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Abstract: Water-based drilling fluids are extensively used for drilling oil and gas wells. However,
water-based muds cause clay swelling, which severely affects the stability of wellbore. Due to two
adsorption positions, it is expected that cationic gemini surfactants can reduce the clay swelling.
In this work, quaternary ammonium dicationic gemini surfactants containing phenyl linkers and
different counterions (Cl− and Br−) were synthesized, and the effect of variation in counterions
on swelling and hydration properties of shales was studied. Numerous water-based drilling fluid
formulations were prepared with different concentrations of surfactants to study the swelling
inhibition capacity of surfactants. The performance of surfactant-containing drilling muds was
evaluated by comparing them with base drilling mud, and sodium silicate drilling mud. Various
experimental techniques were employed to study drilling mud characteristics such as rheology
and filtration. The inhibition properties of drilling mud formulations were determined by linear
swelling experiment, capillary suction time test, particle size distribution measurement, wettability
measurements, and X-ray Diffraction (XRD). Experimental results showed that surfactant-based
formulation containing bromide counterion exhibited superior rheological properties as compared to
other investigated formulations. The filtration test showed that the gemini surfactant with chloride
counterion had higher filtrate loss compared to all other formulations. The bentonite swelling
was significantly reduced with increasing the concentration of dicationic surfactants as inhibitors,
and maximum reduction in the linear swelling rate was observed by using a formulation containing
surfactant with chloride counterion. The lowest capillary suction timer (CST) was obtained in the
formulation containing surfactant with chloride counterion as less CST indicated the enhanced
inhibition capacity. The particle size measurement showed that average bentonite particle size
increased upon the addition of surfactants depicting the inhibition capacity. The increase in basal
spacing obtained from XRD analysis showed the intercalation of gemini surfactants in interlayers of
bentonite. The contact angle measurements were performed to study the wettability of the bentonite
film surface, and the results showed that hydrophobicity increased by incorporating the surfactants
to the drilling fluid.
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1. Introduction

The growing demand for fossil fuels due to the increased population has shifted the paradigm of
the oil and gas industry to develop unconventional reservoirs [1–3]. In recent decades, the extraction of
oil and gas from shale reservoirs has increased in order to meet the current and future expected demand
for oil and gas resources [4]. Shale reservoir formations mainly comprise of water-sensitive clay
minerals such as smectite, illite, montmorillonite, and kaolinite [5,6]. Shale reservoir drilling operations
often result in complicated wellbore instability problems due to the swelling of sensitive clay minerals
present in the shale formations. The wellbore instabilities include bit balling, caving, sloughing, stuck
pipe, and in severe cases, the collapse of the wellbore may occur. Therefore, the design and selection of
drilling fluid play a significant role in minimizing the wellbore instability problems [7–10].

Drilling of shale reservoir requires specially designed drilling fluids with enhanced inhibition
properties to minimize the shale swelling and hydration. Therefore, the choice of drilling fluids
mainly depends on the cost of drilling fluid, environmental challenges, and shale inhibition
characteristics [11–14]. It is reported in the literature that oil-based mud (OBM) has exceptional
shale inhibition characteristics, better lubricity and high temperature stability, preserves the integrity of
wellbore formations, and is preferred for formations containing water-sensitive shale [15]. The OBM is
not frequently employed due to the high cost and stringent environmental regulations [16–18]. On the
other hand, water-based mud (WBM) provides excellent rheological properties, has low preparation
cost, and is environmentally friendly compared to the OBM [19,20]. However, the water contents in the
WBM have a high affinity towards the water-sensitive shale in the wellbore formations, which leads to
the hydration and swelling of shale [21,22]. Various additives (shale inhibitors) were employed in the
formulation of drilling fluids to modify the shale swelling and hydration properties [23,24].

