4936-4937.

[^13]: ${ }^{14}$ The procedure of Cabral dos Santos et al. had to be modified due to difficulties with the precipitation of 58 (vide supra): Cabral dos Santos, L. et al. Heterocycles 2007, 73, 751-768

[^14]: ${ }^{15}$ Julia PT sulfone 62 was prepared according to: Lebrun, M.-E.; Le Marquand, P.; Berthelette, C. J. Org. Chem. 2006, 71, 2009-2013. See below for the experimental procedure.

[^15]: ${ }^{16}$ Mitchell, I. S.; Pattenden, G.; Stonehouse, J. Org. Biomol. Chem. 2005, 3, 4412-4431.

[^16]: ${ }^{17}$ Mitchell, I. S.; Pattenden, G.; Stonehouse, J. Org. Biomol. Chem. 2005, 3, 4412-4431.

[^17]: ${ }^{18}$ Julia PT sulfone 62 was prepared according to: Lebrun, M.-E.; Le Marquand, P.; Berthelette, C. J. Org. Chem. 2006, 71, 2009-2013. See below for the experimental procedure.

[^18]: ${ }^{19}$ Isomerically pure (E)-2,7-octadienol was prepared from commerically available (E / Z)-2,7-octadienol via PCC oxidation and DIBAL reduction according to a literature procedure: Singh, O. V.; Han, H. Org. Lett. 2004, 6, 3067-3070.

[^19]: ${ }^{20}$ All fractions containing 94 and $\mathbf{S 2 7}$ were combined.
 ${ }^{21}$ Pure Lactone 94 was obtained by treatment of S27 with PPTS (15 mol\%) in MeOH at rt for 16 h (73% yield).

[^20]: ${ }^{22}$ Mitchell, I. S.; Pattenden, G.; Stonehouse, J. Org. Biomol. Chem. 2005, 3, 4412-4431.

