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Abstract: Interactions between charges and dipoles inside a lipid membrane are partially screened.
The screening arises both from the polarization of water and from the structure of the electric double
layer formed by the salt ions outside the membrane. Assuming that the membrane can be represented
as a dielectric slab of low dielectric constant sandwiched by an aqueous solution containing mobile
ions, a theoretical model is developed to quantify the strength of electrostatic interactions inside
a lipid membrane that is valid in the linear limit of Poisson-Boltzmann theory. We determine the
electrostatic potential produced by a single point charge that resides inside the slab and from that
calculate charge-charge and dipole-dipole interactions as a function of separation. Our approach
yields integral representations for these interactions that can easily be evaluated numerically for any
choice of parameters and be further simplified in limiting cases.
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1. Introduction

Electrostatic interactions play a pivotal role inside and in the vicinity of every living
cell [1–3]. They make essential contributions to the structure and functioning of all major types
of biomacromolecules or biomacromolecular assemblies such as proteins, DNA, and lipid membranes.
The corresponding description and understanding of electrostatic forces on the nanometer scale faces
two major challenges. The first is the presence of salt ions in the aqueous medium, which leads to the
formation of an electric double layer in the vicinity of a charged biomacromolecule. The second is the
mismatch of the dielectric constant between the surrounding aqueous medium and the interior of a
biomacromolecule [4]. A lipid membrane illustrates both features: It can be viewed as an extended
dielectric slab that faces a salt-containing aqueous solution on each side. This introduces two length
scales, the thickness d of the dielectric slab and the Debye screening length lD, which characterizes the
bulk salt concentration.

Many studies have been carried out that address electrostatic properties inside lipid membranes.
Most of these studies are computational, based on Molecular Dynamics simulations [5–7], on implicit
solvation models [8,9], or combinations of the two [10,11]. They are able to address specific
questions like the energy cost of passing charges through the bilayer [12,13] or the interaction
between transmembrane helices [14]. There are also non-computational models based on mean-field
electrostatics [15] that are simple and thus allow to address fundamental questions such as the
nature of electrostatic interactions of asymmetric membranes [16] and in ion channels [17–21],
the electrostatic contribution to the bending stiffness of a lipid membrane [22,23], interactions of
macroions across a lipid bilayer [24–26], or the stability of charged membrane domains [27,28].
The calculation of electrostatic interactions inside lipid bilayers using non-computational methods
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often leads to analytic expressions and thus to deeper insights into the underlying physical mechanisms.
Yet, these calculations tend to be non-trivial and therefore often involve significant approximations,
including the use of linear electrostatics, the representation of biomolecules by objects of simple
symmetry [26], and the allocation of all polarization effects to the dielectric interfaces of the slab [29,30].

The present work is motivated by a study of Stillinger [31], who calculated the electrostatic
potential of a point charge at the interface between a dielectric medium of low dielectric constant εl
and a salt-containing aqueous solution of dielectric constant εw. Application of Stillinger’s result to the
interaction of two identical interfacial point charges by Hurd [32] revealed that the aqueous half-space
mediates a screened contribution and the salt-free dielectric medium a dipolar contribution to the total
interaction. Subsequent work has extended Stillinger’s approach to one or two point charges that are
located above or below a dielectric interface, separating a medium with salt from another one without
salt [33]. Here, we replace the dielectric half-space by a dielectric slab of thickness d. Indeed, a dielectric
slab that is sandwiched by a salt-containing aqueous solution is a suitable electrostatic representation
of a lipid bilayer. Our goal is to calculate the interaction between two point charges q1 and q2 and also
between two dipoles with dipole moments µ1 and µ2 that are located inside the dielectric slab, thereby
consistently accounting for the screening provided by the dielectric discontinuity and by the salt ions
in the two sandwiching media. To make the development of our model transparent, we proceed in six
steps that are illustrated in Figure 1.
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Figure 1. (a) Two interacting point charges, q1 and q2, separated by a distance r in the middle of
a dielectric slab of dielectric constant εl and thickness d. The dielectric constant of the sandwiching
media is εw. (b) Salt ions with bulk concentration n0 are present in the two sandwiching media.

(c) The two interacting charges are moved up or down so that their mutual distance is
√

d2
12 + r2 and

their distances to the dielectric interfaces are d1 and d2, with d1 + d2 + d12 = d. (d) The two charges
in diagram b are replaced by two dipoles, both located at the middle of and oriented normal to the
dielectric slab, either parallel (as shown) or anti-parallel (not shown). (e) Two dipoles as in diagram d,
yet with arbitrary orientations. (f) The two interacting dipoles shown in diagram e are jointly moved
up or down so that their distances to the dielectric interfaces are d1 and d2, with d1 + d2 = d.