Several drilling fluids additives were employed as shale inhibitors from the last few decades to
enhance drilling fluid inhibition properties. The reported shale inhibitors in the literature include
polymers [25–27]; inorganic slats [28]; polymer nanocomposites [29,30]; glycols [31,32]; amines [33,34]
and its derivatives, polymeric amines, dendrimers of amines [35,36], ionic liquids [37], nanoparticles [38],
surface-modified nanoparticles [39], and surfactants [3]. The shale inhibition phenomenon is categorized
into two classes, inhibition by physically sealing the micropores and small cracks, and chemical
inhibition, in which inhibitor molecules encapsulate the shale surface to prevent the interaction of shale
with water. The inhibitors that follow the chemical inhibition are considered as superior compared to
the inhibitors who follow the physical sealing mechanism. There are some limitations to the applications
of the additives mentioned above. For instance, potassium chloride has enhanced inhibition capacity,
but it cannot be used with high concentration due to high toxicity to the marine environment. It
also stimulates the dispersion of kaolin clay and results in bit balling [40,41]. Polymers and their
composites as shale swelling inhibitors are not effective at high temperature conditions encountered
in the deep wells [42,43]. The amine-based shale swelling inhibitors have limited applications
due to some associated disadvantages that include toxicity, pH-dependent inhibition, high dosage,
and low temperature tolerance [44–46]. For nanoparticles, their homogenous distribution in drilling
fluids and high impact on rheological properties are the main concern in their application [40,47].
Considering the limitations of current solutions, developing a novel shale swelling inhibitor with
terrific inhibition performance is still a research hotspot. Therefore, a new class of chemical inhibitors
such as surfactants are introduced, which can play a significant role in developing drilling fluids with
high inhibition properties.

Several studies have been conducted to investigate the potential of surfactants as a shale swelling
inhibitor [48,49]. It was noticed that surfactants showed promising potential as a swelling inhibitor
by modifying the surface properties of the clay. There was little focus on the potential use of gemini
cationic surfactants as a shale inhibitor [50,51]. Gemini surfactants are a class of surfactant that contains
more than one head and tail group connected with a spacer [52–56]. Gemini surfactants have recently
been employed for many applications in the oil and gas industry due to their unique properties such as
lower critical micelle concentration (CMC), higher interface/surface properties, excellent solubility, high
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thermal stability, and unique aggregation behavior as compared to their monomeric counterparts [57–61].
Gemini cationic surfactants have gained much attention because they have two adsorption positions
compared to conventional surfactants. As a result, gemini surfactants can enhance their adsorption
on clay surface due to their higher cation exchange capacity [62]. Although quaternary ammonium
compounds are also toxic to the marine environment, dimeric gemini surfactants have low toxicity,
which can be further reduced by adding a hydrophilic group [63]. Gemini surfactants used in this study
possess two long-chain hydrophobic chains along with ethoxy groups attached with two quaternary
ammonium heads, and the quaternary ammonium heads are connected through a spacer or linker,
which impart the distinctive characteristics to the gemini surfactants [64]. The quaternary ammonium
ions chemically interact with the clay minerals present in the shale, and long-chain hydrophobic groups
encapsulate the shale surface protecting the interaction with water [50,51,60,65–67]. Gao et al. used
the novel gemini surfactant 2,2′-bis(dodecyldimethylammonio)-ethyl ether dichloride to prepare the
organophilic clay [68]. Ren et al. used the novel gemini surfactants to make the organophilic clay,
and the effect of alkyl chain length on adsorption properties was determined by the methyl orange
test [69]. The functional mechanism of surfactants to change the shale surface from hydrophilic to
hydrophobic was analyzed by using cetyl trimethyl ammonium bromide (CTAB), and resultantly, the
surfactant improved the wettability of shale surface [70].

In this work, two gemini surfactants containing chloride and bromide counterions (PC and PB)
were synthesized in the laboratory and the effect of chloride and bromide counterions on rheology,
filtration and shale-inhibition properties were investigated. The influence of concentration of surfactant
on rheological properties was studied and compared with base and sodium silicate containing drilling
fluids. The filtration characteristics were assessed by the filter press apparatus. The shale inhibition
characteristics of gemini surfactant that contained drilling fluids were determined by performing
linear swelling and capillary suction timer tests. The effect of synthesized surfactant on coagulation
of bentonite particles was determined by performing particle size measurements. The wettability
alteration of the shale surface was analyzed by contact angle measurements. The change in basal
spacing was investigated by XRD method.

2. Results and Discussion

The cationic gemini surfactants have two adsorption positions and also have high cation exchange
capacity. However, most of the cationic gemini surfactants have poor salt tolerance and can precipitate
in the presence of divalent cations [60,71]. These surfactants were designed to tolerate the typical
high temperature and high salinity oilfield conditions. This section discusses how the addition of a
surfactant impacts rheological properties, filtration properties, and clay swelling inhibition.

2.1. Rheological Properties

The rheological properties of drilling fluids play an essential role in the smooth drilling operation.
The effect of the surfactant nature on the rheological properties of drilling fluids was determined
using a rotational viscometer. The designing of drilling fluid properties with appropriate drilling fluid
additives is significant to control its effect on drilled cutting transport, cutting suspension capacity,
and circulation of fluid around the pipes in the wellbore.

