SUPPORTING INFORMATION

Design of Curcumin and Flavonoid Derivatives with Acetylcholinesterase and Beta-Secretase Inhibitory Activities Using in Silico Approaches

Thai-Son Tran ^{1,2,†}, Minh-Tri Le ^{1,3,*,†} Thanh-Dao Tran ¹, The-Huan Tran ² and Khac-Minh Thai ^{1,*}

- ¹ Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; ttson@huemed-univ.edu.vn_or tranthaison.hcmp@gmail.com (T-S.T.); tranthanhdao@uphcm.edu.vn (T-D.T.)
- ² Department of Pharmaceutical Chemistry, Faculty of Pharmacy, College of Medicine and Pharmacy, Hue University, Hue City 530000, Vietnam; tthuan@hueuni.edu.vn
- ³ School of Medicine, Vietnam National University Ho Chi Minh City, 700000 Ho Chi Minh City, Vietnam
- * Correspondence: leminhtri1099@gmail.com or leminhtri@ump.edu.vn (M-T.L.) and thaikhacminh@gmail.com or thaikhacminh@uphcm.edu.vn (K-M.T.); Tel.: +84-28-3855-2225 or +84-909-680-385 (K-M.T.); +84-903-718-190 (M-T.L.); Fax: +84-28-3822-5435 (K-M.T.)
- ⁺ These authors contributed equally to this work.

Table S1. Pharmacophore model validation by goodness-of-hit score (GH) score method (AChE)

Table S2. Pharmacophore model validation by goodness-of-hit score (GH) score method (BACE-1)

Table S3. Dataset of 72 compounds used in the building of 2D-QSAR model for AChE inhibitors

Table S4. Dataset of 215 compounds used in the building of 2D-QSAR model for BACE-1 inhibitors

Table S5. List of 2D molecular descriptors computed using MOE 2008.10 software

- Table S6. Re-docking results (RMSD values in Å)
- **Table S7.** Results of Molecular Docking of Curcumins

Table S8. Results of Molecular Docking of 45 Screened Flavonoids

Table S9. Predicted pIC₅₀ of screened substances against AChE and BACE-1

Table S10. Structures of 47 screened substances

No.	Parameter	Pharmacophore Model												
		A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13
1	Total molecules in database (D)	27024	27024	27024	27024	27024	27024	27024	27024	27024	27024	27024	27024	27024
	Total number of													
2	actives in database (A)	655	655	655	655	655	655	655	655	655	655	655	655	655
3	Total hits (Ht)	914	1158	1115	1246	1121	1005	1269	882	1223	920	1367	945	944
4	Active Hits (Ha)	524	523	303	256	310	302	302	275	489	287	471	253	254
5	%Yield of actives [(Ha/Ht)x100]	57.33	45.16	27.17	20.55	27.65	30.05	23.80	31.18	39.98	31.20	34.46	26.77	26.91
6	%Ratio of actives [(Ha/A) x 100]	80.00	79.85	46.26	39.08	47.33	46.11	46.11	41.98	74.66	43.82	71.91	38.63	38.78
7	Enrichment factor (E), [(Ha x D)/ (Ht x A)]	23.65	18.63	11.21	8.48	11.41	12.40	9.82	12.86	16.50	12.87	14.22	11.05	11.10
8	False nagatives [A-Ha]	131	132	352	399	345	353	353	380	166	368	184	402	401
9	False positives [Ht-Ha]	390	635	812	990	811	703	967	607	734	633	896	692	690
10	Goodness of hit score (GH)*	0.62	0.53	0.31	0.24	0.32	0.33	0.28	0.33	0.47	0.34	0.42	0.29	0.29

Table S1. Pharmacophore model validation by goodness-of-hit score (GH) score method (AChE)

 $\label{eq:constraint} \ensuremath{\left[(\mathrm{Ha}/4\mathrm{HtA})(\mathrm{3A}+\mathrm{Ht})~x~(\mathrm{1}-(\mathrm{Ht}-\mathrm{Ha})/(\mathrm{D}-\mathrm{A}))\right]}; \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{SH}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{$

N	D (Pharn	nacophore n	nodels				
No.	Parameters	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
1	Total molecules in database (D)	18653	18653	18653	18653	18653	18653	18653	18653	18653	18653	18653
	Total number of											
2	actives in database	436	436	436	436	436	436	436	436	436	436	436
	(A)											
3	Total hits (Ht)	438	964	876	895	833	801	644	1021	685	812	977
4	Active Hits (Ha)	305	221	284	237	190	304	241	277	229	278	280
5	%Yield of actives [(Ha/Ht)x100]	69.63	22.93	32.42	26.48	22.81	37.95	37.42	27.13	33.43	34.24	28.66
6	%Ratio of actives [(Ha/A) x 100]	69.95	50.69	65.14	54.36	43.58	69.72	55.28	63.53	52.52	63.76	64.22
	Enrichment factor											
7	(E), [(Ha x D)/ (Ht x A)]	29.79	9.81	13.87	11.33	9.76	16.24	16.01	11.61	14.30	14.65	12.26
8	False nagatives	131	215	152	199	246	132	195	159	207	158	156
9	False positives [Ht-Ha]	133	743	592	658	643	497	403	744	456	534	697
10	Goodness of hit score (GH)*	0.69	0.29	0.39	0.32	0.27	0.45	0.41	0.35	0.37	0.40	0.36

 Table S2. Pharmacophore model validation by goodness-of-hit score (GH) score method (BACE-1)

 $\label{eq:constraint} \ensuremath{\left[(\mathrm{Ha}/4\mathrm{HtA})(\mathrm{3A}+\mathrm{Ht})~x~(\mathrm{1}-(\mathrm{Ht}-\mathrm{Ha})/(\mathrm{D}-\mathrm{A}))\right]}; \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{SH}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{GH}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{0.5ex} \ensuremath{\mathrm{Ht}}\xspace{$

No.	Name	pIC ₅₀	predicted pIC ₅₀
1	CHEMBL3133246	5.45	5.21
2	CHEMBL2296124	4.33	4.26
3	CHEMBL237223	4.59	4.72
4	CHEMBL2334727	4.72	4.60
5	CHEMBL3617370	4.51	4.42
6	CHEMBL3617380	4.49	4.46
7	CHEMBL2334728	4.24	4.28
8	CHEMBL416526	4.94	4.73
9	CHEMBL2393074	4.75	4.90
10	CHEMBL2385772	4.48	4.73
11	CHEMBL253386	5.49	5.22
12	CHEMBL3617382	4.63	4.52
13	CHEMBL3125443	4.90	4.67
14	CHEMBL3617375	4.28	4.49
15	CHEMBL3127216	4.84	4.70
16	CHEMBL3617367	4.38	4.27
17	CHEMBL457684	4.78	4.48
18	CHEMBL340807	4.80	4.66
19	CHEMBL2334726	4.49	4.55
20	CHEMBL659	5.62	5.42
21	CHEMBL2334730	4.64	4.78
22	CHEMBL3133247	4.81	5.07
23	CHEMBL517342	4.19	4.38
24	CHEMBL2296125	4.46	4.37
25	CHEMBL3617393	4.47	4.24
26	CHEMBL3617388	4.45	4.47
27	CHEMBL2385773	4.83	4.61
28	CHEMBL2385777	4.34	4.58
29	CHEMBL3127219	4.92	4.75
30	CHEMBL3127043	4.98	4.97
31	CHEMBL1269160	4.57	4.42
32	CHEMBL2334725	4.70	4.76
33	CHEMBL1270150	4.73	4.81
34	CHEMBL500712	4.40	4.21
35	CHEMBL2334736	4.72	4.83
36	CHEMBL2018160	4.63	4.48
37	CHEMBL2334737	4.71	4.61
38	CHEMBL269538	4.19	4.49
39	CHEMBL3617397	4.52	4.32

Table S3. Dataset of 72 compounds used in the building of 2D-QSAR model for AChE inhibitors

40	CHEMBL2334745	4.49	4.70
41	CHEMBL2296112	4.25	4.44
42	CHEMBL3617381	4.49	4.53
43	CHEMBL3133250	4.29	4.63
44	CHEMBL12014	4.23	4.50
45	CHEMBL3617372	4.26	4.44
46	CHEMBL3133243	4.97	5.10
47	CHEMBL510090	4.72	4.82
48	CHEMBL2385771	4.30	4.56
49	CHEMBL2296117	4.18	4.13
50	CHEMBL3127217	4.99	4.86
51	CHEMBL2334738	4.69	4.66
52	CHEMBL2296113	4.21	4.40
53	CHEMBL2381433	4.58	4.53
54	CHEMBL3132866	4.98	5.01
55	CHEMBL2385768	4.75	4.66
56	CHEMBL2385780	4.88	4.68
57	CHEMBL2334739	4.52	4.35
58	CHEMBL3133245	5.36	5.17
59	CHEMBL1270255	5.01	5.24
60	CHEMBL3133248	4.66	4.90
61	CHEMBL3617362	4.22	4.42
62	CHEMBL2381434	4.67	4.49
63	CHEMBL1535235	4.61	4.53
64	CHEMBL129177	4.47	4.70
65	CHEMBL2385784	4.53	4.76
66	CHEMBL2385779	4.42	4.23
67	CHEMBL3617396	4.39	4.26
68	CHEMBL1085869	5.67	5.51
69	CHEMBL2334747	4.51	4.56
70	CHEMBL2385766	4.35	4.57
71	CHEMBL463856	4.33	4.26
72	CHEMBL2334732	4.86	4.81

No.	Name	pIC ₅₀	Predicted pIC ₅₀
1	BMC-2009-3671-17	6.92	7.02
2	BMC-2004-247-8	6.46	6.57
3	BMC-2007-1023-8	8.30	7.97
4	JMC-2012-27-30	5.49	5.65
5	BMC-2004-248-21	7.17	6.96
6	BMC-2009-3675-11	7.96	8.19
7	BMC-2009-3671-20	6.82	7.33
8	BMC-2009-3677-26	7.49	7.93
9	BMC-2008-1019-14	6.26	6.86
10	BMC-2014-2038-39	7.74	7.51
11	BMC-2013-4677-30	6.83	6.54
12	BMC-2004-248-19	7.37	6.74
13	BMC-2013-4677-37	5.88	6.33
14	BMC-2013-4241-10	6.46	6.45
15	BMC-2014-2036-24	7.49	8.02
16	BMC-2013-4675-7	7.35	6.70
17	BMC-2009-3667-16	7.72	7.63
18	BMC-2014-2039-43	7.28	7.39
19	EODD-2013-723-102	6.62	6.99
20	JMC-2012-26-15	5.00	5.15
21	JMC-2012-27-37	5.70	5.84
22	EODD-2013-718-42c	8.00	8.56
23	JMC-2012-9013-24	7.11	7.90
24	BMC-2014-2041-65	6.24	6.08
25	BMC-2008-1021-30	6.48	7.12
26	BMC-2009-3672-21	8.10	7.85
27	JMC-2012-9013-26	7.58	7.52
28	EODD-2013-720-53	6.82	7.20
29	BMC-2008-1021-31	6.64	6.66
30	BMC-2008-1021-28	7.08	6.58
31	JMC-2012-27-41	6.20	6.58
32	BMC-2009-3675-7	8.40	8.17
33	BMC-2009-3673-39	7.70	7.35
34	BMC-2014-2042-71	6.62	6.31
35	EODD-2013-713-11	7.55	7.25
36	BMC-2009-3672-27	7.04	7.46
37	BMC-2014-2042-90	8.07	7.85
38	EODD-2013-719-48	8.48	8.21
39	JMC-2012-27-47	6.49	6.45

Table S4. Dataset of 215 compounds used in the building of 2D-QSAR model for BACE-1 inhibitors

40	BMC_2014-2042-81	7.60	8.12
41	BMC-2009-3665-4	8.04	7.43
42	BMC-2009-3673-36	7.64	7.69
43	BMC-2013-4676-17	6.93	7.33
44	BMC-2014-2038-41	7.70	7.60
45	BMC-2013-4677-38	6.07	6.44
46	BMC-2009-3667-20	7.47	7.71
47	EODD-2013-720-58	7.70	7.39
48	JMC-2012-26-24b	6.20	5.74
49	BMC-2014-2036-23	7.70	7.56
50	BMC-2013-4677-53	7.05	7.14
51	BMC-2007-1023-2	6.60	7.23
52	BMC-2009-3667-17	7.64	7.27
53	BMC-2008-1020-23	6.22	6.37
54	BMC-2014-2041-66	6.15	6.14
55	BMC-2013-4241-4	5.99	6.39
56	BMC-2009-3673-34	7.85	7.19
57	BMC-2014-2036-17	7.32	7.35
58	BMC-2008-1020-18	6.12	5.95
59	BMC-2014-2038-37	4.66	5.00
60	BMC-2009-3672-24	8.30	7.96
61	BMC-2007-1024-18	7.40	7.93
62	BMC-2008-1020-24	6.80	6.66
63	JMC-2012-28-64	6.10	6.08
64	BMC-2014-2035-13	8.00	7.51
65	BMC-2014-2040-53	8.15	8.02
66	BMC-2009-3667-18a	7.58	7.41
67	BMC-2009-3666-10	7.64	8.03
68	JMC-2012-9010-17	8.10	7.96
69	BMC-2014-2036-20	7.11	7.79
70	EODD-2013-721-64	6.33	6.65
71	BMC-2013-4677-35	6.38	6.60
72	BMC-2009-3671-12	7.04	7.62
73	EODD-2013-718-44	8.70	8.08
74	EODD-2013-721-65	7.20	6.65
75	BMC-2013-4242-23	7.34	7.00
76	BMC-2013-4241-9	7.92	7.22
77	BMC-2014-2040-62	7.69	7.61
78	BMC-2007-1023-5	7.30	7.87
79	BMC-2004-247-9	6.26	6.30
80	EODD-2013-718-42b	8.04	8.33