We first consider the interaction between two point charges q1 and q2 that are separated by
a distance r and are located in the middle of a dielectric slab of thickness d (see Figure 1a). Next, we add
salt to the two sandwiching media (see Figure 1b) and, subsequently, allow for arbitrary locations
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of the two charges inside the dielectric slab (see Figure 1c). For the latter case, we characterize the
locations of q1 and q2 such that their horizontal separation is r and, in addition, q1 is a distance d1 away
from one interface and q2 is a distance d2 away from the other interface. The vertical distance between

the two charges is then d12 = d − d1 − d2, and their mutual distance is
√

d2
12 + r2. We recognize

that, while excess charges residing at or close to the interfacial region of a lipid bilayer are very
common (charged lipid headgroups are examples), inserting them into the hydrocarbon chain region is
associated with a high free energy cost [34,35] and is therefore not commonly encountered [36]. This is
different for dipoles. Transmembrane helices possess non-vanishing dipoles that interact with each
other [37]. We therefore exemplify the formalism developed in this work by calculating the interaction
between two dipoles inside a dielectric slab. We first consider two dipoles that are both oriented
normal to the dielectric slab and are located at the midplane (see Figure 1d). Then, we allow for
arbitrary orientations of the two dipoles (see Figure 1e). Finally, we investigate a specific asymmetric
case, where the two (arbitrarily oriented) dipoles both have the same distances d1 and d2 to the
two interfaces (see Figure 1f). Note that we do not consider the most general case of dipoles with
arbitrary location and orientation because this leads to cumbersome expressions. However, this and
other scenarios (such as higher-order multipoles) can in principle be analyzed using the formalism
developed in this work.

Our goal to derive explicit expressions for electrostatic interactions inside a lipid membrane
relies on using linearized electrostatics, which requires the magnitude of the electrostatic potential
everywhere in the salt-containing aqueous solution to be small. At physiological conditions this
commonly requires the magnitude of the electrostatic potential to not exceed 25 mV [2]. This is
problematic when considering point charges that are immersed directly into the aqueous solution.
However, in our work we focus on point charges that are located inside the dielectric slab,
which renders the use of linear electrostatics more appropriate. The same reasoning also applies
to other approximations such as the neglect of dielectric saturation and ion–ion correlations outside
the slab.

To summarize the goal of this work, we present a formalism to calculate interactions between
charges and dipoles inside a lipid bilayer, valid on the level of linearized electrostatics and leading to
integral representations that we discuss and analyze. Because of its linear nature, our method can in
principle be applied to any interacting charge or multipole distributions inside a lipid membrane.

2. Theory and Analysis

2.1. Interaction between Two Point Charges

The interaction energy between two point charges q1 and q2 that are separated by a distance r and
reside in a medium of uniform dielectric constant εl is U = q1q2/(4πε0εlr), where ε0 is the permittivity
of free space. Assume the two charges both reside in the middle between two large metal plates that
form a parallel-plate capacitor with a plate-to-plate distance d. The two plates enforce a constant
potential, which strongly screens the interaction between the two charges. For r � d, the interaction
can be approximated by the exponential screening U = αq1q2e−πr/d/(4πε0εld), where d/π serves as
the screening length and α is a numerical factor of order one [38]. In the general case (valid for any
choices of d and r), the interaction can be described by an infinite set of discrete image charges of
alternating sign and separation d. The image charges are associated with one of the two point charges
so that the other point charge interacts not only with its original partner but also with all of its images.
This gives rise to the interaction energy [38]

U =
q1q2

4πε0εl

∞

∑
n=−∞

(−1)n√
r2 + (nd)2

=
q1q2

4πε0εl

[
1
r
+ 2

∞

∑
n=1

(−1)n√
r2 + (nd)2

]
. (1)



Molecules 2020, 25, 3824 4 of 15

An alternative description of this system places the two point charges (which are separated by
a distance r) in the middle of a dielectric slab with dielectric constant εl that is sandwiched on each side
by a medium of dielectric constant εw; see Figure 1a. If εw is very large (εw → ∞), the two dielectric
interfaces act like metal plates and thus produce the same interaction as in Equation (1). In the general
case of 1 ≤ εw ≤ ∞ we merely need to adjust the strength of the image charges from −1 to the factor
w = (εl − εw)/(εl + εw). The interaction energy between the two point charges then becomes [39–41]

U =
q1q2

4πε0εl

[
1
r
+ 2

∞

∑
n=1

wn√
r2 + (nd)2

]
. (2)

An equivalent representation of Equation (2) can be obtained by making use of the identity∫ ∞
0 dkJ0(kr)e−nkd = 1/

√
r2 + (nd)2, where J0 denotes the Bessel function of the first kind and zeroth

order, and the sum 1 + 2 ∑∞
n=1 wne−nkd = (ekd + w)/(ekd − w). This gives rise to a simple integral

representation for the interaction between the two point charges inside the dielectric slab

U =
q1q2

4πε0εl

∞∫
0

dk J0(kr)

[
1 + 2

∞

∑
n=1

wne−nkd

]
=

q1q2

4πε0εl

∞∫
0

dk J0(kr)

[
ekd + w
ekd − w

]
. (3)

We conclude our analysis of the case displayed in Figure 1a by noting that, as expected,
Equation (3) reproduces the two limits U = q1q2/(4πε0εwr) for d = 0 and U = q1q2/(4πε0εlr)
for d→ ∞.