Table 1 shows the apparent viscosities (AVs) of various drilling mud samples. In the Bingham
plastic rheology model, the AV was determined to assess the flowability of prepared drilling mud at a
fixed shear rate. The AV of base mud (BM) was 11.06 cp and was observed as the highest value as
compared to the rest of the formulations. For sodium silicate mixed mud, it was noticed that the AV
was reduced to 7 cp upon its addition in the base mud. The addition of 0.1% gemini surfactant (PC
and PB) to the base drilling mud also reduced AV as compared to the base mud. The drilling mud
formulation containing 0.1% PC shows AV of 7.44 cp, while the drilling mud formulation having 0.1%
PB exhibits 8.32 cp as AV.
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Table 1. Rheological parameters (AV, PV & YP) of base mud (BM), 0.1% of SS mud and modified
drilling muds with 0.1% of PC and PB.

Inhibitors AV(cP) PV(cP) YP (l bf/100 ft2)

BM 11.1 8.2 5.7
SS 7.0 6.2 1.6
PC 7.4 5.6 3.7
PB 8.3 6 4.7

Table 1 provides the results of another critical rheological property called plastic viscosity (PV)
of drilling muds, measured at room temperature. The plastic viscosity has a direct relation with the
solid contents of drilling muds and the temperature at which the viscosity was measured. It plays a
vital role in the carrying capacity of drilling muds. In this study, the temperature was kept constant to
study the effect of PC and PB on the PV of drilling muds. First, the base mud (BM) showed the most
significant value of 8.22 cp PV as compared to all other formulations. Second, the addition of 0.1%
inhibitors to base mud resulted in the reduction of PV. The formulation with 0.1% of sodium silicate
(SS) provided a PV of 6.16 cp. On the other hand, the formulations with 0.1% of PC and PB resulted in
5.58 cp and 5.97 cp as plastic viscosities, respectively.

Yield point (YP) of drilling mud implies the ability to transport the drilled cuttings from the
subsurface to the surface. Drilling mud that has a high value of YP can transport drilled cuttings to the
surface better compared to drilling mud that has a low value of YP. On the other hand, the extremely
high value of YP of drilling muds requires high pumping power that leads to high operational costs.
Table 1 shows the values of the YP of various drilling mud formulations measured at room temperature.
The base mud showed the maximum value of YP of 5.67 (l bf/100 ft2) compared to the rest of the
drilling mud formulations. The drilling mud formulation with sodium silicate as a shale inhibitor (SS)
showed a 72% reduction in YP compared to the BM. The addition of PC and PB also affected the YP of
formulations, but their effect was less prominent compared to the (SS)-based formulation. The PC- and
PB-based formulations showed a 34% and 17% reduction in YP, respectively, compared to the BM.

The gel strength of drilling mud formulation determines the inter-particle interaction and gelling
capacity of drilling mud additive after the rotation of the drill bit stopped. Gel strength also signifies
the importance of drilled suspension capacity of drilling mud during the static period. Figure 1 shows
the gel strength of various drilling mud formulations measured at room temperature. The maximum
value of gel strength was observed for BM, while the gel strengths of all other formulations were
affected by the addition of sodium silicate as well as PC and PB. The 10-s and 10-min gel strengths
of SS formulation were reduced by 55% and 33%, respectively, compared to the BM. The PC-based
formulation shows 66% and 33% reduction in 10-s and 10-min gel strengths. The PB-based formulations
exhibit 33% and 26% reduction in 10-s and 10-min gel strengths.

The overall impact of PC and PB on rheological properties shows that the incorporation of
surfactant reduces the rheological properties. The reduction in rheological properties is attributed to
the breakage of the three-dimensional card house structure in the base mud [49,72]. The addition of
surfactants leads to an agglomeration of bentonite particles, which occurs upon reduction in repulsive
forces of bentonite particles in the drilling mud. The well-dispersed clay particles in BM moved to
aggregation upon the addition of a surfactant [73,74]. The presence of two ammonium cations in the PC
and PB molecules plays a vital role in the reorientation of inter-particle interactions. The ammonium
cations interact electrostatically with the negatively charged clay surface and make strong bonds.
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Figure 1. The gel strength of base mud (BM), 0.1% of SS mud, and modified mud with 0.1% of PC
and PB.

Further, the two long chains of each surfactant molecule also disrupt the inter-particles interaction
among clay platelets. The long chains in PC and PB molecules and the interaction of ammonium
ions with clay lead to the reduction in rheological properties. Ideally, the swelling inhibitors and
clay stabilizers should not affect the rheological properties of drilling mud. However, in the case of
clay-based drilling fluids, it is reported in the literature that natural surfactants reduce plastic viscosity
and yield point of clay-based drilling mud by preventing dispersion of clay [48]. Similarly, most of the
commercial inhibitors like sodium silicate and KCl affect the rheological properties of the clay-based
drilling mud [75,76]. However, the impact of the gemini surfactant on the rheological properties of
bentonite-based drilling mud was less compared to the sodium silicate.