01	DMC 2000 2(7(19	0.10	776
81	BMC-2007-1022 (8.10	/./0
82	BMC-2007-1023-6	8.22	8.01
83	BMC-2009-3668-25	8.22	/./8
84	EODD-2013-718-45	7.68	7.34
85	BMC-2004-246-4	6.72	6.46
86	BMC-2013-4241-14	7.51	7.15
87	BMC-2009-3667-19	7.55	7.59
88	BMC-2007-1025-22	8.22	7.68
89	EODD-2013-716-31	8.70	8.27
90	BMC-2014-2042-85	6.53	7.06
91	BMC-2007-1023-11	8.30	8.05
92	BMC-2009-3671-16	7.58	8.09
93	BMC-2014-2039-42	7.08	7.22
94	BMC-2009-3666-11	7.74	8.32
95	BMC-2014-2038-40	7.70	7.27
96	BMC-2004-248-13	6.68	7.04
97	BMC-2014-2039-47	7.57	7.82
98	BMC-2009-3672-25	7.22	7.43
99	BMC-2009-3677-23	7.30	7.25
100	BMC-2009-3666-7	7.20	7.33
101	JMC-2012-28-83	5.10	5.52
102	BMC-2014-2035-14	7.70	8.20
103	BMC-2007-1023-10	8.30	8.19
104	BMC-2014-2035-15	8.00	8.16
105	BMC-2014-2036-22	7.04	6.54
106	EODD-2013-718-42a	7.89	8.20
107	BMC-2014-2042-72	7.58	7.34
108	BMC-2013-4242-24	6.43	6.98
109	BMC-2009-3672-26	8.04	7.58
110	BMC-2009-3676-21	6.60	6.71
111	BMC-2009-3677-24	7.40	7.21
112	BMC-2013-4242-20	6.92	6.62
113	BMC-2009-3675-9	8.00	7.47
114	BMC-2013-4241-5	6.26	6.22
115	JMC-2012-26-19b	5.20	5.44
116	BMC-2014-2042-87	7.31	7.24
117	BMC-2014-2042-84	6.49	7.03
118	BMC-2013-4676-19	7.38	7.76
119	BMC-2013-4241-3	5.05	5.61
120	BMC-2009-3668-27	7.40	7.26
121	BMC-2009-3677-25	7.70	7.26
$ \begin{array}{r} 100 \\ 101 \\ 102 \\ 103 \\ 104 \\ 105 \\ 106 \\ 107 \\ 108 \\ 109 \\ 109 \\ 110 \\ 111 \\ 112 \\ 113 \\ 114 \\ 115 \\ 116 \\ 117 \\ 118 \\ 119 \\ 120 \\ 121 \\ \end{array} $	BMC-2009-3666-7 JMC-2012-28-83 BMC-2014-2035-14 BMC-2007-1023-10 BMC-2014-2035-15 BMC-2014-2036-22 EODD-2013-718-42a BMC-2014-2042-72 BMC-2013-4242-24 BMC-2009-3672-26 BMC-2009-3676-21 BMC-2009-3676-21 BMC-2009-3677-24 BMC-2013-4242-20 BMC-2013-4242-20 BMC-2013-4241-5 JMC-2012-26-19b BMC-2014-2042-87 BMC-2013-4676-19 BMC-2013-4241-3 BMC-2009-3668-27 BMC-2009-3677-25	$ \begin{array}{r} 7.20 \\ 5.10 \\ 7.70 \\ 8.30 \\ 8.00 \\ 7.04 \\ 7.89 \\ 7.58 \\ 6.43 \\ 8.04 \\ 6.60 \\ 7.40 \\ 6.62 \\ 8.00 \\ 6.92 \\ 8.00 \\ 6.26 \\ 5.20 \\ 7.31 \\ 6.49 \\ 7.38 \\ 5.05 \\ 7.40 \\ 7.70 \\ \end{array} $	7.33 5.52 8.20 8.19 8.16 6.54 8.20 7.34 6.98 7.58 6.71 7.21 6.62 7.47 6.22 5.44 7.24 7.24 7.03 7.76 5.61 7.26

122	BMC-2009-3675-10	7.66	7.50
123	BMC-2007-1025-21	8.40	7.77
124	BMC-2007-1024-17	8.30	8.17
125	BMC-2004-246-5	6.89	6.25
126	BMC-2009-3676-19	7.06	7.16
127	BMC-2013-4675-4	6.24	6.39
128	BMC-2014-2041-64	6.92	6.23
129	BMC-2004-246-6	5.95	6.41
130	BMC-2013-4242-22	7.64	7.14
131	BMC-2007-1024-15	7.92	7.44
132	BMC-2013-4241-12	6.86	6.99
133	BMC-2009-3673-35	8.30	7.86
134	BMC-2008-1019-13	6.52	6.58
135	BMC-2013-4241-16	6.12	6.63
136	BMC-2014-2042-73	7.52	7.45
137	JMC-2012-27-34	5.70	5.91
138	BMC-2013-4677-36	6.65	6.43
139	BMC-2004-248-20	6.75	6.64
140	BMC-2009-3672-23	7.64	7.81
141	JMC-2012-9010-18	7.64	7.67
142	BMC-2009-3675-13	7.64	7.55
143	JMC-2012-28-65	6.30	6.03
144	BMC-2013-4241-15	7.35	7.51
145	BMC-2004-246-7	5.76	6.23
146	BMC-2013-4677-48	8.04	7.86
147	BMC-2013-4241-13	7.41	7.34
148	BMC-2013-4675-6	6.42	6.42
149	BMC-2009-3671-9	8.70	8.29
150	BMC-2009-3671-11	7.72	8.26
151	BMC-2008-1019-12	7.48	6.96
152	BMC-2008-1021-27	7.70	7.30
153	BMC-2014-2039-46	7.27	7.16
154	BMC-2014-2035-9	7.10	6.33
155	JMC-2012-9010-15	7.74	7.98
156	BMC-2007-1024-13	7.47	7.41
157	BMC-2014-2042-79	7.40	7.59
158	EODD-2013-716-32	8.40	8.23
159	BMC-2008-1021-29	7.00	7.42
160	JMC-2012-9013-25	7.48	7.95
161	BMC-2004-246-3	7.09	7.26
162	BMC-2014-2042-80	7.47	7.90

163	BMC-2004-247-10	6.46	6.20
164	JMC-2012-9013-23	7.54	8.48
165	BMC-2008-1020-26	7.85	7.24
166	BMC-2009-3667-18b	7.40	7.51
167	EODD-2013-713-12a	8.41	8.84
168	BMC-2009-3677-27	7.10	7.58
169	BMC-2004-248-14	6.68	6.49
170	BMC-2007-1024-12	6.92	6.75
171	EODD-2013-718-41	7.30	7.95
172	BMC-2009-3675-14	7.32	7.60
173	BMC-2008-1019-8	5.61	6.20
174	BMC-2008-1020-22	5.77	6.13
175	BMC-2008-1019-6	6.74	6.26
176	BMC-2009-3671-15	8.15	8.22
177	BMC-2013-4242-19	7.21	6.91
178	BMC-2014-2042-82	7.55	7.36
179	EODD-2013-721-61	6.96	7.39
180	BMC-2008-1020-16	7.40	7.28
181	BMC-2014-2042-76	8.70	8.94
182	BMC-2009-3675-5	8.30	7.93
183	BMC-2009-3675-16	7.70	7.51
184	BMC-2007-1023-9	7.96	8.00
185	BMC-2014-2042-78	7.70	7.43
186	BMC-2008-1019-7	5.95	6.35
187	BMC-2013-4675-3	6.27	6.20
188	JMC-2012-26-8b	4.60	4.57
189	EODD-2013-713-10	7.06	7.07
190	JMC-2012-26-19a	5.00	5.44
191	BMC-2014-2035-12	5.47	5.08
192	BMC-2013-4676-18	6.90	7.35
193	JMC-2012-9013-19	8.27	8.63
194	BMC-2004-248-17	7.22	6.58
195	BMC-2014-2040-54	8.22	8.06
196	BMC-2009-3671-13	7.82	7.98
197	JMC-2012-26-24a	6.00	6.04
198	BMC-2008-1020-19	7.77	7.61
199	EODD-2013-719-50	7.77	8.60
200	JMC-2012-27-54a	5.40	5.90
201	EODD-2013-717-39a	9.40	9.53
202	BMC-2007-1024-14	7.74	8.09
203	BMC-2013-4677-31	6.73	6.68

204	BMC-2009-3672-22	8.70	8.02
205	BMC-2009-3667-23	6.38	6.32
206	BMC-2013-4675-5	7.03	6.31
207	BMC-2013-4677-32	7.22	7.24
208	BMC-2014-2042-88	7.44	7.03
209	BMC-2007-1023-7	8.52	7.97
210	JMC-2012-26-8a	4.79	4.94
211	JMC-2012-9013-22	7.69	8.31
212	BMC-2013-4241-18	7.02	6.58
213	BMC-2014-2042-75	8.00	8.54
214	JMC-2012-9010-16	7.45	8.05
215	BMC-2007-1024-16	8.10	7.53

are
aı

Code of descriptor	Description		
Physical Properties Descript	tors		
	Sum of the atomic polarizabilities (including implicit hydrogens) with		
apoi	polarizabilities taken from [CRC 1994].		
	Sum of the absolute value of the difference between atomic polarizabilities of all		
bpol	bonded atoms in the molecule (including implicit hydrogens) with polarizabilities		
-	taken from [CRC 1994].		
density	Molecular mass density: Weight divided by vdw vol (amu/Å ³).		
FCharge	Total charge of the molecule (sum of formal charges).		
	Molecular refractivity (including implicit hydrogens). This property is calculated		
mr	from an 11 descriptor linear model [MREF 1998] with $r^2 = 0.997$, RMSE = 0.168 on		
	1,947 small molecules.		
	Molecular refractivity (including implicit hydrogens). This property is an atomic		
	contribution model [Crippen 1999] that assumes the correct protonation state		
SMR	(washed structures). The model was trained on ~7000 structures and results may vary		
	from the mr descriptor.		
XX7 · 1 /	Molecular weight (including implicit hydrogens) in atomic mass units with atomic		
Weight	weights taken from [CRC 1994].		
	Log of the octanol/water partition coefficient (including implicit hydrogens). This		
logP(o/w)	property is calculated from a linear atom type model [LOGP 1998] with $r^2 = 0.931$,		
2 ()	RMSE = 0.393 on 1,827 molecules.		
1 0	Log of the aqueous solubility (mol/L). This property is calculated from an atom		
logS	contribution linear atom type model [Hou 2004] with $r^2 = 0.90$, ~1,200 molecules.		
	Indicator of the presence of reactive groups. A non-zero value indicates that the		
	molecule contains a reactive group. The table of reactive groups is based on the		
reactive	Oprea set [Oprea 2000] and includes metals, phospho-, N/O/S-N/O/S single bonds,		
	thiols, acyl halides, Michael Acceptors, azides, esters, etc.		
	Log of the octanol/water partition coefficient (including implicit hydrogens). This		
	property is an atomic contribution model [Crippen 1999] that calculates logP from		
SlogP	the given structure; i.e., the correct protonation state (washed structures). Results		
C	may vary from the logP(o/w) descriptor. The training set for SlogP was ~7000		
	structures.		
	Polar surface area (Å ²) calculated using group contributions to approximate the polar		
TPSA	surface area from connection table information only. The parameterization is that of		
	Ertl et al. [Ertl 2000].		
vdw_vol	van der Waals volume (Å ³) calculated using a connection table approximation.		
rudru onoo	Area of van der Waals surface (Å ²) calculated using a connection table		
vuw_alea	approximation.		
Subdivided Surface Areas D	Descriptors		
The Subdivided Surface Area	s are descriptors based on an approximate accessible van der Waals surface area (in		
Å ²) calculation for each atom,	v_i along with some other atomic property, p_i . The v_i are calculated using a connection		
table approximation. Each des	scriptor in a series is defined to be the sum of the v_i over all atoms <i>i</i> such that p_i is in a		
specified range (a,b).			
In the descriptions to follow,	L_i denotes the contribution to logP(o/w) for atom <i>i</i> as calculated in the SlogP descriptor		
[Crippen 1999]. R _i denotes the contribution to Molar Refractivity for atom i as calculated in the SMR descriptor			
[Crippen 1999]. The ranges were determined by percentile subdivision over a large collection of compounds.			
SlogP_VSA0	Sum of v_i such that $L_i \leq -0.4$.		
SlogP_VSA1	Sum of v_i such that L_i is in (-0.4,-0.2].		
SlogP_VSA2	Sum of v_i such that L_i is in (-0.2,0].		
SlogP_VSA3	Sum of v_i such that L_i is in (0,0.1].		
SlogP_VSA4	Sum of v_i such that L_i is in (0.1,0.15].		
SlogP_VSA5	Sum of v_i such that L_i is in (0.15,0.20].		
SlogP_VSA6	Sum of v_i such that L_i is in (0.20,0.25].		