Next, as shown in Figure 1b, we identify the two outer regions of dielectric constant εw as
a medium that hosts salt of bulk concentration n0. This introduces another length scale, the Debye
length lD = (8πlBn0)

−1/2, expressed in terms of the Bjerrum length lB = e2/(4πε0εwkBT), where e is
the elementary charge, kB Boltzmann’s constant, and T the absolute temperature. The presence of the
salt ions provides for additional screening of the electrostatic interaction between the two charges q1

and q2 that are inserted in the middle of the dielectric slab. We show in Appendices A and B that within
the framework of linearized electrostatics, where the electrostatic potential Φ fulfills the equation
l2
D∇2Φ = Φ in the medium with dielectric constant εw and the equation ∇2Φ = 0 in the medium with

dielectric constant εl , the interaction energy between the two point charges q1 and q2 becomes

U =
q1q2

4πε0εl

∞∫
0

dk J0(kr)

[
εlklD cosh

(
kd
2

)
+ εw

√
1 + k2l2

D sinh
(

kd
2

)]2

εlεwklD

√
1 + k2l2

D cosh(kd) + 1
2 [ε

2
w + (ε2

l + ε2
w)k2l2

D] sinh(kd)
. (4)

We reiterate that, as illustrated in Figure 1b, the two point charges are still located in the middle
of the dielectric slab, each with distances d/2 to the two interfaces. The separation between the
two charges is r. In the limit n0 → 0, the Debye length becomes large, lD → ∞, and Equation (4)
indeed recovers the result in Equation (3). In the opposite limit, n0 → ∞, the Debye length vanishes,
lD → 0, and the two dielectric interfaces become “metallic”. Equation (4) then recovers Equation (1).
If the thickness of the dielectric slab grows very large, d → ∞, we recover the Coulomb interaction
U = q1q2/(4πε0εlr). In contrast, in the limit d = 0, the two charges are embedded in a salt-containing
medium, which produces the familiar screened Coulomb interaction

U =
q1q2

4πε0εl

∞∫
0

dk J0(kr)
(εlklD)

2

εlεwklD

√
1 + k2l2

D

=
q1q2

4πε0εw

e−r/lD

r
. (5)

In Figure 2 we show the behavior of the scaled interaction energy Ũ = (4πε0εld/q1q2)×U as
function of r/d according to Equation (4).
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Figure 2. Scaled interaction energy Ũ = (4πε0εld/q1q2)×U between two point charges q1 and q2

as function of the scaled separation r/d according to Equation (4). Different curves corresponds to:
w = −1 (red line); w = 0 and lD → ∞ (green dotted line); w = 0 and lD = d (green dashed line);
w = −78/82 and lD → ∞ (blue dotted line); w = −78/82 and lD = d (blue dashed line). The gray line
shows the approximation Ũ = e−πr/d of the red line, valid in the limit r � d [38]. Note that in all cases
the two charges are located in the middle of the dielectric slab, d1 = d2 = d/2.

The red solid line describes the interaction in the “metallic” limit w = −1, when the screening
is maximal. Recall the definition w = (εl − εw)/(εl + εw); so this corresponds to εw → ∞: The two
charges reside between two metal plates as introduced in Equation (1). We cannot carry out the
summation in Equation (1) explicitly, but the expression Ũ ≈ e−πr/d approximates the limit r � d [38],
shown as the gray solid line in Figure 2. In the other limit, w = 0, there is no dielectric mismatch
and all screening is due to the salt. This is shown by the green lines in Figure 2. The green dotted
line refers to the limit lD → ∞, where no salt is present and the interaction U ∼ r−1 is Coulombic.
The green dashed line refers to lD = d. Here, the interaction is Coulombic for small and screened for
large distances. When more salt is added, screening increases and the behavior approaches that of
the red line (the “metallic” case as in Equation (1)). The red line describes the behavior for lD → 0,
irrespective of w. We finally show one case in between the two limits w = −1 and w = 0: The two
blue lines refer to w = (2− 80)/(2 + 80) = −78/82 = −0.951, which is motivated by the typical
dielectric constants εw ≈ 80 and εl ≈ 2. The blue dotted line describes the absence of salt, lD → ∞.
Here, the interaction is Coulombic for small and large distances and screened in between. Adding salt
moves the curve towards the red line; which is shown by the blue dashed line, referring to lD = d.
This concludes our analysis of the case displayed in Figure 1b.

So far, we have considered the two point charges q1 and q2 to be located exactly in the middle of
the dielectric slab, with distances d/2 to each of the two interfaces. Next, we extend our model to the
case that q1 and q2 are located anywhere inside the dielectric slab as shown in Figure 1c. We denote
the lateral charge-to-charge distance by r, the vertical charge-to-charge distance by d12, the distance
of q1 to its nearest interface by d1, and the distance of q2 to the other interface by d2. This implies

d = d1 + d2 + d12 is the thickness of the dielectric slab, and
√

d2
12 + r2 is the charge-to-charge distance.