2.2. Filtration Properties

Filtration volume and filter cake thickness are critical parameters to analyze the performance of
drilling mud formulation. Less filtrate volume indicates better preservation of wellbore formations and
less contamination of drilling mud with formation mud. Figure 2 shows the effect of different shale
inhibitors on filtrate volume for various drilling mud formulations. The BM formulation provided
13 mL of filtrate loss while the addition of sodium silicate increased the filtrate volume to 15.4 mL. It
was observed that the addition of gemini surfactants increased the filtrate volume of bentonite-based
drilling muds. The drilling mud formulations containing PC and PB resulted in a filtrate volume
of 19.10 mL and 18 mL, respectively. The increase in fluid loss depicts the suppressing of bentonite
swelling by the tested surfactants as they impede the bentonite hydration by reducing its water
affinity. Similar phenomena were observed in applications of other inhibitors in clay-based drilling
fluids [49,77].

Figure 3 shows the filter cake thicknesses measured after performing the filtration experiment.
The BM formulation showed a minimum thickness of filter cake (1.4 mm), which is lowest compared to
all other filter cakes. The addition of sodium silicate and PC and PB to the base mud increased the filter
cake thickness. The filter cake of SS formulation increased by 7%, while the filter cake thickness of PC
and PB formulations increased by 21.5% as compared to the filter cake thickness of BM formulation.
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Figure 2. Filtrate loss of base mud (BM), 0.1% of SS mud and modified mud with 0.1% of PC and PB.

Figure 3. Filter cake thickness of base mud (BM), 0.1% of SS mud, and modified mud with 0.1% of PC
and PB.

The overall results of filtration analysis show that fluid loss volume increases with the addition
of gemini surfactants. The increased fluid loss and filter cake thickness of PC and PB formulation
can be explained by the intercalation of surfactant molecules into the layers of clay. The increase in
the filtrate loss was also observed with the inclusion of KCl as a shale inhibitor in the drilling mud,
as reported by Mobeen et al. [51]. The filtrate loss volume of less than 15 mL is considered favorable
for a smooth drilling operation. However, the addition of shale inhibitors in the bentonite-based
drilling mud slightly increased the amount of filtrate loss described by API standards [77]. Therefore,
the formulations having gemini surfactants show a higher fluid loss and filter cake thickness. It is
common practice to add the fluid loss controllers such as starch and polyanionic cellulose (PAC) in the
drilling mud containing shale-swelling inhibitors. These fluid loss controllers prevent the filtrate loss
of water into the formation and maintain the drilling fluid properties [78].

Also, a filtration test was conducted on formulations containing starch as a fluid loss controller
(FLC) and PC as a surfactant to investigate its performance in the presence of FLC. The starch was
mixed by 3 g in the 350 mL of BM and conducted the filtration test as the results are given in Figure 4.
It was observed that the addition of FLC reduced the filtrate loss of BM from 13 mL to 6.5 mL at the
end of 30 min. Further, the PC surfactant performance was evaluated in the presence of FLC. The PC
was mixed with 0.1 wt% concentration in the mud containing FLC. The filtrate loss was increased
slightly from 6.5 mL to 8.4 mL, which was quite a lot less compared to the BM. So, it is pertinent to add
the FLC in the clay-based drilling mud formulations containing gemini surfactant.



Molecules 2020, 25, 4333 7 of 20

Figure 4. The filtration test on three different formulations (BM, BM + FLC and BM + FLC + 0.1% PC).

2.3. Contact Angle Measurements

The contact angle measurement provides an indication of the wettability of treated and untreated
surfaces in terms of hydrophilic and hydrophobic surface. Figure 5 shows the contact angles of base
mud and gemini surfactant mixed muds. The base mud (BM) without shale inhibitor shows the
approximate contact angle 24.2◦. The incorporation of PC and PB increased the contact angles to 38.7◦

and 32.1◦, respectively.

Figure 5. Contact angle measurement (A) Base mud (BM), (B) Drilling mud with 0.1% concentration of
PC, (C) Drilling mud with 0.1% concentration of PB.

The measurement of the contact angle of the film surface modified with gemini surfactant (PC
and PB) proved that the addition of gemini surfactant to water-based drilling muds increased the
hydrophobicity of the clay surface [69,79]. The gemini surfactant molecules consist of two quaternary
ammonium cations, a benzene ring as a spacer, and two long chains of alkyl groups. The spacer
benzene ring modifies the wettability of the film surface, and long-chain alkyl groups make a thin
hydrophobic layer that prevents the water penetration into the shale or clay formation.

