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Abstract: Nanofibrillated cellulose (NFC) as an environmentally friendly substrate material has
superiority for flexible electrothermal composite, while there is currently no research on porous
NFC based electrothermal aerogel. Therefore, this work used NFC as a skeleton, combined with
multi-walled carbon nanotubes (MWCNTs) and graphene (GP), to prepare NFC/MWCNTs/GP aerogel
(CCGA) via a simple and economic freeze-drying method. The electrothermal CCGA was finally
assembled after connecting CCGA with electrodes. The results show that when the concentration of
the NFC/MWCNTs/GP suspension was 5 mg mL−1 and NFC amount was 80 wt.%, the maximum
steady-state temperature rise of electrothermal CCGA at 3000 W m−2 and 2000 W m−2 was of about
62.0 ◦C and 40.4 ◦C, respectively. The resistance change rate of the CCGA was nearly 15% at the
concentration of 7 mg mL−1 under the power density of 2000 W m−2. The formed three-dimensional
porous structure is conducive to the heat exchange. Consequently, the electrothermal CCGA can be
used as a potential lightweight substrate for efficient electrothermal devices.
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1. Introduction

Low-dimensional nano-carbon materials, such as one-dimensional tubular carbon nanotubes
(CNTs) and two-dimensional lamellar graphene (GP) are currently widely used in the preparation
of nano-functional composites for their unique physical and mechanical properties [1,2]. Both CNTs
and GP have Young’s modulus of ~1 TPa [3,4]. Due to their excellent electrical conductivity and
thermal conductivity [5–8], they were involved in many researches on functional materials. Of which,
electrothermal functional composite can convert electrical energy into thermal energy on the basis of
Joule heating principle principally due to the inelastic collision of charged particles under the electric
field [9]. Recently, related studies reported various electrothermal composites made of CNTs or GP,
which can be used for medical infusion apparatus [10], deicing [11,12], defrosting and defogging [13–15],
repairing and self-curing resin [16], and other fields [17–20]. As example, a fluoroalkyl-silane-modified
three-dimensional graphene foam composite (FS-GF) with a porous structure was fabricated, which can
be used in the Joule heating mesh for airflow; the prepared FS-GF also demonstrated rapid heating
rate, high conversion efficiency, and uniform temperature distribution [21]. Moreover, a porous aramid
nanofiber/CNT electrothermal hybrid aerogel film coated with a layer of fluorocarbon resin exhibited
fast heating speed and reliable cycle stability [22]. The fast heating speed was attributed to that
there were two heat dissipation pathways in the porous aerogel, such as heat conduction and heat
convection [23]. CNTs and GP had been proved to have some advantages in the application of electric
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heating, and were expected to replace many traditional electrothermal composites [24]. They are
also considered as the candidate materials for the preparation of ultralight, elastic, and conductive
aerogels [25], presenting porous network structure and large specific surface area [23,26].

There are not many reports about the electrothermal aerogels, except for the existed reduced
graphene oxide (rGO) electrothermal aerogels [23]. However, functional aerogels also represent
limitations, such as that their mechanical properties remain to be further enhanced [27]. And the method
of combination with polymer was also existed, such as the poly(methyl methacrylate) [21] and aramid
fiber [22] has been reported, but the used polymer is not easy to degrade. Besides, the nano-carbon
materials are randomly stacking due to their large van der Waals forces and poor dispersion stability
in water [28]. This fact leads to the nano-carbon materials having difficultly-uniform dispersion in
polymers [29]. Thus, many preparation methods employed chemical modification, by which some
properties of nano-carbon materials would be weakened; such as that covalent modification can change
the inherent properties of CNTs and graphene to a certain extent, resulting in the loss of the conductivity
property [30]. Moreover, non-covalent modification can improve the dispersion effect under the action
of surfactants, but the modification with a high amount of surfactant will impair the mechanical
properties of the composites prepared by compounding polymers as matrix [31]. Consequently, how to
avoid the agglomeration of nano-carbon materials in substrate is always particularly important for
improving the performance of their composites [32].

Nanofibrillated cellulose (NFC) is a kind of nanocellulose, and generally used as a dispersant and
binder [33,34]. It is also a biodegradable, renewable, easily available, and environmentally-friendly
natural polymer [35,36]. Many studies have shown that NFC can be used as a dispersant to promote
dispersion stability of hydrophobic CNTs and rGO in aqueous suspension [37,38]. Meanwhile, NFC can
improve the mechanical properties of its composite [39]. For example, the mechanical strength of a
CNFs/rGO film was significantly improved as compared with that of pure rGO film [40].

