Synthesis of *"all-cis"* trihydroxypiperidines from a carbohydrate derived ketone: hints for the design of new β-Gal and GCase inhibitors

Maria Giulia Davighi ¹, Francesca Clemente ¹, Camilla Matassini^{*1}, Amelia Morrone ², Andrea Goti ^{1,3}, Macarena Martínez-Bailén⁴ and Francesca Cardona ^{1,3*}

- ¹ Department of Chemistry "Ugo Schiff", University of Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy; <u>mariagiulia.davighi@unifi.it</u> (M.G.D.); <u>francesca.clemente@unifi.it</u> (F.Cl.); <u>andrea.goti@unifi.it</u> (A.G.)
- ² Paediatric Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, and Department of Neurosciences, Pharmacology and Child Health. University of Florence, Viale Pieraccini n. 24, 50139 Firenze, Italy; <u>amelia.morrone@unifi.it</u> (A.M.)
- ³ Associated with Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (CINMPIS)
- ⁴ Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, c/ Prof. García González 1, E-41012 Sevilla, Spain, <u>mmartinez45@us.es</u> (M. M.B.)
- * Correspondence: francesca.cardona@unifi.it (F.Ca.), camilla.matassini@unifi.it (C.M.); Tel: +39-055-4573504 (F.Ca.)

Supplementary Materials

Table of contents

Figures S1-S2: ¹ H-NMR and ¹³ C-NMR spectra of compound 19	S 3
Figures S3-S4: ¹ H-NMR and ¹³ C-NMR spectra of compound 9	S 4
Figures S5-S6: ¹ H-NMR and ¹³ C-NMR spectra of compound 20	S5
Figures S7-S8: ¹ H-NMR and ¹³ C-NMR spectra of compound 21	S 6
Figures S9-S10: ¹ H-NMR and ¹³ C-NMR spectra of compound 22	S7
Figures S11-S12: ¹ H-NMR and ¹³ C-NMR spectra of compound 10	S 8
Table S1: Reactions of sp ³ Grignard reagents to ketone 8	S9
Synthesis and characterization of acetylated compound 40	S 10
Figures S13-S14: ¹ H-NMR and ¹³ C-NMR spectra of acetylated compound 40	S 11
Figures S15-S16: ¹ H-NMR and ¹³ C-NMR spectra of compound 26	S12
Figures S17-S18: ¹ H-NMR and ¹³ C-NMR spectra of compound 13	S13
Figures S19-S20: ¹ H-NMR and ¹³ C-NMR spectra of compound 27	S14
Figures S21-S22: ¹ H-NMR and ¹³ C-NMR spectra of compound 28	S15
Figures S23-S24: ¹ H-NMR and ¹³ C-NMR spectra of compound 29	S16
Figures S25-S26: ¹ H-NMR and ¹³ C-NMR spectra of compound 30	S17
Figures S27-S28: ¹ H-NMR and ¹³ C-NMR spectra of compound 31	S 18
Figures S29-S30: ¹ H-NMR and ¹³ C-NMR spectra of compound 32	S19
Figures S31-S32: ¹ H-NMR and ¹³ C-NMR spectra of compound 33	S20
Figures S33-S34: ¹ H-NMR and ¹³ C-NMR spectra of compound 34	S21
Figures S35-S36: ¹ H-NMR and ¹³ C-NMR spectra of compound 11	S22
Figures S37-S38: ¹ H-NMR and ¹³ C-NMR spectra of compound 12	S23
Figures S39-S40: ¹ H-NMR and ¹³ C-NMR spectra of compound 14	S24
Figures S41-S42: ¹ H-NMR and ¹³ C-NMR spectra of compound 35	S25
Figures S43-S44: ¹ H-NMR and ¹³ C-NMR spectra of compound 15	S26
Table S2 Configuration assignment	S27-S28
Table S3: Biological screening towards commercial glycosidases	S29
Figure S45: IC ₅₀ for compound 10 towards β -glucosidase from almonds	S30
Figure S46: Biological screening towards human lysosomal β -galactosidase	S31
Figure S47: Biological screening towards human lysosomal β -glucosidase	S31
Figures S48-S51: IC ₅₀ for compounds 9, 10, 12 and 21 towards GCase	S32-S33
Figures S52-S54: Chaperoning activity assays of compound 9, 10 and 12	S34-S35