2.4. Linear Swelling

The linear swelling test indicates the inhibition characteristics of shale inhibitors (PC and PB) used
in this study. The bentonite pellet was employed to analyze the impact on inhibition by measuring the
linear vertical height of pellet or linear swelling rate (%) for different time intervals. The effect of PC
and PB on the linear swelling rate of bentonite pellet was analyzed for 12 h and 24 h. Figure 6 shows
the impact of PC concentration on the linear swelling rate for 12 h and 24 h. It was observed that the
swelling rate of bentonite was maximum in the deionized water due to the direct hydration of pellets
in the presence of deionized water. The addition of PC reduced the linear swelling rate for both 12-h
and 24-h periods. The increase in the concentration of PC surfactants from 0.05% to 0.2% resulted in
the continuous decrease in the linear swelling rate. At 0.2% of PC concentration, the linear swelling
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rate was reduced to 64.6% and 91.9% for 12 h and 24 h, respectively, compared to that of the linear
swelling rate on bentonite pellets in the deionized water.

Figure 6. Effect of PC concentration and time on the linear swelling rate.

Nevertheless, a further increase in the concentration of PC increased the swelling. Figure 7
shows the effect of PB drilling mud formulation, concentration, and time on the linear swelling rate of
bentonite pellets. The linear swelling rate of bentonite pellet was maximum in the deionized water,
90.8% for 12 h, and 132% for 24 h period, respectively. The addition of PB decreased the linear swelling
rate using 0.05% and 0.1% concentration of PB. The minimum linear swelling rates observed were 72.1%
and 103.5% at 0.1% concentration of PB, for 12-h and 24-h linear swelling experiments, respectively.
However, the further increase in the concentration of PB caused a slight increase in the swelling rate.
At lower concentrations, the adsorption of surfactants continued and resulted in a reduction of clay
swelling. At higher concentrations, the adsorption reached a saturation state. Further increase in
concentration adversely affected the inhibition performance, and as a result, the swelling rate increased.
As reported by Hu et al., the surfactant concentration and surfactant arrangement in the layers of clay
play a significant role in the swelling inhibition [80]. The alkyl chains take several arrangements, such
as a lateral monolayer, a lateral bilayer, and a paraffin-type monolayer in the interlayer spacing of
clay based on the surfactant concentration. At high concentration, the surfactant takes a paraffin-type
monolayer arrangement exhibiting a larger tilting angle that leads to the maximum d-spacing of
bentonite that adversely affects the inhibition performance. The alkyl arrangement of a particular
surfactant requires detailed investigation as limited reports are available on this topic.

Figure 7. Effect of PB concentration and time on the linear swelling rate.
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Figure 8 shows the comparison of the linear swelling rate of bentonite pellets in the deionized
water and modified drilling muds having a surfactant at 0.1% concentration for 24 h. It was observed
that the linear swelling rate was maximum in the deionized water compared to all the drilling mud
formulations. At the start of the experiment, the linear swelling rate of bentonite pellet was similar
for all the formulation; however, after 5 h of experiment, a prominent distinction in linear swelling
rate was observed for different drilling mud formulations. It was also found that the rate of swelling
was abrupt in the initial phase of the experiment. The PB surfactant at 0.1% concentration showed
a noticeable reduction in the linear swelling rate compared to the swelling rate in deionized water.
The lowest rate was observed for the formulation having 0.1% sodium silicate and PC. The swelling
rate of SS formulation and PC formulation was found to be approximately 97%, whereas the linear
swelling rate for DW and PB was observed at 132% and 103%, respectively.

Figure 8. Comparison of linear swelling rate of various inhibitors.

The impact of PC and PB on the linear swelling rate can be explained by the chemistry involved
in the inhibition mechanism. The fluid providing the minimum linear swelling rate of bentonite pellets
would be considered as superior for the inhibition of hydration and swelling of shale. The cationic
ammonium ions in the drilling mud formulation chemically interact with the negatively charged clay
through the electrostatic force of attraction, and the spacer group in the surfactant molecule acts as a
hydrophobic layer on the clay surface. The long-chain alkyl groups of PC and PB act as hydrophobic
groups that encapsulate the bentonite pellet keeping the water molecules away from the clay surface.