In the past, researches focused on the preparation of NFC-based electrothermal composite
films with flexibility [41–43], while there was rare research on the assembly of porous NFC-based
electrothermal aerogel. In this work, a porous electrothermal NFC/MWCNTs/GP aerogel (CCGA) was
presented, which was prepared via a simple and effective ultrasonic dispersion and freeze-drying
method. The work mainly focused on the influence of ultrasonic parameters, suspension concentration,
and NFC content on its electric heating performance and other properties. This research will provide a
reference for the subsequent improvement of the preparation process, as well as for enhancing surface
heat exchange of the other electrothermal composites.

2. Materials and Methods

2.1. Materials

The initial NFC suspension (mass concentration of 1.08 wt.%, the diameter of 10–20 nm) was
purchased from Tianjin Woodelf Biotechnology Co., Ltd., Tianjin, China, and made from bleached
kraft pulp of spruce wood; the preparation process of the chemical TEMPO oxidation, wash,
and high-pressure homogenization was employed. Single-layer graphene (purity > 99%, sheet diameter
0.5–5 µm, and a specific surface area 1000–1217 m2 g−1) and industrial-grade MWCNTs powder was
produced by Suzhou Tanfeng Graphene Technology Co., Ltd., Suzhou, China.

2.2. Methods

2.2.1. Preparation of CCGA with Different Ultrasonic Time and Power

In this section, CCGA with 60 wt.% NFC was prepared, and the mass ratio between MWCNTs
and GP in the CCGA was 7:3. Firstly, NFC suspension of 2.780 g was weighed and added into a 50 mL
beaker; along with distilled water was poured in the beaker to prepare 5 mg mL−1 NFC suspension via
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ultrasonic cell disruptor (TL–1200Y, Jiangsu Tenlin Instrument Co. Ltd., Yancheng, China). Ultrasonic
power of 1000 W and time of 10 min was employed.

Next, 0.014 g MWCNTs was weighed and then added into the above NFC suspension to prepare
NFC/MWCNTs suspension with the help of ultrasonic treatment (1000 W, 10 min).

GP suspension was prepared respectively. After distilled water was poured into a 50 mL beaker
in which 0.006 g graphene was added in advance, GP suspension with a concentration of 1 mg mL−1

was prepared firstly using a magnetic stirrer with a speed of 1000 r min−1 for 5 min, then sonicated at
1000 W for 10 min.

Finally, the prepared GP suspension was poured into the NFC/MWCNTs suspension to prepare
NFC/MWCNTs/GP suspension with a concentration of 5 mg mL−1 via following ultrasonic treatments.
Various ultrasonic powers (600 W, 800 W, 1000 W) was carried out at the controlled ultrasonic time
of 40 min, as well as that different ultrasonic time (10 min, 30 min, 50 min, 70 min) under the fixed
ultrasonic power of 1000 W. The obtained suspension was then poured into a flat-bottom petri dish
(diameter of 55 mm) before it was put into a vacuum freeze dryer (FD–1A–50, Jiangsu Tenlin Instrument
Co., Ltd., Yancheng, China). After it froze at a temperature of about –50 ◦C for 2 h and was vacuum
freeze-dried for 48 h, the CCGA was obtained. The preparation process of the CCGA is shown in
Figure 1. The macroscopic morphology of CCGA was observed using a camera. Finally, the electric
heating performance was tested.
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2.2.2. Preparation of CCGA with Different Suspension Concentrations

According to the above 2.2.1 preparation process, different concentrations (3 mg mL−1, 4 mg mL−1,
5 mg mL−1, 6 mg mL−1, 7 mg mL−1) of NFC/MWCNTs/GP suspension with total volume of 12 mL
were prepared under the fixed ultrasonic power of 1000 W for 50 min. Then they were freeze-dried to
be the CCGA. CCGA prepared from different suspension concentrations were respectively recorded
as x–CCGA (where x represents different concentrations of 3 mg mL−1, 4 mg mL−1, 5 mg mL−1,
6 mg mL−1, 7 mg mL−1). Their electric heating performance was tested.