SlogP_VSA7	Sum of v_i such that L_i is in (0.25,0.30].					
SlogP_VSA8	Sum of v_i such that L_i is in (0.30,0.40].					
SlogP VSA9	Sum of v_i such that $L_i > 0.40$.					
SMR VSA0	Sum of v_i such that R_i is in [0,0.11].					
SMR VSA1	Sum of v_i such that R_i is in $(0.11, 0.26]$.					
SMR_VSA2	Sum of v_i such that R_i is in (0.26.0.35].					
SMR_VSA3	Sum of v_i such that R_i is in (0.35.0.39].					
SMR_VSA4	Sum of v_i such that R_i is in (0.39.0.44]					
SMR_VSA5	Sum of y_i such that R_i is in (0.44.0.485]					
SMR_VSA6	Sum of v_i such that R_i is in (0.485.0.56]					
SMR_VSA7	Sum of v_i such that $R_i > 0.56$					
Atom Counts and Bond Cou	Sum of v_l such that $R_l > 0.50$.					
Z denotes the <i>atomic number</i>	of an atom: lone pair pseudo-atoms (I P) are given an atomic number of 0 Hegun					
atoms are stoms that have an	atomic number strictly greater than 1 (not H nor I P). A trivial atom is an I P nseudo					
atom or a hydrogen with exact	the one beauty neighbor					
The hydrogen count h of an	atom is the number of hydrogens to which it is (or should be) attached. This count					
includes all hydrogen atoms the	hat are necessary to fill valence					
The harmy degree d of an ato	and are necessary to fine variance. Some is the number of heavy atoms to which it is bonded. That is d is the number of					
bonded neighbors of the atom	in the hydrogen suppressed graph					
	Number of aromatic atoms					
	Number of atoms (including implicit hydrogons). This is calculated as the sum of					
a count	Number of atoms (including implicit hydrogens). This is calculated as the sum of $(1 + b)$ serve all new twisted structs is					
-	$(1 + h_i)$ over all non-trivial atoms <i>i</i> .					
a_heavy	Number of heavy atoms $\#\{Z_i Z_i > 1\}$.					
	Atom information content (mean). This is the entropy of the element distribution in					
	the molecule (including implicit hydrogens but not lone pair pseudo-atoms). Let n_i be					
a_ICM	the number of occurrences of atomic number <i>i</i> in the molecule.					
	Let $p_i = n_i / n$ where <i>n</i> is the sum of the n_i . The value of a_ICM is the negative of the					
	sum over all i of $p_i \log p_i$.					
a_IC	Atom information content (total). This is calculated to be a ICM times <i>n</i> .					
a nH	Number of hydrogen atoms (including implicit hydrogens). This is calculated as the					
a_iiii	sum of h_i over all non-trivial atoms <i>i</i> plus the number of non-trivial hydrogen atoms.					
a_nB	Number of boron atoms: $\#\{Z_i Z_i = 5\}$.					
a_nC	Number of carbon atoms: $\#\{Z_i Z_i = 6\}$.					
a_nN	Number of nitrogen atoms: $\#\{Z_i Z_i = 7\}$.					
a_nO	Number of oxygen atoms: $\#\{Z_i Z_i = 8\}$.					
a nF	Number of fluorine atoms: $\#\{Z_i Z_i = 9\}$.					
a nP	Number of phosphorus atoms: $\#\{Z_i \mid Z_i = 15\}$.					
a nS	Number of sulfur atoms: $\#\{Z_i Z_i = 16\}$.					
a nCl	Number of chlorine atoms: $\#\{Z_i Z_i = 17\}$.					
a nBr	Number of bromine atoms: $\#\{Z_i \mid Z_i = 35\}$.					
a nľ	Number of iodine atoms: $\#\{Z_i Z_i = 53\}$					
	Number of rotatable single bonds. Conjugated single bonds are not included (e.g.					
b_1rotN	ester and pentide bonds)					
h 1rotD	Exaction of rotatable single hands: h 1 rotN divided by h heavy					
b_nor	Number of crometic hands					
b_ar	Number of aromatic bonds. $\mathbf{X} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$					
b count	Number of bonds (including implicit hydrogens). This is calculated as the sum of $(1/2 + 1)$					
_	$(a_i/2 + h_i)$ over all non-trivial atoms <i>i</i> .					
b_double	Number of double bonds. Aromatic bonds are not considered to be double bonds.					
b_heavy	Number of bonds between heavy atoms.					
b rotN	Number of rotatable bonds. A bond is rotatable if it has order 1, is not in a ring, and					
	has at least two heavy neighbors.					
b_rotR	Fraction of rotatable bonds: b_rotN divided by b_heavy.					
h single	Number of single bonds (including implicit hydrogens). Aromatic bonds are not					
0_single	considered to be single bonds					