2.5. Capillary Suction Timer

The capillary suction time (CST) test indicates the inhibition capacity of shale inhibitor used in the
formulation of drilling mud. The magnitude of CST was measured in seconds for different drilling
mud formulations with base mud (BM) and modified formulation with 0.1% concentration of shale
inhibitor, as shown in Figure 9. The drilling mud formulation, which indicates a high magnitude of
CST, mainly represents less inhibition capacity. Whereas, the drilling mud formulation that shows less
magnitude of CST represents better inhibition capacity. In this study, the base mud (BM) shows the
highest magnitude of CST, which is 1302.4 s, and the value of CST was attributed to less amount of free
water available in the base mud. Whereas, the addition of 0.1% sodium silicate in the base mud results
in the reduction of CST to 1003.4 s. The PC-modified formulations further reduced the CST to 777.5 s,
and PB-based formulation reduced the CST to 854 s. The less CST time of surfactant-based drilling
mud formulations shows that surfactant molecules replace the water present on the clay surface by
inhibiting the clay, and that results in the free water that travels across the electrodes in the CST meter
giving less CST time. The PC-modified formulation showed high inhibition performance as compared
to other formulations.
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Figure 9. Capillary suction time test of base mud (BM), 0.1% of SS mud, and modified mud with 0.1%
of PC and PB.

2.6. Particle Size Distribution

Particle size distribution test is one of the reliable techniques to analyze the inhibition characteristics
of surfactants as shale inhibitors by measuring the average particle size distribution of clay. Bentonite
swells and delaminates upon interaction with water, which leads to an increase in particles and a
decrease in the average particle size of the hydrated bentonite [81]. The tendency of delamination
depends on the swelling capability of montmorillonite mineral in bentonite [82]. Figure 10 shows
the differential and cumulative distribution (%) of bentonite particle size in the base mud (BM) and
gemini surfactants (PC and PB)-modified drilling mud formulations, respectively. It was observed
that the addition of surfactants increased the size of the bentonite particles as the repulsive force
among particle reduced and bentonite particles came closer to each other, resulting in increased size.
The average particle size (d50) of bentonite in BM was about 2.7 µm, whereas PC formulation had
a bentonite particle size approximately 7.4 µm. The PB drilling mud formulation showed a slight
reduction in the average particle size compared to the PC formulation, as it had a bentonite particle
size of 6.9 µm. The mean particle sizes were calculated from Figure 10b. The PC-based drilling mud
formulation inhibited the swelling and hydration of bentonite particles; therefore, the average particle
size of bentonite particles was bigger as compared to other formulations.

Figure 10. (a) Differential distribution of bentonite particle size in base mud and gemini surfactants
(PC and PB)-modified muds; (b) Cumulative distribution of bentonite particle size in base mud and
gemini surfactant (PC and PB) modified muds.
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2.7. X-ray Diffraction

In this study, the intercalation of gemini surfactants was investigated through the XRD technique,
in which interlayer spacing or d-spacing was measured. The Interlayer or basal spacing(d) of bentonite
changes upon ion-exchange reaction and informs us about the inhibition of clay. Figure 11 provides
the XRD patterns of bentonite hydrated in water and gemini surfactants. It was observed that the
addition of gemini surfactants increased the d-spacing of the interlayer, e.g., PC and PB surfactants
increased the d-spacing from 12.39 Å to 13.66 Å and 12.88 Å, respectively. It is obvious that after the
cation exchange, the basal spacing of bentonite moves toward lower angles, indicating the increase in
interlayer spacing. This result confirms the intercalation of gemini surfactants in the interlayer, and it
is in good agreement with the literature as well [79]. For an instant, Williams–Daryn [83] discussed
the change in basal spacing upon the intercalation of bentonite by dicationic gemini surfactants. It
was observed that gemini surfactants with larger cations with more amphiphilic properties created a
hydrophobic region in the interlamellar layers of the clay and prevented hydration of clay.

Figure 11. XRD patterns of bentonite hydrated in water and gemini surfactants (PC & PB).

3. Materials and Methods

3.1. Materials

The reagents used in this study are outlined in Table 2, with their purity and source. All reagents
were used for the synthesis of gemini surfactants (PC and PB) without further purification. The details
of other materials are also provided in Table 2.

Table 2. List of reagents with their purity and source used in this study.