As we detail in Appendices A and B, we obtain for the interaction energy

U =
q1q2

4πεlε0

∞∫
0

dk J0(kr)×

×

[
εlklD cosh(kd1) + εw

√
1 + k2l2

D sinh(kd1)
]
×
[
εlklD cosh(kd2) + εw

√
1 + k2l2

D sinh(kd2)
]

εlεwklD

√
1 + k2l2

D cosh(kd) + 1
2 [ε

2
w + (ε2

l + ε2
w)k2l2

D ] sinh(kd)
. (6)
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Equation (6) is a general expression, valid within linearized electrostatics, for the interaction
energy of two point charges q1 and q2 inside a dielectric slab that is sandwiched by an electrolyte. It can
be used to derive interaction energies between more complex charge distributions as we demonstrate
below for two interacting dipoles. Equation (6) thus constitutes the primary result of the present work.

Of course, for d1 = d2 = d/2 and thus d12 = 0, Equation (6) recovers Equation (4). In the limit
n0 → 0 the Debye length becomes large, and we expect to recover the interaction energy between two
charges in a dielectric slab. We obtain from Equation (6) in the limit lD → ∞

U =
q1q2

4πεlε0

∞∫
0

dk J0(kr)
cosh[k(d1 + d2)− ln w] + cosh[k(d1 − d2)]

sinh[kd− ln w]

=
q1q2

4πεlε0

{
1√

r2 + d2
12

+ 2
∞

∑
n=2,4,...

wn√
r2 + (nd + d12)2

+
∞

∑
n=1,3,...

[
wn√

r2 + (nd + 2d1 − d)2
+

wn√
r2 + (nd + 2d2 − d)2

]}
, (7)

which indeed reproduces the interaction energy between the two charges according to the image
charge method. If the two interfaces become “metallic” (that is, in the limit εw → ∞ or lD → 0),
Equation (6) reads

U =
q1q2

2πεlε0

∞∫
0

dk J0(kr)
sinh(kd1) sinh(kd2)

sinh(kd)
. (8)

Of course, for d1 = d2 = d/2 we recover Equation (3) with w = −1, which is identical to
Equation (1). In the limit d → 0, Equation (6) recovers the screened interaction in Equation (5).
Of interest is also the case d1 = d12 = 0 and d2 → ∞, where the two interacting charges are located
at an interface between a medium of dielectric constant εl and another salt-containing medium of
dielectric constant εw. From Equation (6) we obtain

U =
q1q2

4πε0

∞∫
0

dk J0(kr)
2klD

εlklD + εw

√
1 + k2l2

D

, (9)

which recovers the result first derived by Stillinger [31]. In the limit εw � εl , Hurd [32] decomposed
Equation (9) into a screened and an unscreened dipolar contribution. The decomposition emerges
upon expanding the integrand of Equation (9) up to first order in εl/εw,

U =
q1q2

2πε0εw

 e−r/lD

r
− εl

εw

l2
D

r3

∞∫
0

dk J0(k)
k2

1 + k2 l2
D
r2

 =
q1q2

2πε0εw

(
e−r/lD

r
+

εl
εw

l2
D

r3

)
. (10)

Note that solving the integral producing the dipolar contribution in Equation (10) is based on
the additional assumption r � lD [32]. In Figure 3 we illustrate how the dipolar contribution to the
interaction emerges for two point charges that are both attached to the same interface (d1 = 0 and
d2 = d).

We consider the case w = −78/82, where there is a large dielectric mismatch between slab and
surrounding medium and display the scaled interaction energy Ũ = (4πε0εl lD/q1q2)×U between
two interface-attached point charges q1 and q2 as function of the scaled separation r/lD, calculated
according to Equation (6). The blue solid line applies to the limit d → 0, where we simply obtain
the screened Coulomb energy Ũ = (lD/r) × e−r/lD ; see Equation (5). The result obtained upon
increasing the slab thickness to d = lD is shown as blue dashed line. Because the increased slab
thickness diminishes the screening, the interaction energy increases, but it does increasingly less so
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for larger r. For sufficiently large r the interaction becomes identical to the result for d → 0, and no
dipolar contribution is present. Only in the limit d→ ∞ (blue dotted line) does a dipolar contribution
emerge for sufficiently large r, and this contribution is indeed qualitatively reproduced by Hurd’s [32]
decomposition specified in Equation (10) (shown as gray dotted line in Figure 3). The absence of a
dipolar contribution for finite d is a consequence of the slab geometry ultimately allowing screening
from both sides, irrespective of d1 and d2 (and also irrespective of d12).