chiralThe number of chiral centers.chiral uThe number of unconstrained chiral centers.lip accThe number of 0 and N atoms.lip donThe number of 0 and N M atoms.lip donThe number of 0 and N M atoms.lip dipulkeOne if and only if if p. violation <2 otherwise zero.opr brigidThe number of rigid bonds from [Oprea 2000].opr brigidThe number of rigid bonds from [Oprea 2000].opr nringThe number of rigid bonds from [Oprea 2000].opr nrotThe number of ring bonds from [Oprea 2000].opr violationThe number of heavy-heavy bonds. If m is zero, then zero is returned.VAdjMaVertex adjacency information (equality): (1/flog(1/f).r/log; where f = (n² - m) / n², n is the number of heavy-heavy bonds. If m is zero, then zero is returned.Kier&Hall Connectivity and Kappa Shape Indices DescriptorsFor a heavy atom il et v; = (p, -h) / (2, -p, -1) where p, is the number of sand p valence electrons of atom i. The Kier and Hall kappa molecular shape indices (Hall 1991] compare the molecular graph with minimal and maximal molecular graph with atom in the hydrogen suppressed graph, n is the number of basis of length 3.child_CAtomic connectivity index (order 0) This is calculated as the sum of 1/sqrt(d) over all heavy atoms i with $d_2 > 0$.child_CCarbon connectivity index (order 0). This is calculated as the sum of 1/sqrt(d) over all bo	b triple	Number of triple bonds. Aromatic bonds are not considered to be triple bonds.
chiral u The number of unconstrained chiral centers. lip acc The number of O and N atoms. lip drop The number of O and N atoms. lip violation The number of violations of Lipinskis Null of Five [Lipinski 1997]. nmol The number of rolations of Lipinskis Null of Five [Lipinski 1997]. nmol The number of rolations of Lipinskis Null of Five [Lipinski 1997]. nmol The number of rolation books from [Oprea 2000]. opr leadlike One if and only if opr violation <2 otherwise zero.	chiral	The number of chiral centers.
lip acc The number of O and N atoms. lip dong The number of O and N H atoms. lip drog like One if and only if lip violation < 2 otherwise zero.	chiral u	The number of unconstrained chiral centers.
Inp. dotThe number of OH and NH atoms.lip. drugikeOne if and only if lip violation <2 otherwise zero.	lin acc	The number of O and N atoms
Inp. drugitieThe number of violation <2 otherwise zero.lip. violationThe number of violations of Lipinski's Rule of Five [Lipinski 1997].nmolThe number of molecules (connected components).opr. brigidThe number of ring bonds from [Oprea 2000].opr. leadlikeOne if and only if opr violation <2 otherwise zero.	lin don	The number of OH and NH atoms
Inp_structure Only in and only in mp_structure Only is the set of the	lip_don	One if and only if lin violation ≤ 2 otherwise zero
inp The number of molecules (connected components). opr brigid The number of molecules (connected components). opr brigid The number of molecules (connected components). opr head mumber of molecules (connected components). values Vertex adjacency information (magnitude): 1 + log: m where m is the number of heavy heavy bonds. If m is zero, hen zero is returned. VAdjEq Vertex adjacency information (magnitude): 1 + log: m where f = (n ² - m) / n ² , n is the number of heavy atoms and m is the number of heavy heavy bonds. If (f is not in the open interval (0,1), then 0 is returned. KiereHall Connectivity and Kappa Shape Indices Descriptors For a heavy atom //ex n = (n, - h) / (Z, - n, - 1) where p, is the number of s and p valence electrons of atom i. The kier and Hall kappa molecular shape indices [Hall 1991] compare the molecular graph with minimal and maximal molecular graphs, and are intended to capture different aspects of molecular shape. In the following descripton, m denotes the number of atom i. The site acl	lip_uiugiike	The number of violations of Lininglei's Pule of Five II ininglei 1007]
IntrolThe number of molecules (concentration of the second s		The number of violations of Liphiski's Kule of Five Liphiski 1997].
opr log on lique The number of ring bonds from [Oprea 2000]. opr log ning The number of ring bonds from [Oprea 2000]. opr ning The number of ring bonds from [Oprea 2000]. opr ning The number of rings. VAdjMa Vertex adjacency information (magnitude): 1 + log: <i>m</i> where <i>m</i> is the number of heavy-heavy bonds. If <i>m</i> is zero, then zero is returned. VAdjEq Wertex adjacency information (quality): -(1/-)logs(1-f) -f log: f where f = (n ² - m) / n ² , n is the number of heavy atoms and <i>m</i> is the number of heavy-heavy-heavy bonds. If <i>m</i> is zero, then zero is returned. Kier&Hall Connectivity and Kappa Shap Indices Descriptors For a heavy atom / let v _i = (p _i - h _i) / (Z _i - p _i - 1) where p _i is the number of s and p valence electrons of atom <i>i</i> . The Kier and Hall kappa molecular shape indices [Hall 1991] compare the molecular graph with minimal and maximal molecular graphs, and are intended to capture different aspects of molecular shape. Indices and v _i the key and r _i is the covalent radius of atom <i>i</i> , and r _i is the covalent radius of a carbon atom. Also, let p ₂ denote the number of paths of length 2 and p ₂ the number of paths of length 3. chi0 Atomic connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(d,) over all heavy atoms <i>i</i> with d _i > 0. chi0 Carbon connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(d, d) over all bonds between heavy atoms <i>i</i> and <i>j</i> where <i>i</i> < <i>j</i> . <td></td> <td>The number of molecules (connected components).</td>		The number of molecules (connected components).
oprInterningThe number of ring bonds from [Oprea 2000].oprmingThe number of ring bonds from [Oprea 2000].oprviolationThe number of violations of Oprea's lead-like test [Oprea 2000].oprviolationThe number of violations of Oprea's lead-like test [Oprea 2000].ingsThe number of rings.VAdjMaVertex adjacency information (magnitude): $1 + \log_2 m$ where m is the number of heavy-heavy bonds. If m is zero, then zero is returned.VAdjEqVertex adjacency information (cquality): $-(1-f)\log_5(1-f) - f\log_2 f$ where $f = (n^2 - m)/n^2$, n is the number of heavy atoms and m is the number of heavy-heavy bonds.Kire&Hall Connectivity and Kappa Shape Indices DescriptorsFor a heavy atom it let $\gamma = (\rho, r-h)/(2, r-h)/(2, r-h)$ where p is the number of s and p valence electrons of atom i. TheKire and Hall chi connectivity indices are calculated from the heavy atom adopt a plane with minimal and maximal molecular sphape, and are in the sum of $(r/r, a-1)$ where r_i is the covalent addius of atom i , and r_i is the origon spheress of graph, m is the number of bands in the hydrogen suppressed graph, m is the number of bands in the covalent radius of a carbon atom. Also, let p_2 denote the number of paths of length 2 and p_3 the number of paths of length 3.chi0Atomic connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of $1/sqrt(d_0)$ over all bonds between heavy atoms i and j where $i < j$.chi1Carbon connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of $1/sqrt(d_0)$ over all bonds between heavy atoms i and j where $i < j$.chi0Carbon connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calc	opr_brigid	The number of rigid bonds from [Oprea 2000].
oprInteInteNumber of ring bonds irom [Oprea 2000].oprThe number of violations of Oprea's lead-like test [Oprea 2000].ringsThe number of violations of Oprea's lead-like test [Oprea 2000].vAdjMaVertex adjacency information (magnitude): 1 + logs <i>m</i> where <i>m</i> is the number of heavy-heavy bonds. If <i>m</i> is zero, then zero is returned.VAdjEqVertex adjacency information (equality): -(1-f)log:(1-f) - flog: <i>f</i> where $f = (n^2 - m) / n^2$, <i>n</i> is the number of heavy atoms and <i>m</i> is the number of heavy-heavy bonds. If <i>f</i> is not in the open interval (0,1), then 0 is returned.Kier&Hall Connectivity and Kappa Shape Indices DescriptorsFor a heavy atom ilet $v = (p_1 - h_1) / (Z_1 - p_1 - 1)$ where <i>p</i> is the number of s and p valence electrons of atom <i>i</i> . The Kier and Hall kappa molecular shape indices [Hall 1991] compare the molecular graph with minimal and maximal molecular graphs, and are intended to capture different aspects of molecular shape. In the following description, <i>n</i> denotes the number of atoms in the hydrogen suppressed graph, <i>m</i> is the number of othats of atom <i>i</i> , and <i>r</i> , is the covalent radius of a carbon atom. Also, let <i>p</i> : denote the number of paths of length 2 and <i>p</i> , the number of paths of length 3.chi0Atomic connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(<i>d</i> ,) over all heavy atoms <i>i</i> with <i>d</i> _i > 0.chi1_CCarbon connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(<i>d</i> ,) over all heavy atoms <i>i</i> with <i>h</i> _i > 0.chi1_CCarbon valence connectivity index (order 1). This is calculated as the sum of 1/sqrt(<i>d</i> ,) over all heavy atoms <i>i</i> with <i>h</i> _i > 0.chi10v_CL'arbon valence connectivity index (order 1).	opr_leadlike	One if and only if opr_violation < 2 otherwise zero.
oprrotThe number of rotatable bonds from [Oprea 2000].ringsThe number of violations of Oprea's lead-like test [Oprea 2000].ringsThe number of rings.VAdjMaVertex adjacency information (magnitude): 1 + logs m where m is the number of heavy-heavy bonds. If m is zero, then zero is returned.VAdjEqN' n², n is the number of heavy atoms and m is the number of heavy-heavy bonds. If f is not in the open interval (0,1), then 0 is returned.Kier&Hall Connectivity and Kappa Shape Indices DescriptorsFor a heavy atom i let v _i = (n _i - h _i) / (Z _i - n _i - 1) where p _i is the number of s and p valence electrons of atom i. The Kier and Hall kappa molecular shape indices [Hall 1991] compare the molecular graph with minimal and maximal molecular graphs, and are intended to capture different aspects of molecular graph with minimal and maximal molecular graph and a is the sum of (n/n, -1) where r, is the covalent radius of a toro i, and r _c is the covalent radius of a toro i, and r _c is the covalent radius of a carbon atom. Also, let p ₂ denote the number of paths of length 2 and p ₃ the number of paths of length 3.chi0Atomic connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(d, 0) over all heavy atoms i with d _i > 0.chi1Carbon connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(d, 0) over all heavy atoms i with y _i > 0.chi10Carbon connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(d, 0) over all heavy atoms i with y _i > 0.chi1Carbon connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(d, 0) over all heavy atoms i with y _i > 0. <td>opr_nring</td> <td>The number of ring bonds from [Oprea 2000].</td>	opr_nring	The number of ring bonds from [Oprea 2000].
opr_violation The number of violations of Oprea's lead-like test [Oprea 2000]. rings The number of rings. VAdjMa Vertex adjacency information (magnitude): 1 + log: m where m is the number of heavy-heavy bonds. If m is zero, then zero is returned. VAdjEq Vertex adjacency information (equality): (-1/)flog:[(-f) - flog:fwhere f = (n ² - m) / n ² , n is the number of heavy atoms and m is the number of heavy-heavy bonds. If f is not in the open interval (0,1), then 0 is returned. Kier&Hall Connectivity and Kappa Shape Indices Descriptors For a heavy atom i let $v_i = (p_i - h_i) / (Z_i - p_i - 1)$ where p_i is the number of s and p valence electrons of atom i. The Kier and Hall chi connectivity indices are calculated from the heavy atom degree d_(number of heavy neighbors) and v. Thes Kier and Hall kappa molecular shape indices [Hall 1991] compare the molecular graph with minimal and maximal molecular graphs, and are intended to capture different aspects of molecular shape. Indices [Hall 1991] compare the molecular graph with minimal and maximal molecular graphs, and are intended to capture different aspects of molecular shape. Indices [Hall 1991] compare the molecular graph with minimal and maximal molecular graph and a is the sum of $(r/r_c - 1)$ where r_i is the covalent radius of atom i, and r_c is the covalent radius of a carbon atom. Also, let p ₂ denote the number of paths of length 2 and p ₃ the number of paths of length 3. chi0_C Carbon connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of $1/sqrt(d_i)$ over all bonds between earbon atoms i and j where i < i. chi1_C Carbon connectivity index (order 1). This is calculated as the	opr_nrot	The number of rotatable bonds from [Oprea 2000].
ringsThe number of rings.VAdjMaVertex adjacency information (magnitude): 1 + log: m where m is the number of heavy-heavy bonds. If m is zero, then zero is returned.VAdjEqVertex adjacency information (equality): -(1-f)log: f where $f = (n^2 - m)/n^2$, n is the number of heavy shows and m is the number of heavy-heavy bonds. If f is not in the open interval (0,1), then 0 is returned.Kier&Hall Connectivity and Kappa Shape Indices DescriptorsFor a heavy atom i let $v_i = (p_i - h_i)/(2r, p_i - 1)$ where p_i is the number of s and p valence electrons of atom i. The Kier and Hall chi connectivity indices are calculated from the heavy atom degree d_i (number of heavy-heavy bonds. If $p_i - h_i)/(2r, p_i - 1)$ where r_i is the number of s and p valence electrons of atom i. The Kier and Hall kappa molecular shape indices [Hall 1991] compare the molecular graph with minimal and maximal molecular graphs, and are intended to capture different aspects of molecular shape. In the following description, n denotes the number of atoms in the hydrogen suppressed graph, m is the number of paths of length 3.chi0Atomic connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of $1/sqrt(d_i)$ over all heavy atoms i with $d_i > 0$.chi1calculated as the sum of $1/sqrt(d_i)$ over all heavy atoms i with $d_i > 0$.chi1-CCarbon connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of $1/sqrt(d_i)$ over all bonds between heavy atoms i and j where $i < j$.chi10CCarbon connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is is calculated as the sum of $1/sqrt(v_0)$ over all bonds between heavy atoms i and j where $i < j$.chi10C<	opr_violation	The number of violations of Oprea's lead-like test [Oprea 2000].
VAdjMaVertex adjacency information (magnitude): 1 + log <i>m</i> where <i>m</i> is the number of heavy-heavy bonds. If <i>m</i> is zero, then zero is returned.VAdjEqVertex adjacency information (equality): $(1-f)\log_2(1-f) - f\log_2 f$ where $f = (n^2 - m)/n^2$, <i>n</i> is the number of heavy atoms and <i>m</i> is the number of heavy-heavy bonds. If <i>f</i> is not in the open interval (0,1), then 0 is returned.Kier&Hall Connectivity and Kappa Shape Indices DescriptorsFor a heavy atom 1 let $v_i = (p_i - h_i) / (Z_i - p_i - 1)$ where <i>p_i</i> is the number of s and p valence electrons of atom <i>i</i> . The Kier and Hall chi connectivity indices are calculated from the heavy atom degree <i>d_i</i> (number of heavy neighbors) and v_i . The Kier and Hall kappa molecular shape indices [Hall 1991] compare the molecular graph with minimal and maximal molecular graphs, and are intended to capture different aspects of molecular shape. In the following description, <i>n</i> denotes the number of atoms in the hydrogen suppressed graph <i>m</i> is the number of bands in the hydrogen suppressed graph and <i>a</i> is the sum of $(r/r_c - 1)$ where <i>r_i</i> is the covalent radius of atom <i>i</i> , and r_c is the covalent radius of a carbon atom. Also, let <i>p_i</i> denote the number of neghts of length 2 and <i>p_s</i> the number of paths of ealculated as the sum of 1/sqrt(<i>d_d</i>) over all heavy atoms with $d_i > 0$.chi0Carbon connectivity index (order 0). This is calculated as the sum of 1/sqrt(<i>d_d</i>) over all heavy atoms <i>i</i> with $d_i > 0$.chi1_CCarbon connectivity index (order 1). This is calculated as the sum of 1/sqrt(<i>d_d</i>) over all bonds between heavy atoms <i>i</i> and <i>j</i> where $i < j$.chi0Atomic connectivity index (order 1). This is calculated as the sum of 1/sqrt(<i>d_d</i>) over all bonds between teavy atoms <i>i</i> with $v_i > 0$.chi1_CCarbon connectivity index (orde	rings	The number of rings.
VAdjEqVertex adjacency information (equality): -(1-f)log:(1-f) -f log: f where $f = (n^2 - m)/n^2$, n is the number of heavy atoms and m is the number of heavy-heavy bonds. If f is not in the open interval (0,1), then 0 is returned.Kirer&Hall Connectivity and Kappa Shape Indices DescriptorsFor a heavy atom i let $v_i = (p_i - h_i) / (Z_i - p_i - 1)$ where p_i is the number of s and p valence electrons of atom i. The Kire and Hall chi connectivity indices are calculated from the heavy atom degree d_i (number of heavy neighbors) and v_i . The Kire and Hall kappa molecular shape indices [Hall 1991] compare the molecular graph with minimal and maximal molecular graphs, and are intended to capture different aspects of molecular shape. In the following description, n denotes the number of atoms in the hydrogen suppressed graph, m is the number of bonds in the hydrogen suppressed graph and a is the sum of $(r/r_c - 1)$ where r_i is the covalent radius of a carbon atom. Also, let p_2 denote the number of paths of length 2 and p_3 the number of paths of length 3.chi0Atomic connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(d_d) over all heavy atoms i with $d_i > 0$.chi1Carbon connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(v_l) over all bonds between heavy atoms i and j where $i < j$.chi1_CCarbon connectivity index (order 1). This is calculated as the sum of 1/sqrt(d,d) over all bonds between carbon atoms i and j where $i < j$.chi1_CCarbon connectivity index (order 1). This is calculated as the sum of 1/sqrt(d,d) over all londs between carbon atoms i and j where $i < j$.chi1_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/sqrt$	VAdjMa	Vertex adjacency information (magnitude): $1 + \log_2 m$ where <i>m</i> is the number of heavy-heavy bonds. If <i>m</i> is zero, then zero is returned.
VAdjEq m / n^2 , n is the number of heavy atoms and m is the number of heavy-heavy bonds. If f is not in the open interval (0,1), then 0 is returned.Kier&Hall Connectivity and Kappa Shape Indices DescriptorsFor a heavy atom i let $v_i = (p_i - h_i) / (Z_i - p_i - 1)$ where p_i is the number of s and p value celectrons of atom i. The Kier and Hall chi connectivity indices are calculated from the heavy atom degree d, (number of heavy neighbors) and v_i . The Kier and Hall kappa molecular shape indices [Hall 1991] compare the molecular graph with minimal and maximal molecular graphs, and are intended to capture different aspects of molecular shape. In the following description, n denotes the number of atoms in the hydrogen suppressed graph, m is the number of bonds in the hydrogen suppressed graph had a is the sum of ($r_i r_e - 1$) where r_i is the covalent radius of m i, and r_i is the covalent radius of a carbon atom. Also, let p_2 denote the number of paths of length 2 and p_3 the number of paths of length 3.chi0Atomic connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of $1/sqrt(d_i)$ over all heavy atoms i with $d_i > 0$.chi1Carbon connectivity index (order 1). This is calculated as the sum of $1/sqrt(d_i)$ over all bonds between carbon atoms i with $d_i > 0$.chi1_CCarbon connectivity index (order 1). This is calculated as the sum of $1/sqrt(d_i)$ over all bonds between teavy atoms i and j where $i < j$.chi0vAtomic valence connectivity index (order 0). This is calculated as the sum of $1/sqrt(d_i)$ over all bonds between carbon atoms i with $y > 0$.chi1_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/sqrt(d_i)$ over all bonds between carbon atoms i with $y > 0$. <tr< td=""><td></td><td>Vertex adjacency information (equality): $-(1-f)\log_2(1-f) - f\log_2 f$ where $f = (n^2 - 1)$</td></tr<>		Vertex adjacency information (equality): $-(1-f)\log_2(1-f) - f\log_2 f$ where $f = (n^2 - 1)$
If f is not in the open interval (0,1), then 0 is returned.Kier&Hall Connectivity and Kappa Shape Indices DescriptorsFor a heavy atom i let $v_i (p_i - p_i)$. (J) where p_i is the number of s and p valence electrons of atom i. TheKier and Hall kappa molecular shape indices [Hall 1991] compare the molecular graph with minimal and maximal molecular graphs, and are intended to capture different aspects of molecular shape. In the following description, n denotes the number of atoms in the hydrogen suppressed graph, m is the number of bonds in the hydrogen suppressed graph and a is the sum of $(r/r_c - 1)$ where r, is the covalent radius of atom i, and r, is the covalent radius of a carbon atom. Also, let p_2 denote the number of paths of length 2 and p_3 the number of paths of length 3.childAtomic connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of $1/sqrt(d_i)$ over all heavy atoms if with $d_i > 0$.childAtomic connectivity index (order 1). This is calculated as the sum of $1/sqrt(d_i)$ over all carbon connectivity index (order 1). This is calculated as the sum of $1/sqrt(d_i)$ over all bonds between neavy atoms i and j where $i < j$.childAtomic connectivity index (order 1). This is calculated as the sum of $1/sqrt(d_i)$ over all bonds between heavy atoms i and j where $i < j$.childCarbon connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of $1/sqrt(d_i)$ over all bonds between heavy atoms i and j where $i < j$.childCarbon connectivity index (order 0) from [Hall 199	VAdjEq	m) / n^2 , n is the number of heavy atoms and m is the number of heavy-heavy bonds.
Kier&Hall Connectivity and Kappa Shape Indices DescriptorsFor a heavy atom i let $v_i = (p_i - h_i)^{-1} (Z_i - p_i - 1)$ where p_i is the number of s and p valence electrons of atom i . TheKier and Hall chi connectivity indices are calculated from the heavy atom degree d_i (number of heavy neighbors)and v_i . The Kier and Hall kappa molecular shape indices [Hall 1991] compare the molecular graph with minimal andmaximal molecular graphs, and are intended to capture different aspects of molecular shape. In the followingdescription, n denotes the number of atoms in the hydrogen suppressed graph and a is the sum of $(r/r_c - 1)$ where r_i is the covalent radius of atom i , and r_c is the covalent radius of a carbon atom. Also, let p_2 denote the number of paths of length 2 and p_3 the number of paths of length 3.child connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of $1/sqrt(d_i)$ over all heavy atoms i with $d_i > 0$.Carbon connectivity index (order 0). This is calculated as the sum of $1/sqrt(d_i)$ over all carbon atoms i with $d_i > 0$.child carbon connectivity index (order 1). This is calculated as the sum of $1/sqrt(d_i)$ over all bonds between heavy atoms i and j where $i < j$.child carbon connectivity index (order 1). This is calculated as the sum of $1/sqrt(d_i)$ over all bonds between carbon atoms i and j where $i < j$.child carbon connectivity index (order 1). This is calculated as the sum of $1/sqrt(d_i)$ over all bonds between carbon atoms i and j where $i < j$.child carbon connectivity index (order 0). This is calculated as the sum of $1/sqrt(d_i)$ over all bonds betw		If f is not in the open interval (0,1), then 0 is returned.
For a heavy atom <i>i</i> let $v_i = (p_i - h_i)^{-1}(Z_i - p_i - 1)$ where p_i is the number of s and p valence electrons of atom <i>i</i> . The Kier and Hall chi connectivity indices are calculated from the heavy atom degree <i>d</i> , (number of heavy neighbors) and v_i . The Kier and Hall kappa molecular shape indices [Hall 1991] compare the molecular graph with minimal and maximal molecular graphs, and are intended to capture different aspects of molecular shape. In the following description, <i>n</i> denotes the number of atoms in the hydrogen suppressed graph, <i>m</i> is the number of bonds in the hydrogen suppressed graph and <i>a</i> is the sum of $(r_i/r_c - 1)$ where r_i is the covalent radius of a carbon atom. Also, let p_2 denote the number of paths of length 2 and p_3 the number of paths of length 3.chi0Atomic connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(<i>d</i> ₀) over all heavy atoms <i>i</i> with $d_i > 0$.chi1carbon connectivity index (order 0). This is calculated as the sum of 1/sqrt(<i>d</i> ₀) over all carbon atoms <i>i</i> with $d_i > 0$.chi1carbon connectivity index (order 1). This is calculated as the sum of 1/sqrt(<i>d</i> ₀) over all bonds between carbon atoms <i>i</i> and <i>j</i> where $i < j$.chi1_CCarbon connectivity index (order 1). This is calculated as the sum of 1/sqrt(<i>d</i> ₀) over all bonds between connectivity index (order 0). This is calculated as the sum of 1/sqrt(<i>d</i> ₀) over all heavy atoms <i>i</i> with $v_i > 0$.chi1_CCarbon valence connectivity index (order 0). This is calculated as the sum of 1/sqrt(<i>v</i> ₀) over all carbon atoms <i>i</i> and <i>j</i> where $i < j$.chi1_CCarbon valence connectivity index (order 0). This is calculated as the sum of 1/sqrt(<i>v</i> ₀) over all carbon atoms <i>i</i> with $v_i > 0$.chi10v_CCar	Kier&Hall Connectivity and	I Kappa Shape Indices Descriptors
Kier and Hall chi connectivity indices are calculated from the heavy atom degree d_i (number of heavy neighbors)and y_i . The Kier and Hall kappa molecular shape indices [Hall 1991] compare the molecular graph with minimal and maximal molecular graphs, and are intended to capture different aspects of molecular shape. In the following description, n denotes the number of atoms in the hydrogen suppressed graph, m is the number of bonds in the hydrogen suppressed graph and a is the sum of $(r_i/r_c - 1)$ where r_i is the covalent radius of atom i , and r_c is the covalent radius of a carbon atom. Also, let p_2 denote the number of paths of length 3.chi0Atomic connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of $1/\operatorname{sqrt}(d_i)$ over all heavy atoms i with $d_i > 0$.chi0_CCarbon connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of $1/\operatorname{sqrt}(d_i)$ over all beavy atoms i with $d_i > 0$.chi1_CCarbon connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of $1/\operatorname{sqrt}(d_i)$ over all bonds between heavy atoms i and j where $i < j$.chi1_CCarbon connectivity index (order 1). This is calculated as the sum of $1/\operatorname{sqrt}(d_i/d_i)$ over all bonds between carbon atoms i and j where $i < j$.chi0vAtomic valence connectivity index (order 0). This is calculated as the sum of $1/\operatorname{sqrt}(y_i)$ over all heavy atoms i with $y > 0$.chi1v_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/\operatorname{sqrt}(y_i)$ over all carbon atoms i ind j where $i < j$.chi1v_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/\operatorname{sqrt}(y_i)$ over all carbon atoms i	For a heavy atom <i>i</i> let $v_i = (p_i)$	$(Z_i - p_i - 1)$ where p_i is the number of s and p valence electrons of atom <i>i</i> . The
and v_i . The Kier and Hall kappa molecular shape indices [Hall 1991] compare the molecular graph with minimal and maximal molecular graphs, and are intended to capture different aspects of molecular shape. In the following description, n denotes the number of atoms in the hydrogen suppressed graph and a is the sum of $(r_i/r_c - 1)$ where r_i is the covalent radius of atom i , and r_c is the covalent radius of a carbon atom. Also, let p_2 denote the number of paths of length 2 and p_3 the number of paths of length 3.chi0Atomic connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of $1/sqrt(d_i)$ over all heavy atoms i with $d_i > 0$.chi0_CCarbon connectivity index (order 0). This is calculated as the sum of $1/sqrt(d_i)$ over all carbon atoms i with $d_i > 0$.chi1Carbon connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of $1/sqrt(d_i)$ over all bonds between heavy atoms i and j where $i < j$.chi1_CCarbon connectivity index (order 1). This is calculated as the sum of $1/sqrt(d_i)$ over all bonds between carbon atoms i and j where $i < j$.chi0v_CCarbon connectivity index (order 1). This is calculated as the sum of $1/sqrt(v_i)$ over all bonds between carbon atoms i and j where $i < j$.chi0v_CCarbon valence connectivity index (order 0). This is calculated as the sum of $1/sqrt(v_i)$ over all bonds between heavy atoms i with $v_i > 0$.chi1v_CCarbon valence connectivity index (order 0). This is calculated as the sum of $1/sqrt(v_i)$ over all carbon atoms i with $v_i > 0$.chi1v_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/sqrt(v_i)$ over all bonds between carbon atoms i and j w	Kier and Hall chi connectivity	<i>i</i> indices are calculated from the heavy atom degree d_i (number of heavy neighbors)
maximal molecular graphs, and are intended to capture different aspects of molecular shape. In the following description, n denotes the number of atoms in the hydrogen suppressed graph, m is the number of bonds in the hydrogen suppressed graph, m is the number of bonds in the hydrogen suppressed graph and a is the sum of $(r/r_c - 1)$ where r_i is the covalent radius of a carbon atom. Also, let p_2 denote the number of paths of length 2 and p_3 the number of paths of length 3.chi0Atomic connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(d_i) over all heavy atoms i with $d_i > 0$.chi0_CCarbon connectivity index (order 0). This is calculated as the sum of 1/sqrt(d_i) over all carbon atoms i with $d_i > 0$.chi1calculated as the sum of 1/sqrt(d_i) over all bonds between heavy atoms i and j where $i < j$.chi1_CCarbon connectivity index (order 1). This is calculated as the sum of 1/sqrt(d_d) over all bonds between carbon atoms i and j where $i < j$.chi0vAtomic connectivity index (order 0). This is calculated as the sum of 1/sqrt(d_d) over all bonds between carbon atoms i and j where $i < j$.chi1vCarbon connectivity index (order 0). This is calculated as the sum of $1/sqrt(v_i)$ over all bonds between carbon atoms i with $v_i > 0$.chi0vAtomic valence connectivity index (order 1). This is calculated as the sum of $1/sqrt(v_i)$ over all carbon atoms i with $v_i > 0$.chi1vCCarbon valence connectivity index (order 1). This is calculated as the sum of $1/sqrt(v_i)$ over all carbon atoms i with $v_i > 0$.chi1v_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/sqrt(v_i)$ over all carbon atoms i with $v_i > 0$. <t< td=""><td>and v_i. The Kier and Hall kap</td><td>pa molecular shape indices [Hall 1991] compare the molecular graph with minimal and</td></t<>	and v_i . The Kier and Hall kap	pa molecular shape indices [Hall 1991] compare the molecular graph with minimal and
description, n denotes the number of atoms in the hydrogen suppressed graph, m is the number of bonds in the hydrogen suppressed graph and a is the sum of $(r_i/r_c - 1)$ where r_i is the covalent radius of atom i, and r_c is the covalent radius of a carbon atom. Also, let p_2 denote the number of paths of length 2 and p_3 the number of paths of length 3.chi0Atomic connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of $1/sqrt(d_i)$ over all heavy atoms i with $d_i > 0$.chi0_CCarbon connectivity index (order 0). This is calculated as the sum of $1/sqrt(d_i)$ over all carbon atoms i with $d_i > 0$.chi1Atomic connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of $1/sqrt(d_i)$ over all bonds between heavy atoms i and j where $i < j$.chi1_CCarbon connectivity index (order 1). This is calculated as the sum of $1/sqrt(d_id_j)$ over all bonds between carbon atoms i and j where $i < j$.chi0v_CCarbon connectivity index (order 0). This is calculated as the sum of $1/sqrt(d_id_j)$ over all bonds between connectivity index (order 0). This is calculated as the sum of $1/sqrt(u_i)$ over all heavy atoms i with $v_i > 0$.chi0v_CCarbon valence connectivity index (order 0). This is calculated as the sum of $1/sqrt(v_i)$ over all carbon atoms i with $v_i > 0$.chi1v_CAtomic valence connectivity index (order 1). This is calculated as the sum of $1/sqrt(v_i)$ over all carbon atoms i with $v_i > 0$.chi1v_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/sqrt(v_i)$ over all carbon atoms i and j where $i < j$.chi1v_CCarbon valence connectivity index (order 1). This is calculated as the sum o	maximal molecular graphs, an	id are intended to capture different aspects of molecular shape. In the following
hydrogen suppressed graph and a is the sum of $(r_i/r_c - 1)$ where r_i is the covalent radius of atom i, and r_c is the covalent radius of a carbon atom. Also, let p_2 denote the number of paths of length 2 and p_3 the number of paths of length 3.chi0Atomic connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of $1/sqrt(d_i)$ over all heavy atoms i with $d_i > 0$.chi0Carbon connectivity index (order 0). This is calculated as the sum of $1/sqrt(d_i)$ over all carbon atoms i with $d_i > 0$.chi1Carbon connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of $1/sqrt(d_i)$ over all bonds between heavy atoms i and j where $i < j$.chi1_CCarbon connectivity index (order 1). This is calculated as the sum of $1/sqrt(d_i)$ over all bonds between carbon atoms i and j where $i < j$.chi0vAtomic connectivity index (order 1). This is calculated as the sum of $1/sqrt(d_i)$ over all heavy atoms i with $v_i > 0$.chi0v_CCarbon connectivity index (order 0). This is calculated as the sum of $1/sqrt(v_i)$ over all heavy atoms i with $v_i > 0$.chi0v_CIs calculated as the sum of $1/sqrt(v_i)$ over all heavy atoms i with $v_i > 0$.chi1v_CCarbon valence connectivity index (order 0). This is calculated as the sum of $1/sqrt(v_i)$ over all carbon atoms i with $v_i > 0$.chi1v_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/sqrt(v_i)$ over all carbon atoms i with $v_i > 0$.chi1v_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/sqrt(v_i)$ over all carbon atoms i with $v_i > 0$.chi1v_CCarbon valence connectivity index (order 1). This is calculated as the s	description. <i>n</i> denotes the nun	hber of atoms in the hydrogen suppressed graph. <i>m</i> is the number of bonds in the
covalent radius of a carbon atom. Also, let p_2 denote the number of paths of length 2 and p_3 the number of paths of length 3.chi0Atomic connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(d_i) over all heavy atoms i with $d_i > 0$.chi0_CCarbon connectivity index (order 0). This is calculated as the sum of 1/sqrt(d_i) over all carbon atoms i with $d_i > 0$.chi1Atomic connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(d_i) over all bonds between heavy atoms i and j where $i < j$.chi1_CCarbon connectivity index (order 1). This is calculated as the sum of 1/sqrt($d_i d_j$) over all bonds between carbon atoms i and j where $i < j$.chi0vCarbon connectivity index (order 1). This is calculated as the sum of 1/sqrt($d_i d_j$) over all bonds between carbon atoms i and j where $i < j$.chi0vCarbon valence connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(v_i) over all heavy atoms i with $v_i > 0$.chi0v_CCarbon valence connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(v_i) over all bonds between heavy atoms i with $v_i > 0$.chi1v_CAtomic valence connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(v_i) over all bonds between heavy atoms i and j where $i < j$.chi1v_CCarbon valence connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(v_i) over all bonds between heavy atoms i and j where $i < j$.chi1v_CCarbon valence connectivit	hydrogen suppressed graph ar	nd a is the sum of $(r_i/r_c - 1)$ where r _i is the covalent radius of atom i, and r _c is the
length 3.Image: Property of the prop	covalent radius of a carbon at	om. Also, let p_2 denote the number of paths of length 2 and p_3 the number of paths of
bitAtomic connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(d_i) over all heavy atoms i with $d_i > 0$.chi0_CCarbon connectivity index (order 0). This is calculated as the sum of 1/sqrt(d_i) over all carbon atoms i with $d_i > 0$.chi1Atomic connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(d_i) over all bonds between heavy atoms i and j where $i < j$.chi1Carbon connectivity index (order 1). This is calculated as the sum of 1/sqrt(d_i) over all bonds between carbon atoms i and j where $i < j$.chi1_CCarbon connectivity index (order 1). This is calculated as the sum of 1/sqrt(d_i) over all bonds between carbon atoms i and j where $i < j$.chi0vCarbon valence connectivity index (order 0). This is calculated as the sum of 1/sqrt(ψ_i) over all leavy atoms i with $v_i > 0$.chi1v_CCarbon valence connectivity index (order 0). This is calculated as the sum of 1/sqrt(ψ_i) over all carbon atoms i with $v_i > 0$.chi1v_CCarbon valence connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(ψ_i) over all bonds between heavy atoms i and j where $i < j$.chi1v_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/sqrt(\psi_i)$ over all carbon atoms i and j where $i < j$.chi1v_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/sqrt(\psi_i)$ over all bonds between carbon atoms i and j where $i < j$.chi1v_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/sqrt(\psi_i)$ over all bonds between carbon atoms i and j where	length 3.	
chi0calculated as the sum of 1/sqrt(d_i) over all heavy atoms i with $d_i > 0$.chi0_CCarbon connectivity index (order 0). This is calculated as the sum of 1/sqrt(d_i) over all carbon atoms i with $d_i > 0$.chi1Atomic connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt($d_i d_j$) over all bonds between heavy atoms i and j where $i < j$.chi1_CCarbon connectivity index (order 1). This is calculated as the sum of 1/sqrt($d_i d_j$) over all bonds between carbon atoms i and j where $i < j$.chi0vAtomic valence connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(v_i) over all heavy atoms i with $v_i > 0$.chi0v_CCarbon valence connectivity index (order 0). This is calculated as the sum of $1/sqrt(v_i)$ over all carbon atoms i with $v_i > 0$.chi1vScalculated as the sum of $1/sqrt(v_i)$ over all bonds between heavy atoms i atom j where $i < j$.chi1v_CCarbon valence connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of $1/sqrt(v_i)$ over all bonds between heavy atoms i and j where $i < j$.chi1v_CCarbon valence connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of $1/sqrt(v_iv_j)$ over all bonds between carbon atoms i and j where $i < j$.chi1v_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/sqrt(v_iv_j)$ over all bonds between carbon atoms i and j where $i < j$.chi1v_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/sqrt(v_iv_j)$ over all bonds between carbon atoms i and j where $i < j$.<	1:0	Atomic connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is
chi0_CCarbon connectivity index (order 0). This is calculated as the sum of 1/sqrt(d_i) over all carbon atoms i with $d_i > 0$.chi1Atomic connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt($d_i d_j$) over all bonds between heavy atoms i and j where $i < j$.chi1_CCarbon connectivity index (order 1). This is calculated as the sum of 1/sqrt($d_i d_j$) over all bonds between carbon atoms i and j where $i < j$.chi0vCarbon connectivity index (order 1). This is calculated as the sum of 1/sqrt($d_i d_j$) over all bonds between carbon atoms i and j where $i < j$.chi0vAtomic valence connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(v_i) over all heavy atoms i with $v_i > 0$.chi0v_CCarbon valence connectivity index (order 0). This is calculated as the sum of 1/sqrt(v_i) over all carbon atoms i with $v_i > 0$.chi1vAtomic valence connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(v_iv_j) over all bonds between heavy atoms i and j where $i < j$.chi1v_CCarbon valence connectivity index (order 1). This is calculated as the sum of 1/sqrt(v_iv_j) over all bonds between carbon atoms i and j where $i < j$.Kier1First kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier2Second kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier3Third kappa shape index: $(n-1)(n-3)^2 / p_3^2$ for odd n , and $(n-3)(n-2)^2 / p_3^2$ for even n [Hall 1991].KierA1First alpha modified shape index: $s(s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA3Zecond alpha modified shape	chi0	calculated as the sum of $1/sqrt(d_i)$ over all heavy atoms <i>i</i> with $d_i > 0$.
chiloall carbon atoms i with $d_i > 0$.I (e)chilAtomic connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt($d_i d_j$) over all bonds between heavy atoms i and j where $i < j$.chil_CCarbon connectivity index (order 1). This is calculated as the sum of 1/sqrt($d_i d_j$) over all bonds between carbon atoms i and j where $i < j$.chilovAtomic valence connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(v_i) over all heavy atoms i with $v_i > 0$.chilov_CCarbon valence connectivity index (order 0). This is calculated as the sum of 1/sqrt(v_i) over all carbon atoms i with $v_i > 0$.chilvAtomic valence connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(v_iv_i) over all bonds between heavy atoms i atom i valence connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(v_iv_i) over all bonds between heavy atoms i atoms i and j where $i < j$.chilv_CCarbon valence connectivity index (order 1). This is calculated as the sum of 1/sqrt(v_iv_i) over all bonds between carbon atoms i and j where $i < j$.chilv_CCarbon valence connectivity index (order 1). This is calculated as the sum of 1/sqrt(v_iv_i) over all bonds between carbon atoms i and j where $i < j$.Kier1First kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier3Third kappa shape index: $(n-1)(n-3)^2 / p_3^2$ for odd n, and $(n-3)(n-2)^2 / p_3^2$ for even n [Hall 1991].KierA1First alpha modified shape index: $s(s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA3Third alpha modified shape index	1:0.0	Carbon connectivity index (order 0). This is calculated as the sum of $1/\operatorname{sqrt}(d)$ over
chilAtomic connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt($d_i d_j$) over all bonds between heavy atoms i and j where $i < j$.chil_CCarbon connectivity index (order 1). This is calculated as the sum of 1/sqrt($d_i d_j$) over all bonds between carbon atoms i and j where $i < j$.chilovCarbon connectivity index (order 0). This is calculated as the sum of 1/sqrt($u_i d_j$) over all bonds between carbon atoms i and j where $i < j$.chilovCarbon valence connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(v_i) over all heavy atoms i with $v_i > 0$.chilv_CCarbon valence connectivity index (order 0). This is calculated as the sum of 1/sqrt(v_i) over all carbon atoms i with $v_i > 0$.chilvAtomic valence connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt($v_i v_j$) over all bonds between heavy atoms i and j where $i < j$.chilv_CCarbon valence connectivity index (order 1). This is calculated as the sum of 1/sqrt($v_i v_j$) over all bonds between carbon atoms i and j where $i < j$.chilv_CCarbon valence connectivity index (order 1). This is calculated as the sum of 1/sqrt($v_i v_j$) over all bonds between carbon atoms i and j where $i < j$.Kier1First kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier3Second kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier41First alpha modified shape index: s ($s-1$) ² / m ² where $s = n + a$ [Hall 1991].KierA3Second alpha modified shape index: $(n-1)(n-3)^2 / p_3^2$ for odd n , and $(n-3) (n-2)^2 / p_1^2$ for even n where $s = n + a$ [Hal	chi0_C	all carbon atoms <i>i</i> with $d_i > 0$.
chilcalculated as the sum of 1/sqrt($d_i d_j$) over all bonds between heavy atoms i and j where $i < j$.chil_CCarbon connectivity index (order 1). This is calculated as the sum of 1/sqrt($d_i d_j$) over all bonds between carbon atoms i and j where $i < j$.chil_CCarbon connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(v_i) over all heavy atoms i with $v_i > 0$.chilv_CCarbon valence connectivity index (order 0). This is calculated as the sum of 1/sqrt(v_i) over all carbon atoms i with $v_i > 0$.chilvCarbon valence connectivity index (order 1). This is calculated as the sum of 1/sqrt(v_i) over all carbon atoms i with $v_i > 0$.chilvCarbon valence connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt($v_i v_j$) over all bonds between heavy atoms i and j where $i < j$.chilv_CCarbon valence connectivity index (order 1). This is calculated as the sum of 1/sqrt($v_i v_j$) over all bonds between carbon atoms i and j where $i < j$.chilv_CCarbon valence connectivity index (order 1). This is calculated as the sum of 1/sqrt($v_i v_j$) over all bonds between carbon atoms i and j where $i < j$.Kier1First kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier2Second kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier3Third kappa shape index: $(n-1) (n-3)^2 / p_3^2$ for odd n , and $(n-3) (n-2)^2 / p_3^2$ for even n [Hall 1991].KierA1First alpha modified shape index: $s (s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA3Third alpha modified shape index: $n-1) (n-3)^2 / p_3^2$ for odd n , and $(n-3) (n-2)^2 / p_1^$		Atomic connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is
InitInitial atoms i and j where i < j.atoms i and j where i < j.	chi1	calculated as the sum of $1/\text{sart}(dd)$ over all bonds between heavy
chil_CCarbon connectivity index (order 1). This is calculated as the sum of 1/sqrt(d_id_j) over all bonds between carbon atoms i and j where $i < j$.chilovAtomic valence connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(v_i) over all heavy atoms i with $v_i > 0$.chilov_CCarbon valence connectivity index (order 0). This is calculated as the sum of 1/sqrt(v_i) over all carbon atoms i with $v_i > 0$.chilov_CCarbon valence connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(v_iv_j) over all bonds between heavy atoms i and j where $i < j$.chilvAtomic valence connectivity index (order 1). This is calculated as the sum of $1/sqrt(v_iv_j)$ over all bonds between neavy atoms i and j where $i < j$.chilv_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/sqrt(v_iv_j)$ over all bonds between carbon atoms i and j where $i < j$.Kier1First kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier3Third kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].KierA1First alpha modified shape index: s $(s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA2Second alpha modified shape index: $(n-1) (n-3)^2 / p_3^2$ for odd n , and $(n-3) (n-2)^2 / p_3^2$ for even n [Hall 1991].KierA3Third alpha modified shape index: $(n-1) (n-3)^2 / p_3^2$ for odd n , and $(n-3) (n-2)^2 / p_3^2$ for even n where $s = n + a$ [Hall 1991].		atoms i and i where $i < i$
chi1_CCarbon connectivity index (order 1). It is is calculated as the sum of 1/sqtt(u,u)) over all bonds between carbon atoms i and j where $i < j$.chi0vAtomic valence connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqtt(v _i) over all heavy atoms i with $v_i > 0$.chi0v_CCarbon valence connectivity index (order 0). This is calculated as the sum of 1/sqtt(v _i) over all carbon atoms i with $v_i > 0$.chi1vAtomic valence connectivity index (order 1). This is calculated as the sum of 1/sqtt(v _i) over all carbon atoms i with $v_i > 0$.chi1vAtomic valence connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqtt(v _i v _j) over all bonds between heavy atoms i and j where $i < j$.chi1v_CCarbon valence connectivity index (order 1). This is calculated as the sum of 1/sqtt(v _i v _j) over all bonds between carbon atoms i and j where $i < j$.kier1First kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier2Second kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier3Third kappa shape index: $(n-1)^2 / m^2$ where $s = n + a$ [Hall 1991].Kier41First alpha modified shape index: $s (s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA2Second alpha modified shape index: $(n-1) (n-3)^2 / p_3^2$ for odd n, and $(n-3) (n-2)^2 / p_3^2$ for even n where $s = n + a$ [Hall 1991].KierA3Third alpha modified shape index: $(n-1) (n-3)^2 / p_3^2$ for odd n, and $(n-3) (n-2)^2 / p_3^2$ for even n where $s = n + a$ [Hall 1991].		Carbon connectivity index (order 1) This is calculated as the sum of $1/sart(dd)$ over
chilowAtomic valence connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(v_i) over all heavy atoms i with $v_i > 0$.chilov_CCarbon valence connectivity index (order 0). This is calculated as the sum of 1/sqrt(v_i) over all carbon atoms i with $v_i > 0$.chilvAtomic valence connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(v_iv_i) over all bonds between heavy atoms i and j where $i < j$.chilv_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/sqrt(v_iv_j)$ over all bonds between heavy atoms i and j where $i < j$.chilv_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/sqrt(v_iv_j)$ over all bonds between carbon atoms i and j where $i < j$.Kier1First kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier2Second kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier3Third kappa shape index: $(n-1)(n-3)^2 / p_3^2$ for dod n , and $(n-2)^2 / p_3^2$ for even n [Hall 1991].KierA1First alpha modified shape index: $s(s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA3Third alpha modified shape index: $(n-1)(n-3)^2 / p_3^2$ for odd n , and $(n-3)(n-2)^2 / p_3^2$ for even n where $s = n + a$ [Hall 1991].	chi1_C	call bonds between carbon atoms <i>i</i> and <i>i</i> where $i \leq i$
chilovAtomic valence connectivity index (order 0) from [11an 1991] and [11an 1997]. This is calculated as the sum of $1/sqrt(v_i)$ over all heavy atoms i with $v_i > 0$.chilov_CCarbon valence connectivity index (order 0). This is calculated as the sum of $1/sqrt(v_i)$ over all carbon atoms i with $v_i > 0$.chilovAtomic valence connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of $1/sqrt(v_iv_j)$ over all bonds between heavy atoms i and j where $i < j$.chilv_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/sqrt(v_iv_j)$ over all bonds between carbon atoms i and j where $i < j$.Kier1First kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier2Second kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier3Third kappa shape index: $(n-1)(n-3)^2 / p_3^2$ for odd n , and $(n-3)(n-2)^2 / p_3^2$ for even n [Hall 1991].KierA1First alpha modified shape index: $s(s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA3Third alpha modified shape index: $(n-1)(n-3)^2 / p_3^2$ for odd n , and $(n-3)(n-2)^2 / p_3^2$ for even n where $s = n + a$ [Hall 1991].		Atomic valence connectivity index (order 0) from [Hell 1001] and [Hell 1077]. This
childred as the sum of Trsqft(v_i) over all heavy atoms i with $v_i > 0$.childred as the sum of l/sqrt(v_i) over all carbon atoms i with $v_i > 0$.childred as the sum of atoms i with $v_i > 0$.childred as the sum of l/sqrt(v_iv_i) over all carbon atoms i with $v_i > 0$.childred as the sum of l/sqrt(v_iv_j) over all bonds between heavy atoms i and j where $i < j$.childred as the sum of l/sqrt(v_iv_j) over all bonds between heavy atoms i and j where $i < j$.childred as the sum of l/sqrt(v_iv_j) over all bonds between heavy atoms i and j where $i < j$.childred as the sum of l/sqrt(v_iv_j) over all bonds between carbon atoms i and j where $i < j$.Kier1First kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier2Second kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier3Third kappa shape index: $(n-1)(n-3)^2 / p_3^2$ for odd n , and $(n-3)(n-2)^2 / p_3^2$ for even n [Hall 1991].KierA1First alpha modified shape index: $s(s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA3Third alpha modified shape index: $(n-1)(n-3)^2 / p_3^2$ for odd n , and $(n-3)(n-2)^2 / p_3^2$ for even n where $s = n + a$ [Hall 1991].	chi0v	Atomic valence connectivity index (order 0) from [Hair 1991] and [Hair 1977]. This is calculated as the sum of $1/(art(u))$ over all beauty stems i with $u > 0$.
chilov_CCarbon valence connectivity index (order 0). This is calculated as the sum of 1/sqrt(v_i) over all carbon atoms i with $v_i > 0$.chilvAtomic valence connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of 1/sqrt(v_iv_j) over all bonds between heavy atoms i and j where $i < j$.chilv_CCarbon valence connectivity index (order 1). This is calculated as the sum of 1/sqrt(v_iv_j) over all bonds between carbon atoms i and j where $i < j$.Kier1First kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier2Second kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier3Third kappa shape index: $(n-1)(n-3)^2 / p_3^2$ for odd n , and $(n-3)(n-2)^2 / p_3^2$ for even n [Hall 1991].KierA1First alpha modified shape index: $s(s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA3Third alpha modified shape index: $(n-1)(n-3)^2 / p_3^2$ for odd n , and $(n-3)(n-2)^2 / p_3^2$ for even n where $s = n + a$ [Hall 1991].		Is calculated as the sum of 1/sqlt(v_i) over an neavy atoms i with $v_i \ge 0$.
-I/sqrt(v_i) over all carbon atoms i with $v_i > 0$.chilvAtomic valence connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is calculated as the sum of $1/sqrt(v_iv_j)$ over all bonds between heavy atoms i and j where $i < j$.chilv_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/sqrt(v_iv_j)$ over all bonds between carbon atoms i and j where $i < j$.Kier1First kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier2Second kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier3Third kappa shape index: $(n-1)(n-3)^2 / p_3^2$ for odd n , and $(n-3)(n-2)^2 / p_3^2$ for even n [Hall 1991].KierA1First alpha modified shape index: $s(s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA3Third alpha modified shape index: $(n-1)(n-3)^2 / p_3^2$ for odd n , and $(n-3)(n-2)^2 / p_3^2$ for even n where $s = n + a$ [Hall 1991].	chi0v C	Carbon valence connectivity index (order 0). This is calculated as the sum of $1/\sqrt{10}$
Atomic valence connectivity index (order 1) from [Hall 1991] and [Hall 19/7]. Thischilvis calculated as the sum of $1/sqrt(v_iv_j)$ over all bonds between heavy atoms i and j where $i < j$.chilv_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/sqrt(v_iv_j)$ over all bonds between carbon atoms i and j where $i < j$.Kier1First kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier2Second kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier3Third kappa shape index: $(n-1)(n-3)^2 / p_3^2$ for odd n , and $(n-3)(n-2)^2 / p_3^2$ for even n [Hall 1991].KierA1First alpha modified shape index: $s(s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA3Third alpha modified shape index: $(n-1)(n-3)^2 / p_3^2$ for odd n , and $(n-3)(n-2)^2 / p_3^2$ for even n where $s = n + a$ [Hall 1991].		$1/sqrt(v_i)$ over all carbon atoms i with $v_i > 0$.
chilvis calculated as the sum of 1/sqrt(v_iv_j) over all bonds between heavy atoms i and j where $i < j$.chilv_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/sqrt(v_iv_j)$ over all bonds between carbon atoms i and j where $i < j$.Kier1First kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier2Second kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier3Third kappa shape index: $(n-1)(n-3)^2 / p_3^2$ for odd n , and $(n-3)(n-2)^2 / p_3^2$ for even n [Hall 1991].KierA1First alpha modified shape index: $s(s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA2Second alpha modified shape index: $(n-1)(n-3)^2 / p_3^2$ for odd n , and $(n-3)(n-2)^2 / p_3^2$ for even n where $s = n + a$ [Hall 1991].KierA3Third alpha modified shape index: $(n-1)(n-3)^2 / p_3^2$ for odd n , and $(n-3)(n-2)^2 / p_3^2$ for even n where $s = n + a$ [Hall 1991].	1.4	Atomic valence connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This
atoms i and j where $i < j$.chilv_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/\operatorname{sqrt}(v_iv_j)$ over all bonds between carbon atoms i and j where $i < j$.Kier1First kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier2Second kappa shape index: $(n-1)(n-3)^2 / p_3^2$ for odd n, and $(n-3)(n-2)^2 / p_3^2$ for even n [Hall 1991].Kier3Third kappa shape index: $(n-1)(n-3)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA1First alpha modified shape index: $s(s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA2Second alpha modified shape index: $(n-1)(n-3)^2 / p_3^2$ for odd n, and $(n-3)(n-3)(n-3)^2 / p_3^2$ for even n where $s = n + a$ [Hall 1991].KierA3Third alpha modified shape index: $(n-1)(n-3)^2 / p_3^2$ for odd n, and $(n-3)(n-3)(n-3)^2 / p_3^2$ for even n where $s = n + a$ [Hall 1991].	chilv	is calculated as the sum of $1/sqrt(v_iv_j)$ over all bonds between heavy
chilv_CCarbon valence connectivity index (order 1). This is calculated as the sum of $1/\operatorname{sqrt}(v_i v_j)$ over all bonds between carbon atoms <i>i</i> and <i>j</i> where $i < j$.Kier1First kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier2Second kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier3Third kappa shape index: $(n-1) (n-3)^2 / p_3^2$ for odd <i>n</i> , and $(n-3) (n-2)^2 / p_3^2$ for even <i>n</i> [Hall 1991].KierA1First alpha modified shape index: $s (s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA2Second alpha modified shape index: $s (s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA3Third alpha modified shape index: $(n-1) (n-3)^2 / p_3^2$ for odd <i>n</i> , and $(n-3) (n-2)^2 / p_3^2$ for even <i>n</i> where $s = n + a$ [Hall 1991].		atoms <i>i</i> and <i>j</i> where $i < j$.
Init is a state of the stat	chilv C	Carbon valence connectivity index (order 1). This is calculated as the sum of
Kier1First kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier2Second kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier3Third kappa shape index: $(n-1) (n-3)^2 / p_3^2$ for odd n , and $(n-3) (n-2)^2 / p_3^2$ for even n [Hall 1991].KierA1First alpha modified shape index: $s (s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA2Second alpha modified shape index: $s (s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA3Third alpha modified shape index: $(n-1) (n-3)^2 / p_3^2$ for odd n , and $(n-3) (n-2)^2 / p_3^2$ for even n where $s = n + a$ [Hall 1991].		$1/sqrt(v_iv_j)$ over all bonds between carbon atoms <i>i</i> and <i>j</i> where $i < j$.
Kier2Second kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].Kier3Third kappa shape index: $(n-1) (n-3)^2 / p_3^2$ for odd n , and $(n-3) (n-2)^2 / p_3^2$ for even n [Hall 1991].KierA1First alpha modified shape index: $s (s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA2Second alpha modified shape index: $s (s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA3Third alpha modified shape index: $(n-1) (n-3)^2 / p_3^2$ for odd n , and $(n-3) (n-2)^2 / p_3^2$ for even n where $s = n + a$ [Hall 1991].	Kier1	First kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].
Kier3Third kappa shape index: $(n-1) (n-3)^2 / p_3^2$ for odd n , and $(n-3) (n-2)^2 / p_3^2$ for even n [Hall 1991].KierA1First alpha modified shape index: $s (s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA2Second alpha modified shape index: $s (s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA3Third alpha modified shape index: $(n-1) (n-3)^2 / p_3^2$ for odd n , and $(n-3) (n-2)^2 / p_3^2$ for even n where $s = n + a$ [Hall 1991].	Kier2	Second kappa shape index: $(n-1)^2 / m^2$ [Hall 1991].
KierSeven n [Hall 1991].KierA1First alpha modified shape index: $s (s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA2Second alpha modified shape index: $s (s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA3Third alpha modified shape index: $(n-1) (n-3)^2 / p_3^2$ for odd n , and $(n-3) (n-2)^2 / p_3^2$ for even n where $s = n + a$ [Hall 1991].	Vier?	Third kappa shape index: $(n-1)(n-3)^2 / p_3^2$ for odd <i>n</i> , and $(n-3)(n-2)^2 / p_3^2$ for
KierA1First alpha modified shape index: $s (s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA2Second alpha modified shape index: $s (s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA3Third alpha modified shape index: $(n-1) (n-3)^2 / p_3^2$ for odd n , and $(n-3) (n-2)^2 / p_3^2$ for even n where $s = n + a$ [Hall 1991].	KICI 3	even <i>n</i> [Hall 1991].
KierA2Second alpha modified shape index: $s(s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].KierA3Third alpha modified shape index: $(n-1) (n-3)^2 / p_3^2$ for odd n , and $(n-3) (n-2)^2 / p_3^2$ for even n where $s = n + a$ [Hall 1991].	KierA1	First alpha modified shape index: $s(s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].
KierA3 Third alpha modified shape index: $(n-1)(n-3)^2 / p_3^2$ for odd <i>n</i> , and $(n-3)(n-2)^2 / p_3^2$ for even <i>n</i> where $s = n + a$ [Hall 1991].	KierA2	Second alpha modified shape index: $s(s-1)^2 / m^2$ where $s = n + a$ [Hall 1991].
KierA3 $2)^2 / p_3^2$ for even <i>n</i> where $s = n + a$ [Hall 1991].	W: 40	Third alpha modified shape index: $(n-1)(n-3)^2/p_3^2$ for odd n, and $(n-3)(n-3)^2/p_3^2$
	KierA3	$(2)^2 / p_3^2$ for even <i>n</i> where $s = n + a$ [Hall 1991].