2.2.3. Preparation of CCGA with Different NFC Contents

Similarly, according to the above 2.2.1 and 2.2.2 preparation process, CCGA with different amount
of NFC (30 wt.%, 40 wt.%, 50 wt.%, 60 wt.%, 70 wt.%, 80 wt.%), and the controlled suspension
concentration of 5 mg mL−1, which were denoted as CCGA y (where y represents the amount of NFC
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accounted for CCGA (30 wt.%, 40 wt.%, 50 wt.%, 60 wt.%, 70 wt.%, 80 wt.%). Their morphology,
phase structure, chemical property, and thermal stability were characterized, as well as their electric
heating performance. Moreover, pure NFC suspension and the mixture suspensions with various NFC
contents (CCGA 40, CCGA 60, and CCGA 80) were prepared according to the Section 2.2.1 above.
After the obtained suspensions were cooled to room temperature, the pH values were measured in the
environment with constant temperature using pH meter (testo 206–ph–1, Testo Instruments (Shenzhen)
Co., Ltd., Shenzhen, China), and electrical conductivity of the suspensions were also measured via the
conductivity meter (DS–307A, INESA Scientific Instrument Co., Ltd., Shanghai, China).

2.3. Characterization

Morphology of CCGA with various NFC amounts was characterized by scanning electron
microscope (SEM; S–3400N, Hitachi, Chiyoda–ku, Japan). X-ray diffraction (XRD; SmartLab 3 kW,
Rigaku Corp., Akishima–shi, Japan) were carried out on CCGA, NFC, MWCNTs at the condition of 2θ
from 5◦ to 70◦ with a scanning speed of 8◦ min−1. Fourier transform infrared spectra (FT-IR) of powder
samples of CCGA, NFC, MWCNTs, and GP, were collected from 400 to 4000 cm−1 with a Nicolet iS50
spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) that has a resolution better than 0.09 cm−1.
The thermal stability of the samples was analyzed by a differential thermal-thermogravimetric
synchronous analyzer (DTA–TG; DTG–60 (H), Shimadzu Corp., Kyoto, Japan) in a nitrogen atmosphere
from room temperature to 600 ◦C with a temperature rise rate of 10 ◦C min−1. As well as analysis on
the thermal stability of NFC/MWCNTs aerogel (NFC content was 60 wt.%) prepared using the above
process was also executed for the purpose of comparison with the above samples.

2.4. Preparation of Electrothermal CCGA and Test for Electric Heating Performance

As shown in Figure 2, the prepared CCGA samples with various suspension concentrations
were cut into 20 × 40 mm2 (effective area of 20 × 30 mm2), with copper foil (thickness 0.02 mm,
width 5 mm) as electrodes attached to both ends of them. And they were fixed by a clamping device.
At first, the resistance between two electrodes was tested using a Fluke 15B+ multimeter (Fluke Corp.,
Washington, DC, USA). After calculating the input voltage on the basis of Joule’s law and the set power
density, the input voltage was supplied by a DC constant voltage power (MESTEK DP605C; Shenzhen
MESTEK Tools Co. Ltd., Shenzhen, China) which can record the voltage and electric current during
the electrification, and a multi-channel temperature recorder (SIN–R960, Hangzhou Sinomeasure
Automation Technology Co. Ltd., Hangzhou, China) was used to record temperature during the test
process. Temperature distribution on the CCGA during the electrification process was observed using
a thermal infrared imager (TiS40, Fluke Corp., Washington, DC, USA). 5 of 15 
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2.4.1. Electrothermal CCGA Prepared with the Different Ultrasonic Treatments

After the electrothermal CCGA with different ultrasonic treatments were assembled,
the temperature distribution on the CCGA was obtained using the thermal infrared imager under the
power density of 1000 W m−2 after 10 min.

2.4.2. Electrothermal CCGA Prepared with Different Suspension Concentrations

In order to clearly observe the distinction among the CCGA prepared with different suspension
concentrations, a higher power density of 2000 W m−2 was applied in this section. Electrification
was running for 20 min then the power was turned off and cooled for 20 min, in which their surface
temperature was recorded. And the voltage and the electric current was also recorded to calculate the
resistance between two electrodes during the electrification, to evaluate the electric heating stability.
As well as that the temperature distribution on the surface was analyzed by using the thermal
infrared imager.

2.4.3. Electrothermal CCGA Prepared with Various NFC Amounts

Electrification on CCGA 40, CCGA 60, and CCGA 80 was carried out under the power density
from 500 to 3000 W m−2 at intervals of 500 W m−2 for 20 min follow cooling for 25 min, the temperature
and the resistance between two electrodes was also recorded. The resistance drop rate at the moment
of power off was used to evaluate the electric heating stability.