Name Supplier Purity (%)

Glycolic acid ethoxylate lauryl ether (690) Sigma Aldrich 98.5
3-(dimethylamino)-1-propylamine Sigma Aldrich 99

α,α’-dibromo-p-xylene Sigma Aldrich 97
α,α’-dichloro-p-xylene Sigma Aldrich 98

Aluminum oxide Sigma Aldrich 99.99
Sodium fluoride Sigma Aldrich 99

Sodium hydroxide Sigma Aldrich 98
Sodium Bentonite Halliburton -

Sodium silicate Sigma Aldrich -
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3.2. Synthesis of PC and PB

Synthesis of gemini surfactants (PC and PB) was accomplished by mixing 3-(dimethylamino)-
1-propylamine and glycolic acid ethoxylate lauryl ether, as shown in Figure 12. The reaction was
carried out at 433 K for 10 h using sodium fluoride to accelerate the reaction, and an additional
3-(dimethylamino)-1-propylamine was added during the reaction for complete conversion of acid to
an amide. A magnetic stirrer was used for a continuous stirring of the reaction mixture.

Figure 12. Synthetic outline of gemini surfactants (PC and PB).

At the end of the chemical reaction, the extra amount of 3-(dimethylamino)-1-propylamine
was removed under reduced pressure, and the crude was loaded in a glass column for column
chromatography using EtOH as a mobile phase to obtain final product PC and PB. The confirmation of
the chemical structure of the synthesized product was attained by proton and carbon NMR analysis.
The detailed description of the synthetic protocol and spectral data analysis of PC and PB were
described by Shakil et al. [84]. Besides, the thermogravimetric analysis (TGA) was performed on
synthesized surfactants (PC & PB) to investigate their thermal stability as it is a prerequisite for their
applications in oil and gas drilling operations (See, Figure 13). Both surfactants lost around 20% weight
upon reaching 300 ◦C. After that, a sharp decline in weight loss of surfactants occurred, exhibiting the
thermal degradation of surfactants. There was a minor impact of counterions on the thermal stability
of surfactants. The PB surfactant containing bromide counterion showed better thermal stability as
compared to PC containing chloride counterion.
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Figure 13. TGA analysis of PC and PB.

3.3. Preparation of Drilling Muds

Drilling mud samples were prepared very carefully to achieve the desired properties. Three
different classes of drilling mud were developed in this work. First, the base drilling mud (BM)
was prepared by adding 6 wt.% bentonite to deionized water under constant stirring at 21,000 rpm
using the Beach Hamilton mixer. Second, sodium silicate-based drilling mud (SS) was prepared by
adding 6 wt.% bentonite to 0.1 wt.% stock solution of sodium silicate under constant high shearing.
Third, the surfactant-based drilling muds (PC and PB) were prepared by mixing six wt.% bentonite to
surfactant solutions having (0.1 wt.%) concentrations. All the drilling mud samples were prepared
by applying vigorous stirring for 30 min. The sodium hydroxide solution (caustic soda solution of
14.5 pH) was added dropwise to all the drilling mud samples to adjust the pH to around 9. Each
drilling mud sample was left at room temperature for 24 h before performing the test on drilling muds.

3.4. Rheological Measurements

Rheology of drilling muds is essential to determine the flow behavior under different shear
rates for smooth drilling operations. The rheological properties, which are considered as critical
for drilling muds, include apparent viscosity, plastic viscosity, yield stress, and gel strength. In this
work, the rheological properties of various drilling mud formulations were determined by the
M3600 automatic viscometer. The appropriate amount of drilling mud sample was charged to the
viscometer cup, and pre-shearing was applied before performing the actual rheological measurements.
The viscometer reading was taken at different rpm, as described by API recommendations, and standard
Equations (1)–(3) were used to determine different rheological parameters. The gel strength of each
drilling mud sample was determined at different time intervals as recommended by API standards,
such as 10-s and 10-min gel strength. To determine the 10 s gel strength, the 10 s holding time was
applied for each drilling mud, followed by the application of low shear at 3 rpm. Similarly, 10-min gel
strength was measured by holding the drilling mud sample for 10 min, followed by the application
of low shear at 3 rpm. The maximum deflection at 3 rpm was considered as the gel strength of the
drilling muds. The following Bingham plastic model equations were used to determine different
rheological properties:

Apparent viscosity (µa) =
∅600

2
(cp) (1)

Plastic viscosity
(
µp

)
= ∅600 −∅300 (cp) (2)

Yield pint
(
Yp

)
= ∅300 − µp

(
lb

100 f t2

)
(3)
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3.5. Filtration Test

The efficiency of drilling mud formulation can be determined by the amount of fluid loss and
thickness of the filter cake as a result of the filtration process. In this study, the fluid loss characteristics
were determined by the Fann filter press apparatus. To perform the filtration experiment, a Whatman
filter paper no. 40 was placed at the bottom of the filter cup assembly and followed by the filling of a
filter cup with 350 mL of drilling mud. The filter cup was tightly screwed, and the filtration experiment
was started by applying 100-psi pressure using compressed air. The filtrate liquid was collected from
the bottom of the filtration assembly after completing the filtration experiment for 30 min. At the end
of the filtration experiment, the filter cake was carefully removed and washed with deionized water to
remove excess drilling mud. The filter cake thickness was measured by Vernier caliper.