KierFlex	Kier molecular flexibility index: (KierA1) (KierA2) / n [Hall 1991].
zagreb	Zagreb index: the sum of d_i^2 over all heavy atoms <i>i</i> .
Adjacency and Distance Ma	trix Descriptors
The adjacency matrix, M, of a	chemical structure is defined by the elements $[M_{ij}]$ where M_{ij} is 1 if atoms <i>i</i> and <i>j</i> are
bonded and zero otherwise. T	he <i>distance matrix</i> , D , of a chemical structure is defined by the elements $[D_{ij}]$
where D_{ij} is the length of the s	shortest path from atoms <i>i</i> to <i>j</i> ; zero is used if atoms <i>i</i> and <i>j</i> are not part of the same
connected component.	
balabanJ	Balaban's connectivity topological index [Balaban 1982].
DOUT DEOF A	The BCUT descriptors [Pearlman 1998] are calculated from the eigenvalues of a
BCUT_PEOE_0	modified adjacency matrix. Each <i>ij</i> entry of the adjacency matrix takes the value
BCUT_PEOE_1	$1/sqrt(b_{ij})$ where b_{ij} is the formal bond order between bonded atoms <i>i</i> and <i>j</i> . The
DCUT_FEOE_2	diagonal takes the value of the PEOE partial charges. The resulting eigenvalues are
BCUI_FEOE_3	sorted and the smallest, 1/3-ile, 2/3-ile and largest eigenvalues are reported.
BCUT_SLOGP_0	
BCUT_SLOGP_1	The BCUT descriptors using atomic contribution to logP (using the Wildman and
BCUT_SLOGP_2	Crippen SlogP method) instead of partial charge.
BCUT_SLOGP_3	
BCUT_SMR_0	
BCUT_SMR_1	The BCUT descriptors using atomic contribution to molar refractivity (using the
BCUT_SMR_2	Wildman and Crippen SMR method) instead of partial charge.
BCUT_SMR_3	
diameter	Largest value in the distance matrix [Petitjean 1992].
petitjean	Value of (diameter - radius) / diameter.
COUT DEOF O	The GCUT descriptors are calculated from the eigenvalues of a modified graph
GCUT PEOE 1	distance adjacency matrix. Each ij entry of the adjacency matrix takes the value
GCUT PEOE 2	$1/sqr(d_{ij})$ where d_{ij} is the (modified) graph distance between atoms <i>i</i> and <i>j</i> . The
GCUT DEOE 2	diagonal takes the value of the PEOE partial charges. The resulting eigenvalues are
GCUI_FEOE_5	sorted and the smallest, 1/3-ile, 2/3-ile and largest eigenvalues are reported.
GCUT_SLOGP_0	
GCUT_SLOGP_1	The GCUT descriptors using atomic contribution to logP (using the Wildman and
GCUT_SLOGP_2	Crippen SlogP method) instead of partial charge.
GCUT_SLOGP_3	
GCUT_SMR_0	
GCUT_SMR_1	The GCUT descriptors using atomic contribution to molar refractivity (using the
GCUT_SMR_2	Wildman and Crippen SMR method) instead of partial charge.
GCUT_SMR_3	
natitioonSC	Petitjean graph Shape Coefficient as defined in [Petitjean 1992]: (diameter - radius)
penijeansc	/ radius.
roding	If r_i is the largest matrix entry in row <i>i</i> of the distance matrix <i>D</i> , then the radius is
Tadius	defined as the smallest of the r_i [Petitjean 1992].
VDistEg	If <i>m</i> is the sum of the distance matrix entries then VdistEq is defined to be the sum of
v DistEq	$\log_2 m - p_i \log_2 p_i / m$ where p_i is the number of distance matrix entries equal to <i>i</i> .
VDistMa	If <i>m</i> is the sum of the distance matrix entries then VDistMa is defined to be the sum
v Distivia	of $\log_2 m - D_{ij} \log_2 D_{ij} / m$ over all <i>i</i> and <i>j</i> .
	Wiener path number: half the sum of all the distance matrix entries as defined in
wienerPath	[Balaban 1979] and [Wiener 1947].
· D 1	Wiener polarity number: half the sum of all the distance matrix entries with a value
wienerPol	of 3 as defined in [Balaban 1979].
Pharmacophore Feature De	scriptors
•	Number of hydrogen bond acceptor atoms (not counting acidic atoms but counting
a_acc	atoms that are both hydrogen bond donors and acceptors such as -OH).
a acid	Number of acidic atoms.
a base	Number of basic atoms.
	Number of hydrogen bond donor atoms (not counting basic atoms but counting
a_don	atoms that are both hydrogen bond donors and acceptors such as -OH).