3. Results and Discussion

3.1. Effect of Ultrasonic Power and Time on the Performance of CCGA

Ultrasonic dispersion can promote the uniformity of the dispersibility of NFC and nano-carbon
materials in aqueous suspension [41], and thus can improve the electric heating performance of
electrothermal CCGA. After the comparison in Figure 3a–c, the CCGA prepared at 1000 W (Figure 3c)
had better surface smoothness and flatness, which exhibited a more uniform electric heating temperature
(Figure 4) under the power density of 1000 W m−2 after electrified for 10 min. Under the fixed ultrasonic
power of 1000 W, surface smoothness and regularity of the CCGA became better with the extension of
ultrasound time from 10 min to 70 min, as shown in Figure 3d–g. Obviously, the surface wrinkle area
gradually became smaller. Combined with the analysis of the infrared thermogram in Figure 4d–g,
results indicated that the extension of the ultrasonic time can increase the temperature uniformity
on the electrothermal CCGA. And the maximum surface temperature also increased significantly.
In which, the preparation process with 1000 W and 50 min was more reasonable and was employed in
the subsequent experiment.

3.2. SEM Morphology Analysis

Aa shown from SEM analysis in Figure 5a–d, pure NFC aerogel (Figure 5a) shows a porous
structure consisting of microfibrillar networks, and the fibrils coagulated to form a small number
of nanosheets [44,45], while the surface pores of CCGA decreased after added with GP. During the
freeze-drying process, MWCNTs and GP easily entangle with NFC, which would affect the nucleation
and growth of ice crystals when forming aerogel [46]. SEM results on the cross-section of aerogel
shown in Figure 5e–h indicate a clear and typical three-dimensional porous network structure.
The interconnected pores formed in both pure NFC aerogel (Figure 5e) and the CCGA (Figure 5f–h).
The network structure also formed many tiny pores on the pore wall. What’s more, NFC and GP
can synergistically improve the dispersibility of MWCNTs in the suspension [47]. The dispersion is
due to interfacial interactions among the oxygen-containing groups on the nano-carbon materials and
cellulose material [48]. Therefore, the highly interconnected three-dimensional cellular networks was
obtained, which may be responsible for the outstanding mechanical properties of the aerogel [46].
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It is worth noting that the abundant porous structure is conducive to the heat exchange with the
environment in the electric heating process [21–23]. 6 of 15 
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3.3. XRD Analysis

XRD diffraction patterns of different aerogels are shown in Figure 6. Pure NFC aerogel has sharp
and narrow diffraction peaks at 2θ = 22.7◦, corresponding to the (002) crystal plane of cellulose I [49].
There are two overlapping and weaker peaks at approximately 14.8◦ and 16.9◦, corresponding to the
structure of cellulose I [50,51], and there is an indistinct (004) crystal plane diffraction peak located
near 34.8◦ [50,51], indicating that it contains a semi-crystalline structure. In addition, a sharp and
wide peak at 25.9◦ can be seen in the XRD diffraction pattern of MWCNTs aerogel, which corresponds
to the diffraction peak of (002) lattice plane [52], and a weaker (100) plane diffraction peak appears
at 43.8◦ [53]. The characteristic peak located at 14.8◦, 16.9◦ and 22.7◦ became gradually stronger as
increasing the NFC content in CCGA. In the meantime, the intensity of the typical (002) lattice plane
diffraction peak located near 25.9◦ becomes weak, which cannot be found distinctly as NFC content
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exceeding 80 wt.%. These results indicated the addition of NFC exceeding 80 wt.% can effectively
avoid agglomeration of nano-carbon materials, which is similar to early reports [54]; both nano-carbon
materials and NFC was homogeneously dispersed to form a three-dimensional porous structure. 7 of 15 
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3.4. FT-IR, pH, and Electrical Conductivity Analysis