Figure S1: ¹H NMR spectrum of 19 (400 MHz, CDCl₃)

Figure S2: ¹³C NMR spectrum of 19 (50 MHz, CDCl₃)

Figure S4: ¹³C NMR spectrum of 9 (100 MHz, CD₃OD)

Figure S5: ¹H NMR spectrum of 20 (400 MHz, CDCl₃)

Figure S6: ¹³C NMR spectrum of 20 (50 MHz, CDCl₃)

Figure S7: ¹H NMR spectrum of 21 (400 MHz, CD₃OD)

Figure S8: ¹³C NMR spectrum of 21 (50 MHz, CD₃OD)

Figure S9: ¹H NMR spectrum of 22 (400 MHz, CDCl₃)

Figure S10: ¹³C NMR spectrum of 22 (100 MHz, CDCl₃)

Figure S11: ¹H NMR spectrum of 10 (400 MHz, CD₃OD)

Figure S12: ¹³C NMR spectrum of 10 (50 MHz, CD₃OD)

Table S1. Addition of sp³ Grignard reagents to ketone 8.

Entry	R	Equiv. Grignard	Temperature	Additive	Time (h)	Yield (%)
1	octyl	1	-78 °C	-	3	< 10
2	octyl	1.8	-78 °C	-	3	< 10
3	octyl	1.5	0 °C	-	5	< 10
4	octyl	1.5	$-30 \ ^{\circ}\text{C} \rightarrow \text{r.t.}$	BF ₃ ·Et ₂ O	15	-
5	Et	1.3	-78 °C \rightarrow r.t.	<u> </u>	21	9
6	Me	1.3	$0 ^{\circ}\mathrm{C} \rightarrow \mathrm{r.t.}$	-	3	12

General procedure for the addition of different Grignard reagents to ketone 8

To a dry THF solution (0.2 M) of ketone 8 (1 eq.) with or without Lewis acid (BF₃·Et₂O) (1.1 eq.), the Grignard reagent was added dropwise at low temperature (See Table 1) under nitrogen atmosphere. The solution was stirred at different temperatures (See Table S1) until the disappearance of 8 was attested by a TLC control (3-21 h). A saturated aqueous NH₄Cl solution was added to the mixture and left stirring for 10 minutes. The reaction mixture was then extracted with Et₂O. The combined organic extracts were washed with brine and concentrated under reduced pressure after drying with Na₂SO₄. The crude residue was purified by flash column chromatography on silica gel to afford the impure 23, 24 and 25, respectively (see Table S1).

Synthesis of alcohols 23 and 18

To a dry THF solution (1 mL) of ketone **8** (52 mg, 0.19 mmol), octylmagnesium bromide (143 μ L, 0.29 mmol, 2 M) was added dropwise at 0 °C under nitrogen atmosphere. The solution was stirred at 0 °C for 5 h (disappearance of **8** was attested by a TLC control with hexane/AcOEt 2:1). A saturated aqueous NH₄Cl solution was added to the mixture at 0 °C and left stirring for 10 minutes. The reaction mixture was extracted with Et₂O (3×3 ml). The combined organic extracts were washed with brine and concentrated under reduced pressure after drying with Na₂SO₄. The crude residue was purified by flash column chromatography on silica gel (gradient eluent from hexane/AcOEt 20:1 to 15:1) to afford 7 mg of impure **23** (R_f = 0.6, Hexane/AcOEt 8:1, 0.02 mmol, 10 %) and 23 mg of **18** (R_f = 0.2, Hexane/AcOEt 2:1, 0.08 mmol, 44 %).

Synthesis of (3R,4R,5R)-4,5-O-(1-methylethylidene)-3-acetyl-N-Boc-piperidine (40).

A solution of **18** (23 mg, 0.08 mmol) in dry pyridine (0.3 mL) was stirred with acetic anhydride (0.2 mL, 2.12 mmol) at room temperature for 18 h. The crude mixture was diluted with toluene and then concentrated under vacuum. The crude was purified by gradient silica gel column chromatography (Hexane/AcOEt 5:1) to give 9.5 mg of the acetylated compound **40** (R_f = 0.2, Hexane/AcOEt 5:1, 0.04 mmol, 56 %) as a pale-yellow oil.