a hyd	Number of hydrophobic atoms.						
2	Approximation to the sum of VDW surface areas $(Å^2)$ of pure hydrogen bond						
vsa acc	acceptors (not counting acidic atoms and atoms that are both hydrogen bond donors						
_	and acceptors such as -OH).						
vsa acid	Approximation to the sum of VDW surface areas of acidic atoms $(Å^2)$.						
vsa base	Approximation to the sum of VDW surface areas of basic atoms (A^2)						
	Approximation to the sum of VDW surface areas of pure hydrogen bond donors (not						
vsa don	counting basic atoms and atoms that are both hydrogen bond donors and accentors						
vsa_don	such as $-OH$ (Å ²)						
vea hyd	Approximation to the sum of VDW surface areas of hydronhobic atoms $(Å^2)$						
vsa_nyu	Approximation to the sum of VDW surface areas $(\hat{\lambda}^2)$ of atoms typed as "other"						
vsa_other	Approximation to the sum of VDW surface areas (Å) of atoms typed as other .						
vsa_pol	Approximation to the sum of vDw surface areas (A ⁻) of polar atoms (atoms that are						
	both hydrogen bond donors and acceptors), such as -OH.						
Partial Charge Descriptors							
Descriptors that depend on the	e partial charge of each atom of a chemical structure require calculation of those partial						
charges. Let q_i denote the part	hal charge of atom <i>i</i> as defined above. Let v_i be the van der Waals surface area (A ²) of						
atom <i>i</i> (as calculated by a con	nection table approximation). The following descriptors are calculated:						
Q_PC+	Total positive partial charge: the sum of the positive q_i . Q_PC+ is identical						
PEOE_PC+	to PC+ which has been retained for compatibility.						
Q_PC-	Total negative partial charge: the sum of the negative q_i . Q_PC- is identical to PC-						
PEOE_PC-	which has been retained for compatibility.						
Q_RPC+	Relative positive partial charge: the largest positive q_i divided by the sum of the						
PEOE_RPC+	positive q_i . Q_RPC+ is identical to RPC+ which has been retained for compatibility.						
Q_PRC-	Relative negative partial charge: the smallest negative q_i divided by the sum of the						
PEOE_RPC-	negative q_i . Q_RPC- is identical to RPC- which has been retained for compatibility.						
Q_VSA_POS	Total positive van der Waals surface area. This is the sum of the v_i such that q_i is						
PEOE_VSA_POS	non-negative. The v_i are calculated using a connection table approximation.						
Q_VSA_NEG	Total negative van der Waals surface area. This is the sum of the v_i such that q_i is						
PEOE_VSA_NEG	negative. The v_i are calculated using a connection table approximation.						
O VEA DOOS	Total positive polar <i>van der Waals</i> surface area. This is the sum of the <i>v_i</i> such						
Q_VSA_PPOS	that q_i is greater than 0.2. The v_i are calculated using a connection table						
PEOE_VSA_PPOS	approximation.						
Q VSA PNEG	Total negative polar van der Waals surface area. This is the sum of the v_i such						
PEOE VSA PNEG	that q_i is less than -0.2. The v_i are calculated using a connection table approximation.						
	Total hydrophobic van der Waals surface area. This is the sum of the v_i such that $ a_i $						
Q_VSA_HYD	is less than or equal to 0.2. The v_i are calculated using a connection table						
PEOE_VSA_HYD	approximation.						
O VSA POL	Total polar van der Waals surface area. This is the sum of the v such that $ a $ is						
PEOE VSA POL	greater than 0.2. The v_i are calculated using a connection table approximation						
	Fractional positive van der Waals surface area. This is the sum of the v, such						
Q_VSA_FPOS	that a_i is non-negative divided by the total surface area. The y are calculated using a						
PEOE_VSA_FPOS	connection table approximation						
	Eractional negative van dar Waals surface area. This is the sum of the v such						
Q_VSA_FNEG	The transformation of the total surface area. This is the sum of the v_i such that a_i is pagative divided by the total surface area. The v_i are calculated using a						
PEOE_VSA_FNEG	that q_i is negative divided by the total surface area. The v_i are calculated using a connection table approximation						
	Connection table approximation.						
Q_VSA_FPPOS	Fractional positive polar van der waals surface area. This is the sum of the v _i such						
PEOE VSA FPPOS	that q_i is greater than 0.2 divided by the total surface area. The v_i are calculated using						
	a connection table approximation.						
Q VSA FPNEG	Fractional negative polar van aer waals surface area. This is the sum of the v_i such						
PEOE VSA FPNEG	that q_i is less than -0.2 divided by the total surface area. The v_i are calculated using a						
	connection table approximation.						
O VSA FHYD	Fractional hydrophobic van der Waals surface area. This is the sum of the v_i such						
PEOE VSA FHYD	that $ q_i $ is less than or equal to 0.2 divided by the total surface area. The v_i are						
	calculated using a connection table approximation.						
Q VSA FPOL	Fractional polar van der Waals surface area. This is the sum of the v_i such that $ q_i $ is						