The FT-IR spectra of MWCNTs and GP in Figure 7 shows two weak peaks at 2924 cm−1 and
2854 cm−1, which is caused by the methylene group (–CH2–) in the crystal lattice, and there is a broad
peak near 3432 cm−1, linking to the –OH group on the edge of the nano-carbon materials [28,55].
The peak around 1630 cm−1 is the C = C stretching vibration absorption peak [56,57]. Pure NFC aerogel
has a significant –OH stretching vibration peak around 3436 cm−1, while the characteristic peak at
2800–3000 cm−1 is attributed to –CH2–. The characteristic peak at 1650–1630 cm−1 corresponds to the
water absorbed by the NFC [58]. The peak at 1170–1082 cm−1 has a relation with the C–O–C binding
group [59]. With the increase of NFC content, –OH stretching vibration peak near 3436 cm−1 became
stronger, and the characteristic peak of –CH2– and C = C groups in CCGA 80 was still distinctly.
Obviously, the surface of nano-carbon materials and NFC also contains a certain of functional groups
(such as –OH and other oxygen-containing functional groups) shown in Figure 7. The electrostatic
repulsive forces induced from the oxygen-containing groups and the hydrophobic interaction between
NFC and MWCNTs facilitate the dispersion of MWCNTs in NFC suspension [33], which is consistent
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with the result of SEM analysis. MWCNTs with oxygen-containing groups can be also seen as the
functionalized CNTs, which can favor the dispersion, assembly and reinforcement in the substrate [60].
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Figure 7. FT-IR spectra of the different aerogels.

Furthermore, as seen in Table 1, measurement results on the pH of the suspension with various
NFC contents demonstrate that all the suspension were alkalescent even changing the content of
NFC or the nano-carbon materials. So, the NFC can remain negative potential on its surface in the
suspension, and form electrostatic repulsive forces to disperse the nano-carbon materials [41,42,61].
As well as electrical conductivity (EC) of the suspension shown in Table 2, gradually increasing when
adding the content of NFC, further indicate the negatively charged groups on the NFC surface [62].
Therefore, the NFC/MWCNTs/GP suspension and the CCGA prepared with a moderate amount of
NFC could gain good uniformity of structure.

Table 1. pH of the suspension with different NFC contents.

Content of NFC pH of Group 1 pH of Group 2 Average pH

40 wt.% 8.29 8.43 8.36
60 wt.% 8.16 8.28 8.22
80 wt.% 8.23 8.26 8.25

100 wt.% 8.24 8.24 8.24

Table 2. Electrical conductivity (EC) of the suspension with different NFC contents.

Content of NFC EC of Group 1 (µs cm−1) EC of Group 2 (µs cm−1) Mean EC (µs cm−1)

40 wt.% 211 188 199.5
60 wt.% 367 388 377.5
80 wt.% 496 602 549.0
100 wt.% 552 538 545.0

3.5. Thermal Properties of the Aerogels

The thermal stability (Figure 8) of the aerogel can be introduced to appraise the electric heating
stability from another perspective. The mass loss of NFC in the range of 30–125 ◦C mainly results from
the remove of the water absorbed by the NFC [63], and then the second major mass loss of NFC in the
temperature range of 225–350 ◦C is mainly due to the breakage of the backbone of NFC to form low
molecular weight volatile chemicals. The thermal stability of CCGA 60 (NFC content was 60 wt.%) is
significantly better than that of pure NFC aerogel, shown from the second mass loss process of the
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CCGA, which was mainly attributed to the decomposition of NFC [52]. The mass loss at 580 ◦C of pure
GP and MWCNTs is only about 7% and 5%, respectively, indicating that the thermal stability of the
used MWCNTs is slightly better than the used GP. Therefore, it can be seen that the thermal stability of
NFC/MWCNTs aerogel (NFC content was 60 wt.%) is better than that of the CCGA, but there is only a
small difference. Results show that the CCGA with a three-dimensional porous structure has good
thermal stability. Under the synergy effect of MWCNTs and GP, the CCGA has almost no quality loss
except for the loss of the absorbed moisture below 150 ◦C. Consequently, the designed electrothermal
CCGA can keep its working stability below 150 ◦C.
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3.6. Electric Heating Performance of CCGA