3.6. Linear Swelling Test

The linear swelling test was performed to assess the inhibition properties of prepared drilling
mud at room temperature. The inhibition properties of drilling muds were determined on bentonite
pellets. The bentonite pellet was made by taking 12 g of bentonite powder and compressed in the
pellet making assembly by applying 6000 psi pressure for 30 min. The OFITE linear swelling meter
was used for the standardized linear swelling tests. The prepared pellet was placed in the linear
swelling cup and filled with 150 mL of made drilling mud along with a constant stirring of 100 rpm.
The linear swelling rate of bentonite pellets was determined for 12 h and 24 h, at various concentrations
of prepared drilling muds.

3.7. Capillary Suction Timer Test

The capillary suction time test was performed to characterize the effectiveness of drilling mud and
the inhibition properties of the prepared drilling muds [85]. The capillary suction time test indicates
the amount of free water available in the prepared drilling mud that will invade into the formation of
the wellbore. The shale inhibitor in the drilling mud formulation interacts with the clay present in the
drilling mud and releases the extra amount of water. In this study, several drilling mud formulations
were made by mixing 0.1% concentration of different surfactants in the base mud and mixed thoroughly
before performing the capillary suction time test. The prepared drilling mud was then added at the
center of CST equipment, with a filter medium at the bottom of the drilling mud sample. The spreading
rate of filtrate liquid is mainly affected by the chemical affinity of the inhibitor with drilling mud
components and the nature of filter media used for the CST test. The drilling mud filtrate liquid moves
outward in the radial direction, and the time in seconds was noted down for the filtrate liquid to reach
the outer electrode of CST meter.

3.8. Wettability Alteration Measurements

Drop Shape Analyzer—DSA100 equipment was used to study the wettability alteration.
The surfactant-based drilling muds were prepared with various concentrations, and each formulation
was used to test the wettability of clay surface separately. A thin layer of each drilling mud formulation
was spread on a glass plate and allowed to dry at room temperature for 24 h. Then, wettability of clay
surface was determined by dropping a small droplet of deionized water, and the contact angle was
measured with a resolution camera mounted on the equipment and the inbuilt software.

3.9. Particle Size Measurements

The drilling mud additives interact with each other, and as a result, the distribution of additives is
altered. In this study, the effect of shale inhibitors (PC and PB) on the distribution of bentonite particles
dispersed in deionized water was studied, and results were compared with base drilling mud with
shale inhibitor. To measure the particle size distribution of bentonite, DT-1200 Acoustic Spectrometer
was used. The surfactant-based drilling mud formulations were made by dispersing bentonite in the
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0.1% solutions of PC and PB surfactants. All the formulations were thoroughly mixed using beach
Hamilton mixer and left undisturbed before measuring particle size distribution.

3.10. X-ray Diffraction

The X-ray diffraction (XRD) analysis was conducted to investigate the interlayer or basal spacing
(d) of bentonite hydrated in water and gemini surfactants. The XRD analysis was performed using the
XRD system of PanAnalytical.

4. Conclusions

In this study, two different gemini surfactants (PC and PB) were synthesized, each having two
quaternary ammonium cations, a benzene ring as a spacer, and two long alkyl chains along with
negative counter ions (chloride or bromide). The shale inhibition performance of synthesized gemini
surfactants was evaluated by several experimental techniques such as linear swelling test, particle size
measurement, capillary suction time test, contact angle measurement, and XRD. Also, the impact of
surfactant on rheology and fluid loss of muds was investigated.

• The addition of a surfactant in a base mud reduced its rheological parameters. The PB surfactant
showed less impact on the rheology of base mud as compared to the PC.

• The fluid loss increased upon the addition of PC and PB in the base mud, which can be controlled
by adding FLC.

• Both PC and PB changed the wettability of hydrated bentonite as indicated by contact angle
measurement and made a hydrophobic surface.

• Reduction in CST time and increase in particle size depicted the clay swelling inhibition capacity
of PC and PB gemini surfactants.

• The swelling rate of bentonite pellets was significantly reduced in the presence of PC and PB as
compared to deionized water. PC formulation provided high inhibition same as sodium silicate
in the linear swelling test.

• The gemini surfactants intercalated in the layers of bentonite and increased its basal spacing.
• The PB surfactant containing bromide counterion showed better thermal stability as compared to

PC containing chloride counterion.
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