∼ 1/r

∼ 1/r3

10−3 10−2 10−1 100 101 102 103
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

r/lD

Ũ

Figure 3. Scaled interaction energy Ũ = (4πε0εl lD/q1q2)×U between two point charges q1 and q2

that are both attached to the same interface (d1 = 0 and d2 = d) as function of the scaled separation r/lD

for w = −78/82. The blue lines correspond to d → ∞ (dotted line), d = lD (dashed line), and d → 0
(solid line), all calculated according to Equation (6). The gray dotted line is Hurd’s [32] decomposition
specified in Equation (10).

2.2. Interaction between Two Dipoles

As an application of the method developed in the previous section, we replace the two interacting
point charges by dipoles with dipole moment µ1 and µ2, located at and oriented normal to the
midplane (see Figure 1d). Note that a parallel orientation leads to a strictly repulsive interaction [42]
(as opposed to the antiparallel orientation which is attractive). We model a dipole by two opposite
charges, q1,2 and −q1,2, that are separated by a sufficiently small distance l, implying µ1 = q1l and
µ2 = q2l. If the two dipoles were located in a uniform medium of dielectric constant εl , the interaction
energy would be U = µ1µ2/(4πε0εlr3). The presence of the dielectric slab modifies that interaction in
the following manner

U =
−µ1µ2

4πε0εl
lim
δ→0

∞∫
0

dk J0(kr)
e−kδ k2

[
εlklD cosh

(
kd
2

)
+ εw

√
1 + k2l2

D sinh
(

kd
2

)]2

εlεwklD

√
1 + k2l2

D cosh(kd) + 1
2 [ε

2
w + (ε2

l + ε2
w)k2l2

D] sinh(kd)
. (11)

Note the similarity of Equations (11) and (4), and also note the difference of the additional factor
k2 in the integrand. This additional factor necessitates the presence of the term e−kδ in the integrand
together with the limit δ→ 0 after carrying out the integration. Appendix C details the pathway to
derive Equation (11). Let us verify the two limits of infinitely large and vanishing slab thickness. In the
limit d→ ∞ we obtain

U(r) = − µ1µ2

4πε0εl
lim
δ→0

∫ ∞

0
dk e−kδ k2 J0(kr) = − µ1µ2

4πε0εl

1
r3 lim

δ→0

2δ2 − 1
(1 + δ2)5/2 =

µ1µ2

4πε0εl

1
r3 , (12)
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and the limit d→ 0 yields

U(r) = − µ1µ2

4πε0εw
lim
δ→0

∫ ∞

0
dk e−kδ k

√
k2 + l−2

D J0(kr) =
µ1µ2

4πε0εw

1
r3

(
1 +

r
lD

)
e−r/lD . (13)

Both expressions agree with the familiar interaction between two dipoles that are aligned in
one plane and are oriented perpendicular to the direction that connects them, one in the absence
(Equation (12)) and the other in the presence (Equation (13)) of salt. The scaled interaction energy
Ũ = (4πε0εld3/µ1µ2)×U between two dipoles placed at the middle of the dielectric slab is displayed
in Figure 4 according to Equation (11) as function of the scaled separation r/d.

w = 0

w = −0.5

w = −1

100 101
10−5

10−4

10−3

10−2

10−1

100

101

r/d

Ũ

Figure 4. Scaled interaction energy Ũ = (4πε0εld3/µ1µ2)×U between two dipoles as function of the
scaled separation r/d, calculated according to Equation (11). The green dotted line refers to w = 0 and
lD → ∞, the green dashed line to w = 0 and lD = d, the blue dotted line to w = −0.5 and lD → ∞,
and the blue dashed line to w = −0.5 and lD = d. The “metallic” case (lD → 0) is shown by the red
line, which is independent of w.

The green dotted line shows Ũ for w = 0 and lD → ∞. In this case, with no dielectric mismatch
and no salt, the interaction is just Ũ = (d/r)3. Adding salt, with lD = d while keeping w = 0,
introduces some screening and thus lowers the interaction when r is sufficiently large, as is shown
by the green dashed line in Figure 4. Note that the ∼ r−3 behavior persists for small r and for large r,
the latter with a reduced magnitude due to the screening. The limit of adding an infinite amount of salt
(lD → 0) is shown by the red line. This is the case of maximal screening (the “metallic” case), the same
as if the two dipoles resided in between two metal plates. We have also calculated the same scenario
(progressing from no salt to the hypothetical limit of an infinite amount of salt) for w = −0.5, which
is shown by the blue dotted line (for lD → ∞) and by the blue dashed line (for lD → d). Here too,
the scaling in all cases is Ũ ∼ r−3, both for small and large r. For non-vanishing dielectric mismatch or
any non-vanishing salt content, Ũ will transition into the “metallic” case (the red line) for sufficiently
large r.