PEOE_VSA_FPOL	greater than 0.2 divided by the total surface area. The v_i are calculated using a
	connection table approximation.
PEOE_VSA+6	Sum of v_i where q_i is greater than 0.3.
PEOE_VSA+5	Sum of v_i where q_i is in the range [0.25,0.30).
PEOE_VSA+4	Sum of v_i where q_i is in the range [0.20,0.25).
PEOE_VSA+3	Sum of v_i where q_i is in the range [0.15,0.20).
PEOE_VSA+2	Sum of v_i where q_i is in the range [0.10,0.15).
PEOE_VSA+1	Sum of v_i where q_i is in the range [0.05,0.10).
PEOE_VSA+0	Sum of v_i where q_i is in the range [0.00,0.05).
PEOE_VSA-0	Sum of v_i where q_i is in the range [-0.05,0.00).
PEOE_VSA-1	Sum of v_i where q_i is in the range [-0.10,-0.05).
PEOE_VSA-2	Sum of v_i where q_i is in the range [-0.15,-0.10).
PEOE_VSA-3	Sum of v_i where q_i is in the range [-0.20,-0.15).
PEOE_VSA-4	Sum of v_i where q_i is in the range [-0.25,-0.20).
PEOE_VSA-5	Sum of v_i where q_i is in the range [-0.30,-0.25).
PEOE_VSA-6	Sum of v_i where q_i is less than -0.30.