3.6.1. Electric Heating Performance of CCGA Prepared with Different Suspension Concentrations

Nano-carbon materials have excellent electrical conductivity and thermal conductivity [5–8],
as well as lightweight and good chemical stability, which could endow the CCGA with certain
advantages in the application of electrothermal materials. The infrared thermogram in Figure 9 shows
similar surface temperature distribution on the all developed electrothermal CCGA with various
concentrations during the electrification process. It can be found from Figure 9d that the electrothermal
CCGA showed similar temperature rise law to the previously reported GP or CNTs-based electrothermal
materials [42,43,64]. Under the applied power density of 2000 W m−2, all the electrothermal CCGA had
a rapid heating rate and reached the maximum steady-state temperature rise in about 500 s. Even the
concentration was as low as 3 mg mL−1, the CCGA had the similar temperature rise and heating rate,
signifying that the density of CCGA can be reduced to elevate its porosity. The similar stabilized
temperature rise existed in all electrothermal CCGA.
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It can be found in Figure 9e that there was a slight distinction among the resistance change rate of
the electrothermal CCGA. Little higher resistance change rate occurred in the electrothermal CCGA
prepared at higher concentration. When the input voltage was fixed, the lower the resistance was,
the higher power was [65]. It can be also concluded from the resistance change rate that the real
power at the running state was higher than the set power. As seen from Figure 9d, the temperature
rise was about 40 ◦C at the 7 mg mL−1, which was lower than the NFC–GP membrane under the
same power density of 2000 W m−2 [43]. However, the resistance change rate of the electrothermal
CCGA (nearly 15% at the 7 mg mL−1) was much less than that of the NFC-GP membrane (about 37%
while the addition of GP was 50 wt.%) under the same power density of 2000 W m−2 [43]. Moreover,
the resistance change rate increased rapidly in the initial with the increase of the temperature, while it
stabilized in the following process. The results illuminate that the electrothermal CCGA have relatively
stable electric heating performance.

3.6.2. Electric Heating Performance of CCGA Prepared with Different NFC Contents

Figure 10a shows the time-temperature rise relationship in the operation of the on–off power cycle
under continuous power density (500–3000 W m−2). It needed more time to reach a steady state when
applied with higher power density. There is a linear correlation between power density and temperature
rise shown in Figure 10b even incorporated with the different NFC amounts. Compared with the
previous report on the electric heating membrane [43], the temperature rise of the electrothermal CCGA
with 80 wt.% NFC was as low as 62.0 ◦C under the high power density of 3000 W m−2.

As seen in Table 3, the greater the power density was applied, the higher the resistance drop rate
of the electrothermal CCGA was, indicating the positive relationship between them, as well as the
drop rate and the temperature rise. The resistance change trend is similar to previous reports [43].
Figure 10c shows the resistance drop rate will increase with the addition of NFC content. It could be
attributed to the low stability of the NFC, which has been illuminated in the above thermal analysis.
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Table 3. Maximum temperature rise and resistance drop rate of electrothermal CCGA with different
NFC contents under different power density.

Index Content of NFC
Power Density (W m−2)

500 1000 1500 2000 2500 3000

Maximum temperature rise (◦C)
40 wt.% 10.55 17.35 27.75 38.60 43.40 51.60
60 wt.% 9.85 16.75 22.95 31.80 40.45 46.80
80 wt.% 10.75 19.70 29.45 40.4 51.7 62.00

Resistance drop rate (%)
40 wt.% 3.58 7.04 9.26 11.02 11.15 12.01
60 wt.% 6.47 9.22 11.02 12.49 13.99 15.04
80 wt.% 13.36 19.55 22.85 25.84 28.07 29.43

When the set power was 1.8 W (3000 W m−2), the maximum equilibrium temperature of
electrothermal CCGA 80 was about 85.5 ◦C (room temperature 23.5 ◦C) shown in Figure 10a. The electric
heating performance of this electrothermal CCGA (the set power of 0.6 W, maximum steady-state
temperature of 43.2 ◦C) under 1000 W m−2 was close to that of the GP foam coated with Ag (0.36 W,
38.0 ◦C) [66]. Consequently, this electrothermal CCGA exhibits a relatively steady and efficient electric
heating performance. Importantly, its porous structure is conducive to enhancing its heating surface,
which endows itself with high heat exchange efficiency [23].

4. Conclusions

In this work, a porous electrothermal CCGA was presented. NFC as dispersant and
binder assembles the MWCNTs and GP to manufacture highly porous CCGA via freeze-drying.
The homogeneous surface of CCGA can be obtained by controlling ultrasonic conditions (time and



Molecules 2020, 25, 3836 12 of 15

power). Similar uniform temperature distribution existed on the surface of electrothermal CCGA with
various sonication conditions. The concentration of the NFC/MWCNTs/GP suspension determines
the density and porosity of the CCGA and slightly affects its electric heating performance. As well as
adding the amount of NFC, the resistance drop rate will increase, which results in the difference of
temperature rise of the electrothermal CCGA with different NFC amounts, especially under the high
power density. The results demonstrate that CCGA 40 has higher electric heating stability in this study.
The porous structure would be conducive to the heat exchange of electrothermal CCGA. Therefore, the
prepared porous electrothermal CCGA based on NFC can be used as a potential lightweight substrate
for efficient electrothermal devices.
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