Next, we allow the two dipoles to adopt arbitrary orientations while still being located at the
midplane of the dielectric slab, as shown in Figure 1e. We characterize the orientation of the first dipole
by its angle θ1 with respect to the r-direction (that is, the horizontal direction, parallel to the slab) and
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the azimuthal angle φ1. Angles θ2 and φ2 are introduced analogously for the second dipole. With this,
the dipole–dipole interaction energy becomes

U =
µ1µ2

4πε0εl
lim
δ→0

∞∫
0

dk
{

kJ0(kr) [cos θ1 cos θ2 − cos(φ1 − φ2) sin θ1 sin θ2]−
J1(kr)

r
cos θ1 cos θ2

}
×

×
e−kδ k

[
εlklD cosh

(
kd
2

)
+ εw

√
1 + k2l2

D sinh
(

kd
2

)]2

εlεwklD

√
1 + k2l2

D cosh(kd) + 1
2 [ε

2
w + (ε2

l + ε2
w)k2l2

D] sinh(kd)
. (14)

In Appendix D we sketch the derivation of Equation (14). Obviously, Equation (11) is recovered
from Equation (14) for θ1 = θ2 = π/2 and φ1 = φ2. In the limit d→ ∞ we obtain from Equation (14)

U =
µ1µ2

4πε0εl

1
r3 [cos(φ1 − φ2) sin θ1 sin θ2 − 2 cos θ1 cos θ2] , (15)

which is identical to the familiar interaction energy U = [~µ1 ·~µ2 − 3(~µ1 ·~e12) · (~µ2 ·~e12)]/(4πε0εlr3)

of two dipoles with moments µ1 and µ2, and orientations ~µ1 = µ1{sin θ1 cos φ1, sin θ1 sin φ1, cos θ1}
as well as ~µ2 = µ2{sin θ2 cos φ2, sin θ2 sin φ2, cos θ2}, where ~e12 = {0, 0, 1} is a unit vector pointing
from one to the other dipole [43]. In the other limit, d → 0, Equation (14), yields the screened
dipole–dipole interaction

U(r) =
µ1µ2

4πε0εw

1
r3

(
1 +

r
lD

)
e−r/lD [cos(φ1 − φ2) sin θ1 sin θ2 − 2 cos θ1 cos θ2] . (16)

Our final result is for the interaction of two dipoles, with moments µ1 and µ2, of arbitrary
orientation, again characterized by the angles θ1 and φ1 for the first and θ2 and φ2 for the second dipole.
The dipoles reside inside the dielectric slab, both with distances d1 and d2 to the two interfaces (see
Figure 1f). In this case the interaction energy is

U =
µ1µ2

4πε0εl
lim
δ→0

∞∫
0

dk
{

kJ0(kr) [cos θ1 cos θ2 − cos(φ1 − φ2) sin θ1 sin θ2]−
J1(kr)

r
cos θ1 cos θ2

}
×

× e−kδ k (17)

×

[
εlklD cosh(kd1) + εw

√
1 + k2l2

D sinh(kd1)
]
×
[
εlklD cosh(kd2) + εw

√
1 + k2l2

D sinh(kd2)
]

εlεwklD

√
1 + k2l2

D cosh(kd) + 1
2 [ε

2
w + (ε2

l + ε2
w)k2l2

D] sinh(kd)
.

Note that Equation (17) is still not the most general expression for two interacting dipoles inside
a dielectric slab because we require both dipoles have the same distances to the two interfaces (see
Figure 1f). Writing down the most general result is possible but the expression appears cumbersome
and is thus not included in this work.

3. Conclusions

In the present work we have calculated the electrostatic interaction between two point charges
and between two dipoles placed inside a lipid membrane. Generalizing previous works for a single
interface [31–33], we have modeled the membrane as a dielectric slab of finite thickness immersed
in an aqueous solution containing monovalent anions and cations. Based on the linearized form of
the Poisson–Boltzmann approach (known as the Debye-Hückel model), we have formulated integral
representations for interacting point charges located at arbitrary positions inside the dielectric slab.
The resulting expression, Equation (6) (the main result of this work), bears the interplay between the
mismatch in dielectric constants and the screening promoted by the polarization of the electrolyte.
We have discussed limiting cases where analytic solutions are available and investigated some of the
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behaviors between these limiting cases numerically. We have also used our integral representation
of the electrostatic potential produced by a single point charge inside the dielectric slab to describe
the interaction between arbitrarily oriented dipoles. This too leads to an integral representation
of the interaction. More complex cases, such as interacting charge distributions or interacting
electric multipoles, can, in principle, also be investigated using the linear formalism employed in
this work. Another extension is the addition of mobile surface charges (located at the two interfaces),
which represent charged lipid headgroups. If mobile, they will give rise to yet another polarization
mechanism [44] that complements the two investigated in the present work.