40: $[\alpha]_D^{25} = +9.92$ (c = 1.20, CHCl₃). ¹H-NMR (400 MHz, CDCl₃) δ ppm: 5.09-4.99 (m, 1H, H-3), 4.51-4.43 (m, 1H, H-4), 4.36 (br s, 2H, H-5), 3.75-3.60 (m, 1H, Ha-6), 3.58-3.49 (m, 1H, Ha-2), 3.42 (d, J= 10.8 Hz, 1H, Hb-2), 3.35 (dd, J= 14.4, 3.7 Hz, 1H, Hb-6), 2.13 (s, 3H, CH₃COO), 1.49 (s, 3H, Me), 1.45 (s, 9H, t-Bu), 1.35 (s, 3H, Me). ¹³C-NMR (50 MHz, CDCl₃) δ ppm: 170.4 (s, 1C, CH₃COO), 155.1 (s, 1C, NCOO), 110.0 (s, 1C, OC(CH₃)₂, 80.3 (s, 1C, OC(CH₃)₃, 72.9 (d, 1C, C-5), 72.3 (d, 1C, C-4), 67.5 (s, 1C, C-3), 42.5 (t, 1C, C-6), 41.1 (t, 1C, C-2), 28.5 (q, 3C, OC(CH₃)₃), 26.8 (q, 1C, OC(CH₃)₂), 25.0 (q, 1C, OC(CH₃)₂), 21.2 (q, 1C, CH₃COO). IR (CDCl₃) ν = 3686, 2967, 2930, 1734, 1690, 1416, 137, 1254, 1163, 1082 cm⁻¹. C₁₀H₁₇NO₄ (215.25): calcd. C, 55.80; H, 7.96; N, 6.51; found C, 55.93; H, 7.80; N, 6.66. MS-ESI (m/z, %) = 652.87 (100) [2M+Na]⁺, 338.06 (70) [M+Na]⁺.

Figure S13: ¹H NMR spectrum of 40 (400 MHz, CDCl₃)

Figure S14: ¹³C NMR spectrum of 40 (50 MHz, CDCl₃)

Figure S15: ¹H NMR spectrum of 26 (400 MHz, CDCl₃)

Figure S16: ¹³C NMR spectrum of 26 (100 MHz, CDCl₃)

Figure S17: ¹H NMR spectrum of 13 (400 MHz, CD₃OD)

Figure S18: ¹³C NMR spectrum of 13 (50 MHz, CD₃OD)

Figure S19: ¹H NMR spectrum of 27 (400 MHz, CDCl₃)

Figure S20: ¹³C NMR spectrum of 27 (50 MHz, CDCl₃)

Figure S21: ¹H NMR spectrum of 28 (400 MHz, CDCl₃)

Figure S22: ¹³C NMR spectrum of 28 (100 MHz, CDCl₃)

Figure S23: ¹H NMR spectrum of 29 (400 MHz, CDCl₃)

Figure S24: ¹³C NMR spectrum of 29 (50 MHz, CDCl₃)

Figure S25: ¹H NMR spectrum of 30 (400 MHz, CDCl₃)

Figure S26: ¹³C NMR spectrum of 30 (100 MHz, CDCl₃)

Figure S27: ¹H NMR spectrum of 31 (400 MHz, CDCl₃)

Figure S28: ¹³C NMR spectrum of 31 (50 MHz, CDCl₃)

Figure S29: ¹H NMR spectrum of 32 (400 MHz, CD₃OD)

Figure S30: ¹³C NMR spectrum of 32 (50 MHz, CD₃OD)

Figure S31: ¹H NMR spectrum of 33 (400 MHz, CD₃OD)

Figure S32: ¹³C NMR spectrum of 33 (50 MHz, CD₃OD)

Figure S33: ¹H NMR spectrum of 34 (400 MHz, CD₃OD)

Figure S34: ¹³C NMR spectrum of 34 (50 MHz, CD₃OD)

Figure S35: ¹H NMR spectrum of 11 (400 MHz, CD₃OD)

Figure S36: ¹³C NMR spectrum of 11 (100 MHz, CD₃OD)

Figure S37: ¹H NMR spectrum of 12 (400 MHz, CD₃OD)

Figure S38: ¹³C NMR spectrum of 12 (50 MHz, CD₃OD)

Figure S39: ¹H NMR spectrum of 14 (400 MHz, CD₃OD)

Figure S40: ¹³C NMR spectrum of 14 (100 MHz, CD₃OD)

