

Profiling Anticancer and Antioxidant Activities of Phenolic Compounds in Black Walnuts (*Juglans nigra*) using a High-Throughput Screening Approach

Khanh-Van Ho^{1,2}, Anuradha Roy³, Sarah Foote⁴, Phuc H. Vo¹, Namrita Lall^{1,5} and Chung-Ho Lin^{1*}

- ¹Center for Agroforestry, School of Natural Resources, University of Missouri, Columbia, Missouri, United
- ² Department of Food Technology, Can Tho University, Can Tho, Vietnam
- ³ High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, United States
- ⁴CEVA Biomune, Lenexa, Kansas, United States
- ⁵Department of Plants and Soil Sciences, Plant Science Complex, University of Pretoria, Pretoria, South Africa
- * Correspondence: Chung-Ho Lin: LinChu@missouri.edu

Supplementary Figure 1. Data distribution (n=4) of controls (Trolox, DL-sulforaphane, tert-butylhydroquinone) in total antioxidant capacity and antioxidant response element (ARE) activation assays. Each violin plot represents the distribution of data for each treatment/concentration. Dot symbols inside violin plots represents data points of each replicate.

Supplementary Figure 2. Data distribution (n=4) of controls (Trolox, DL-sulforaphane) in cytotoxicity assays. Each violin plot represents the distribution of data for each treatment/concentration. Dot symbols inside violin plots represents data points of each replicate.