We reiterate the key assumption that allows us to derive Equation (6) is the use of linear
electrostatics, which becomes valid in the limit of small electrostatic potentials everywhere inside
the aqueous solution. This neglects all non-linear effects, including the ion size, dielectric saturation
and (as always for mean-field models) ion-ion correlations. However, the location of the point
charges in our model inside the dielectric slab renders the use of linear electrostatics a much better
approximation than their placement into the salt-containing aqueous solution. It is, nevertheless,
in principle possible to consider the inclusion of previously developed models for electrolytes of higher
ion concentrations [45–47] or dielectric media that allow for field-dependent saturation effects [48–51]
into the current formalism.
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Appendix A

This appendix details the calculation of the electrostatic potential Φ for a the presence of one
single point charge q located inside the dielectric slab. As the system is cylindrically symmetric, it is
convenient to place a cylindrical coordinate system {r, φ, z} at the location of the point charge q as
shown in Figure A1.

w
ε

l
ε

ε
w

d1

d2

z

r
2

3

4
Φ

1
Φ

Φ

Φ

Figure A1. The origin of a cylindrical coordinate system {r, φ, z} is placed at the location of a point
charge q, with distances d1 and d2 away from the two interfaces of the dielectric slab, which has a
thickness d = d1 + d2. The dielectric constant inside the dielectric slab is εl , that inside the sandwiching
media is εw. We denote the electric potential in the region z > d1 by Φ1, that in the region d1 > z > 0
by Φ2, that in the region 0 > z > −d2 by Φ3, and that in the region −d2 > z > by Φ4. Salt is present in
the two sandwiching media with bulk concentration n0.

Note that the electrostatic potential Φ = Φ(r, z) is independent of the azimuthal angle φ.
We divide the system into four regions along the z-axis and—as illustrated in Figure A1—denote the
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electrostatic potential by Φ1 = Φ1(r, z) for z > d1, by Φ2 = Φ2(r, z) for d1 > z > 0, by Φ3 = Φ3(r, z)
for 0 > z > −d2, and by Φ4 = Φ4(r, z) for −d2 > z. These potentials satisfy the differential equations
l2
D∇2Φ1 = Φ1, ∇2Φ2 = 0, ∇2Φ3 = 0, and l2

D∇2Φ4 = Φ4 and the boundary conditions

εw

(
∂Φ1

∂z

)
z=d1

− εl

(
∂Φ2

∂z

)
z=d1

= 0, εl

(
∂Φ2

∂z

)
z=0
− εl

(
∂Φ3

∂z

)
z=0

= − q
ε0

δ(r),

εl

(
∂Φ3

∂z

)
z=−d2

− εw

(
∂Φ4

∂z

)
z=−d2

= 0. (A1)

where δ(r) denotes the Dirac delta function [52]. At z → ±∞ the corresponding potential vanishes.
Continuity of the electrostatic potential demands Φ1(r, z = d1) = Φ2(r, z = d1), Φ2(r, z = 0) =

Φ3(r, z = 0), and Φ3(r, z = −d2) = Φ4(r, z = −d2). We express the solution of the differential
equations in the four regions as

Φ1(r, z) =
1

2π

∞∫
0

dk k J0(kr)A1e−
√

k2+l−2
D z, Φ2(r, z) =

1
2π

∞∫
0

dk k J0(kr)
(

A2ekz + A3e−kz
)

,

Φ3(r, z) =
1

2π

∞∫
0

dk k J0(kr)
(

A4ekz + A5e−kz
)

, Φ4(r, z) =
1

2π

∞∫
0

dk k J0(kr)A6e
√

k2+l−2
D z. (A2)

The three boundary and three continuity conditions specified above fully determine the six
constants Ai = Ai(k) with i = 1 . . . 6.

Appendix B

We demonstrate how the interaction energy U between two charges q1 and q2 is determined from
the potential Φ calculated for one single charge, either q1 or q2. Assume the two charges reside at
positions r1 and r2 somewhere in the system; Figure A2a displays them inside the dielectric slab.

Φ
2Φ

1q1
q1

(c)(a) (b)

q2
q2

Φ

Figure A2. Diagram (a) Two point charges, q1 and q2 located inside a lipid membrane produce an
electrostatic potential Φ. Diagram (b) We remove the charge q2 and denote the potential due to the
presence of the remaining charge q1 by Φ1. Diagram (c) We remove the charge q1 and denote the
potential due to the presence of the remaining charge q2 by Φ2.

The mean-field free energy F of the system according to linearized Poisson–Boltzmann theory is
given by

F =
ε0εl

2

∫
l

dv(∇Φ)2 +
ε0εw

2

∫
w

dv(∇Φ)2 + kBT
∫
w

dv
[
(n+ − n0)

2

2n0
+

(n− − n0)
2

2n0

]
. (A3)

Here, the first term is the energy of the electrostatic field inside the dielectric slab (region “l”,
where the dielectric constant is εl), the second term is the energy of the electrostatic field inside the
aqueous solution (region “w”, where the dielectric constant is εw), and the third term is the demixing
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entropy of the salt ions on the level of the linearized Poisson–Boltzmann theory, expressed in terms
of the local cation and anion concentrations, n+ and n−, respectively. Moreover, recall that n0 is
the bulk salt concentration. Subject to the electrostatic potential Φ fulfilling the Laplace equation
∇2Φ = 0 inside the dielectric slab and the linearized Poisson–Boltzmann equation l2