Figure S41: ¹H NMR spectrum of 35 (400 MHz, CDCl₃)

Figure S42: ¹³C NMR spectrum of 35 (100 MHz, CDCl₃)

Figure S43: ¹H NMR spectrum of 15 (400 MHz, CD₃OD)

Figure S44: ¹³C NMR spectrum of 15 (100 MHz, CD₃OD)

Configuration assignment

Relevant chemical shifts and coupling constants are reported in Tables S2a and S2b for H-4, H-5 and H-6 in ¹H NMR spectra in the two series of protected (in CDCl₃) and deprotected (in CD₃OD) trihydroxypiperidines, respectively. These values show regularities (the same applies to H-2 signals) which allowed us to ascribe the same configuration at C-3 for all compounds. Moreover, the shape of the signals and their coupling constants, where detectable, are consistent with the (*S*) absolute configuration tentatively assigned (see above) on the basis of mechanistic considerations. Indeed, the signal of H-5 appears as a broad singlet (or as a narrow multiplet), which is in agreement with its equatorial position in a preferred chair conformation which places the R substituent equatorially, *ie*, in the (3*S*) configuration (${}_{6}C^{3}$ alcohol in Scheme 5 of the main text). The lack of large *ax-ax* coupling constants is confirmed by signals of H-6. For example, in piperidine **13** (R = ethyl) the two hydrogens at C-6 display vicinal coupling constants J = 3.4 and J = 2.4 Hz, typical for *ax-eq* and *eq-eq* relationships. The same applies to the other derivatives when the signals are well resolved, as in compounds **11**, **12**, **14** and **15**. The observed upfield shift (0.3-0.5 ppm) of H-4 within the two series of compounds on turning from the alkynyl to the saturated substituents (see **27-31** *vs* **35** and **32-34** *vs* **11-15**), consistent with H-4 falling in the deshielding cone of the triple bond in the former derivatives when in a *cis* relationship, further supports this assignment.

Table S2a. Chemical shifts and coupling constants of H-4, H-5 and H-6 of protected compounds **26-31** and **35**, in CDCl₃.

		H-4	H-5	H-6a	H-6b
O 5 ⁴ 3 6 N Boc	DH L	δ (ppm)	δ (ppm)	δ (ppm)	δ (ppm)
R = vinyl,	26	4.07 (d, J= 6.8 Hz)	4.33 (br s)	3.95-3.69 (m)	3.53-3.32 (m)
R = Ph	, 27	4.36 (d, J= 6.7 Hz)	4.52-4.40 (m)	3.92-3.70 (m)	3.67-3.55 (m)
R= C ₆ H ₁	³ , 28	4.24 (d, J= 6.9 Hz)	4.47-4.34 (m)	3.74-3.54 (m)	
R= C	, 29	4.30 (d, J= 6.8 Hz)	4.47-4.36 (m)	3.78- (n	3.49 1)
R= s	, 30	4.39 (d, J= 6.8 Hz)	4.55-4.42 (m)	3.90- (n	3.60 1)
R =	, 31	4.35 (d, J= 6.8 Hz)	4.49-4.42 (m)	3.90-3.57 (m)	
R =	, 35	3.98 (d, J= 6.4 Hz)	4.30 (br s)	3.68-3.55 (m)	3.43-3.10 (m)

ОН	H-4	H-5	H-6a	H-6b	
HO OH N R	δ (ppm)	δ (ppm)	δ (ppm)	δ (ppm)	
R = ethyl, 13	3.47 (d, J= 3.2 Hz)	3.81 (br s)	2.96 (dd, J= 13.6, 3.4 Hz)	2.72 (dd, J= 13.7, 2.4 Hz)	
r"	3.89	3.98-3.91	2.86-2.76		
R = ^{Ph} , 32	(br s)	(m)	(m)		
r ²	3.75	3.90-3.84	2.78-2.70		
$R = C_6 H_{13}, 33$	(br s)	(m)	(m)		
R = \$,34	3.87 (br s)	3.95-3.89 (m)	2.85-2.74 (m)		
R = ^{-*} Ph, 11	3.51 (br d, J= 2.2 Hz)	3.81 (br s)	2.96 (dd, J= 13.7, 4.0 Hz)	2.76-2.70 (m)	
R = octyl, 12	3.44	3.77	2.92	2.68	
	(br s)	(br s)	(d, J= 12.6 Hz)	(d, J= 12.6 Hz)	
R =, 14	3.53 (br d, J= 2.7 Hz)	3.86 (br s)	3.02 (dd, J= 13.6, 3.8 Hz)	2.79 (br d, J= 13.6 Hz)	
	3.49	3.80	2.95	2.70	
R = , 15	(br s)	(br s)	(d, J= 13.2 Hz)	(d, J= 13.8 Hz)	

Table S2b. Chemical shifts and coupling constants of H-4, H-5 and H-6 of protected compounds **11-15** and **32-34**, in CD₃OD.