D∇2Φ = Φ inside
the aqueous solution, minimization of F with respect to n+ and n− yields the equilibrium distributions
n+ = n0(1− eΦ/kBT) and n− = n0(1 + eΦ/kBT), which, when inserted back into Equation (A3),
gives rise to

F =
ε0εl

2

∫
l

dv(∇Φ)2 +
ε0εw

2

∫
w

dv

[
(∇Φ)2 +

1
l2
D

Φ2

]
=

q1

2
Φ(r1) +

q2

2
Φ(r2). (A4)

Next, assume we remove q2 (Figure A2b) and denote the remaining potential due to the presence
of q1 by Φ1(r). Similarly, we may remove q1 (Figure A2c) and denote the remaining potential due to the
presence of q2 by Φ2(r). Linearity of our model renders the potential of the composite system (where
both q1 and q2 are present) the sum of the potentials for the individual charges, Φ(r) = Φ1(r) + Φ2(r).
Inserting this into Equation (A4) yields the self energies q1Φ1(r1)/2 + q2Φ2(r2)/2 and the interaction
energy q1Φ2(r1)/2 + q2Φ1(r2)/2. According to Green’s reciprocity relation [38], both terms in the
interaction energy are the same, implying we can calculate the interaction energy either by q1Φ2(r1) or
q2Φ1(r2). This is indeed how we calculate the interaction energy in Equation (4) from the potential Φ
in Appendix A.

Appendix C

We describe our method to calculate the dipole–dipole interaction energy in Equation (11).
However, instead of presenting the formalism for the general case (which leads to cumbersome
expressions), we focus on the limit d→ ∞, which corresponds to a single salt-free medium of dielectric
constant εl . The interaction energy is then very simple, U = µ1µ2/(4πε0εlr3), and our method of
derivation is transparent and translates analogously to the case where a dielectric slab is present.
We start from the electrostatic potential produced by a single charge q1, located at the origin of our
cylindrical coordinate system

Φ(r, z) =
q1

4πε0εl

∞∫
0

dk J0(kr)e−|k|z =
q1

4πε0εl

1√
r2 + z2

. (A5)

The interaction between two dipoles that are aligned along the z-direction and separated by a
distance r is

U = 2q2 [Φ(r, 0)−Φ(r, l)] =
q1q2

2πε0εl

∞∫
0

dk J0(kr)
(

1− e−kl
)

, (A6)

where l > 0 must be sufficiently small. The expansion of the integrand in Equation (A6) with respect
to small l must be carried out carefully because k runs from zero to infinity. Hence, we replace l by
l + δ (with δ > 0) and, prior to taking the limit δ→ 0, we perform a series expansion with respect to l
up to second order and carry out the integral. This yields

U =
q1q2

2πε0εl
lim
δ→0

∞∫
0

dk J0(kr)
[
1− e−kδ

(
1− kl + k2l2

)]
. (A7)

The integrals of zeroth and first order in l vanish, and for the second order we obtain Equation (12).
The same method can be applied when the dielectric slab is present, which leads to Equation (11).
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Appendix D

As already in Appendix C, we find it most instructive to present the interaction between the
dipoles, which now can have arbitrary orientation, for the case of a uniform, salt-free medium
of dielectric constant εl . This corresponds to the limit d → ∞ in Equation (14). We consider the
four vectors

~rij =

xij
yij
zij

 =

0
0
r

+
l
2

(−1)i+1

sin θ1 cos φ1

sin θ1 sin φ1

cos θ1

+ (−1)j

sin θ2 cos φ2

sin θ2 sin φ2

cos θ2


 (A8)

that connect each end of one dipole to each end of the other, with i = 1, 2 and j = 1, 2. The interaction
energy between the two dipoles can then be written as

U =
q1q2

4πε0εl

2

∑
i=1

2

∑
j=1

(−1)i+j√
z2

ij + x2
ij + y2

ij

=
q1q2

4πε0εl

∞∫
0

dk
2

∑
i=1

2

∑
j=1

(−1)i+j J0(kzij)e
−k
√

x2
ij+y2

ij . (A9)

Expanding the integrand with respect to l leads (up to quadratic order) to

U =
q1q2l2

4πε0εl
lim
δ→0

∞∫
0

dk k e−kδ

{
kJ0(kr) [cos θ1 cos θ2 − cos(φ1 − φ2) sin θ1 sin θ2]−

J1(kr)
r

cos θ1 cos θ2

}
. (A10)

Noting the two integrals

lim
δ→0

∞∫
0

dk k e−kδ J1(k) = 1, lim
δ→0

∞∫
0

dk k2 e−kδ J0(k) = −1, (A11)

and inserting the dipole moments µ1 = q1l as well as µ2 = q2l, the interaction energy U in
Equation (A10) becomes identical to Equation (15).
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