Table S3: Biological screening towards commercial glycosidases

	% Inhibition at 0.1 mM			
	10	12	21	
α-L-fucosidase EC 3.2.1.51				
Homo sapiens	-	-	-	
α-galactosidase EC 3.2.1.22				
coffee beans	-	-	-	
β-galactosidase EC 3.2.1.23				
Escherichia coli	-	-	-	
Aspergillus oryzae	-	-	-	
α-glucosidase EC 3.2.1.20				
yeast	-	-	-	
rice	-	-	-	
amyloglucosidase EC 3.2.1.3				
Aspergillus niger	-	-	-	
β-glucosidase EC 3.2.1.21				
almonds	51±1	-	-	
α-mannosidase EC 3.2.1.24				
Jack beans	-	-	-	
β-mannosidase EC 3.2.1.25				
snail	-	-	-	
β- <i>N</i> -acetylglucosaminidase EC 3.2.1.52				
Jack beans	-	-	-	
bovine kidney	-	-	-	

"-": no inhibition detected.

Figure S45: IC $_{50}$ of compound 10 towards β -glucosidase from almonds

Biological screening towards human lysosomal β -galactosidase (β -Gal) and β -glucosidase (GCase)

Figure S46: Percentage of β-Gal inhibition of the whole collection of compounds in human leukocytes extracts incubated with iminosugars at 1 mM concentration.

Figure S47: Percentage of GCase inhibition of the whole collection of compounds in human leukocytes extracts incubated with iminosugars at 1 mM concentration.

IC_{50} for compounds 9, 10, 12 and 21 towards human lysosomal β -glucosidase

The IC₅₀ values of inhibitors against β -glucosidase were determined by measuring the initial hydrolysis rate with 4-methylumbelliferyl- β -D-glucoside (3.33 mM). Data obtained were fitted to the following equation using the Origin Microcal program.

$$\frac{Vi}{Vo} = \frac{Max - Min}{1 + \left(\frac{x}{IC_{50}}\right)^{slope}} + Min$$

where V_i/V_o , represent the ratio between the activity measured in the presence of the inhibitor (V_i) and the activity of the control without the inhibitor (V_0), "x" the inhibitor concentration, Max and Min, the maximal and minimal enzymatic activity observed, respectively.

Figure S48: IC₅₀ of compound 9 towards GCase

Figure S49: IC₅₀ of compound 10 towards GCase

Figure S50: IC₅₀ of compound 12 towards GCase

Figure S51: IC₅₀ of compound 21 towards GCase

Pharmacological chaperoning activity

Fibroblasts with the N370S/RecNcil mutation from Gaucher disease patients were obtained from the "Cell line and DNA Biobank from patients affected by Genetic Diseases" (Gaslini Hospital, Genova, Italy). Fibroblasts cells (20.0 x 10^4) were seeded in T25 flasks with DMEM supplemented with fetal bovine serum (10%), penicillin/streptomycin (1%), and glutamine (1%) and incubated at 37 °C with 5% CO₂ for 24 h. The medium was removed, and fresh medium containing the compounds 9, 10 or 12 at different concentrations (10 nM, 100 nM, 1 μ M, 10 μ M, 50 μ M, 100 μ M) was added to the cells and left for 4 days. The medium was removed, and the cells were washed with PBS and detached with trypsin to obtain cell pellets, which were washed four times with PBS, frozen and lysed by sonication in water. Enzyme activity was measured as reported above. Reported data are mean S.D. (n=2).

Figure S52: GCase activity in human fibroblasts derived from GD patients bearing N370/RecNcil mutations in the presence of compound 9.

N370S/RecNil

Figure S54: GCase activity in human fibroblasts derived from GD patients bearing N370/RecNcil mutations in the presence of compound **12**.