	AChE										
Ligand	14.01		1EVE	114761	4EY6	4EY6	4EY7	4EY7			
IACJ	IDA6	IEVE	IWOK	(chain A)	(chain B)	(chain A)	(chain B)				
1	0.52	0.49	0.69	0.49	0.35	0.54	1.14	0.96			
2	0.42	0.50	0.87	0.45	0.71	0.54	1.70	1.58			
3	0.49	0.75	0.99	0.62	0.46	0.72	1.17	1.10			
					BACE	-1					
Ligand	OVELL	1070	FUT7	5HU0	5HU0	5HU1	5HU1				
	SVEU	4D/0	SHIZ	(chain A)	(chain B)	(chain A)	(chain B)				
1	1.12	0.83	2.09	1.19	1.48	0.75	0.97				
2	1.14	0.80	2.93	1.34	1.01	1.16	1.29				
3	1.47	0.92	2.67	1.62	1.01	1.15	1.41				

Table S6. Re-docking results (RMSD values in Å)

- Ligand 1: separated from the complex (native form, not prepared).

- Ligand 2: separated from the complex and re-prepared using mentioned appropriate procedure.

- Ligand 3: built and prepared from the beginning.

Table S7. Results of Molecular Docking of Curcumins

AChE

				Docking	g score (kJmol ⁻¹)		
Comp.	1401	1016	1EVE	111/61	4EY6	4EY6	4EY7	4EY7
	IACJ	IDX0	IEVE	IWOK	(chain A)	(chain B)	(chain A)	(chain B)
C1	Not docked	-24.1328	-25.6212	-25.4662	Not docked	Not docked	-34.3784	-36.2289
C2	Not docked	-30.9742	-23.9748	-25.1888	-23.2125	-12.7174	-23.5571	-31.9032

BACE-1

			Docking sc	ore (kJmol ⁻¹)	1	
Comp.	2VEU	4079	5HU0	5HU0	5HU1	5HU1
	3VEU	4D/0	(chain A)	(chain B)	(chain A)	(chain B)
C1	-24.2807	-10.2254	-17.2824	-22.0899	-17.3930	-14.7416
C2	-24.0393	-24.6386	-26.9986	-16.5107	-25.7811	-17.7866

Table S8. Results of Molecular Docking of 45 Screened Flavonoids

AChE

				Docking sco	ore (kJmol ⁻¹)			
Comm	1401	1DV6	1EVE	1W6D	4EY6	4EY6	4EY7	4EY7
Comp.	IACJ	IDA0	IEVE	IWOK	(chain A)	(chain B)	(chain A)	(chain B)
F1	-12.0618	-22.3781	-18.9030	-23.4092	-26.0704	-21.9408	-23.4116	-24.3408
F2	-21.3828	-21.1792	-23.2981	-27.0858	-21.9485	-21.5591	-28.7020	-30.9890
F3	-13.4475	-24.3904	-22.5304	-25.1471	-24.5858	-22.3901	-30.2081	-26.7821
F4	-16.0123	-22.8295	-22.2461	-19.7062	-20.6944	-19.0517	-21.4564	-21.3238
F5	-7.5262	-24.6627	-19.7850	-20.5093	-20.7438	-20.6685	-21.6841	-25.2464
F6	-13.5580	-18.7639	-21.9781	-18.6036	-20.3009	-14.1922	-20.9626	-21.0761
F7	-9.9819	-23.3978	-22.4062	-24.3032	-23.9333	-19.7709	-23.5900	-24.3024
F8	-19.5149	-22.8389	-22.8407	-20.9364	-21.8522	-22.6679	-22.6582	-22.8529
F9	-20.2663	-28.4602	-25.5345	-25.8010	-25.6296	-27.2649	-25.1678	-27.1133
F10	-16.5791	-22.6662	-18.0440	-24.8465	-22.1833	-20.5180	-22.5610	-23.4925
F11	-19.6910	-22.7552	-18.9415	-20.5700	-20.6336	-23.1171	-22.7930	-25.7063
F12	-28.2258	-28.4791	-26.3501	-30.4467	-29.3532	-30.9254	-28.9127	-33.8814
F13	-10.3653	-18.6836	-16.7264	-20.8186	-21.7743	-21.5369	-20.4117	-25.5742
F14	Not docked	-23.9202	-22.4849	-25.3507	-24.3460	-22.0860	-24.6864	-28.4700
F15	-22.4529	-24.6594	-23.8086	-19.3394	-21.0866	-22.9566	-33.5203	-31.8224
F16	Not docked	-25.2179	-19.6114	-22.4729	-21.2908	-16.7660	-25.4352	-27.0248
F17	-5.5811	-22.6225	-21.1004	-22.5060	-28.0683	-29.5975	-22.8341	-23.1114
F18	-14.6675	-26.8312	-16.1943	-22.5961	-22.5584	-26.6833	-27.2388	-25.8371
F19	-9.1813	-23.2421	-22.9078	-22.3891	-24.9791	-27.0724	-25.3394	-29.4205
F20	-21.5460	-20.8163	-21.6294	-21.4392	-23.7337	-20.7625	-25.8357	-25.1883
F21	Not docked	-14.7870	-17.7819	-17.5176	-24.6030	-20.9283	-20.9550	-21.2327
F22	-14.1209	-20.3342	-23.0535	-18.5286	-19.3338	-17.8781	-22.1666	-23.8686
F23	-11.4044	-20.8815	-22.5157	-19.0498	-19.5727	-18.4353	-20.6345	-24.8514
F24	-20.1935	-21.0835	-20.8666	-21.5331	-24.0959	-23.6559	-25.2652	-26.5880
F25	-21.5536	-32.0610	-27.5147	-28.7152	-25.8158	-27.9183	-37.6590	-35.6394
F26	-20.0899	-24.1971	-16.9469	-18.1873	-22.6949	-19.6880	-23.7688	-22.8605
F27	-14.1820	-16.9834	-13.2458	-20.7809	-21.1217	-18.2710	-26.5963	-24.0253
F28	-21.5076	-31.4750	-25.7109	-27.6128	-25.3963	-31.8587	-26.0085	-27.8597
F29	-12.9428	-23.6124	-27.1720	-21.2386	-26.3764	-29.2275	-22.1112	-24.0659
F30	-12.4444	-16.6759	-23.7233	-19.0557	-19.4550	-16.1588	-24.6189	-22.9723
F31	-11.2191	-16.8015	-21.4219	-17.6384	-20.7504	-16.1525	-23.7240	-25.7872
F32	-22.0626	-24.0253	-19.7194	-22.6002	-22.6114	-24.9575	-30.2555	-29.3262
F33	-22.7018	-22.9404	-22.6229	-22.7332	-22.9928	-22.1854	-28.3367	-23.9965
F34	-15.5600	-23.8956	-22.1222	-24.6781	-27.5752	-26.5423	-27.6069	-25.8094
F35	-17.1611	-17.8227	-13.8757	-19.3325	-23.2740	-22.7652	-29.0462	-24.6828
F36	-23.0233	-20.6052	-22.0908	-23.5264	-24.1917	-23.7474	-21.5136	-21.4094
F37	-20.5818	-22.4592	-21.8128	-22.9820	-21.0202	-22.7524	-23.3448	-22.4474
F38	-19.0606	-32.0050	-22.9780	-32.2649	-31.6249	-31.8352	-32.1923	-28.6235
F39	-20.4569	-27.0179	-25.8954	-25.3006	-25.0957	-25.1558	-27.8527	-28.1304
F40	-20.5126	-25.6165	-27.4122	-24.7137	-24.4960	-21.5195	-28.2155	-24.8449
F41	-17.6641	-19.3909	-17.7287	-21.6324	-21.0015	-21.9701	-20.9974	-20.7067
F42	-18.6271	-21.0632	-18.8899	-20.7085	-19.7733	-20.0073	-20.6404	-20.3391
F43	-12.2392	-19.8106	-23.9662	-20.3795	-22.1201	-20.9411	-19.5044	-21.3198
F44	-12.7998	-20.6217	-19.2991	-19.0739	-22.9853	-22.1737	-20.7577	-20.4096
F45	-18.8611	-30.3104	-24.4694	-23.1991	-24.4236	-23.3241	-35.9161	-31.6621

BACE-1

			Docking s	core (kJmol ⁻¹)		
Comp.	2VEU	1079	5HU0	5HU0	5HU1	5HU1
	JVEU	4D/0	(chain A)	(chain B)	(chain A)	(chain B)
F1	-24.0976	-14.9975	-19.0798	-17.2105	-24.9717	-23.1279
F2	-19.5067	-13.1095	-14.7868	-14.9229	-16.4678	-17.2022
F3	-23.2253	-14.3953	-17.2492	-17.8045	-19.6337	-19.1609
F4	-18.1798	-13.8693	-16.9733	-17.5194	-14.8097	-18.7405
F5	-23.2452	-13.3430	-21.0085	-15.0997	-13.9482	-14.9330
F6	-22.3548	-14.6395	-19.1106	-21.8683	-14.8273	-15.1312
F7	-27.6853	-15.1576	-19.0516	-18.3769	-17.0974	-17.1907
F8	-22,4403	-15.0131	-15.1116	-16.4599	-15.3285	-15.1951
F9	-21.3400	-15.9754	-18.5288	-17.8251	-20.3249	-19,4885
F10	-16.0028	-13.2684	-12.9418	-12.8389	-14.0145	-15.3733
F11	-21.6401	-10.9089	-16.0444	-17.8911	-16.1665	-13.4675
F12	-24 3245	-24 7768	-18 6106	-19 1233	-25 1448	-22.0106
F13	-18 6221	-12 3435	-14 8508	-13 7438	-14 4655	-17 5528
F14	-25 6240	-13 4531	-18 1305	-16 6662	-20 2198	-24 9800
F15	-19 4944	-13 8981	-15 4012	-14 4191	-18 2334	-18 4586
F16	-19 8738	-12 0599	-15 5066	-12 9914	-13 0521	-13 6387
F17	-21 3224	-16.0756	-16 8056	-16 6363	-17.0692	-20 8909
F18	-23 2231	-13 9112	-20 5961	-15 8662	-16 3414	-17 4564
F19	-23 5251	-14 8830	-18 6380	-17 9798	-19 2431	-18 8136
F20	-21 4360	-16 1004	-14 6125	-14 4733	-16 6811	-18 7916
F21	-17 9408	-15 5143	-14 4323	-15 5507	-14 3395	-15 0407
F22	-18 5452	-15 9043	-17 1959	-15 7601	-16 4728	-18 3509
F23	-18 8592	-15 3398	-17 5455	-17 1671	-16 2086	-17 9495
F24	-22 3912	-14 3622	-18 5844	-17.0652	-15 0872	-16 1928
F25	-24 6716	-18 5412	-17 0183	-17 4941	-21 2382	-21 9163
F26	-19 5872	-13 8563	-14 8729	-15 2658	-15 8633	-17 1390
F27	-16 9077	-11 1712	-12 9032	-12.8794	-12 7016	-16 0403
F28	-28 8694	-22 2429	-22 4020	-18 6305	-19.8570	-20 1542
F29	-22.6538	-16 9200	-19 5012	-19 5002	-15 5772	-20 6603
F30	-19 8772	-16 5934	-17 4529	-17.0162	-13 6939	-18 9678
F31	-20 4108	-15 9169	-17 7838	-16 7846	-14 4296	-19 6404
F32	-24.6975	-13.1931	-17.2961	-17.5663	-21.0621	-18.8726
F33	-24.6641	-13.2078	-18.0708	-16.2239	-20.5120	-22.2830
F34	-22.6318	-16.5918	-18.4368	-17.2444	-19.8521	-20.7125
F35	-16 0323	-12 7187	-15 1482	-15 6867	-13 2909	-16 7776
F36	-21 3753	-14 9042	-17 6353	-14 6895	-19 7802	-17 8277
F37	-21.8748	-13.6565	-17.3869	-15.8044	-16.6073	-15.0882
F38	-32.3704	-18.6677	-21.2405	-18.6529	-25.5348	-24.9926
F39	-24,7390	-20.9625	-19.8461	-19.4963	-18.5605	-24.0587
F40	-23,7950	-17.1070	-19.8752	-19.5461	-19.0494	-18.8044
F41	-25,1549	-14.5397	-16.9936	-18.1895	-15.5053	-15.2626
F42	-23,1142	-15.3050	-15.6572	-17.5268	-15.0859	-17.7446
F43	-23.0732	-18.1867	-18.4967	-18.9183	-17.0441	-20.2954
F44	-16.8179	-15.1796	-14.9778	-15.4666	-13.7183	-13.6423
F45	-23.1191	-16.2966	-17.1661	-17.7517	-23.0367	-24.6280

Flavonoid								
Compound	AChE	BACE-1	Compound	AChE	BACE-1	Compound	AChE	BACE-1
F1	4.74	6.12	F16	4.93	6.56	F31	5.00	5.87
F2	4.65	6.30	F17	4.99	5.31	F32	4.72	5.35
F3	4.74	6.22	F18	4.83	6.44	F33	4.72	5.76
F4	4.96	5.40	F19	4.99	6.44	F34	4.90	6.37
F5	4.80	6.47	F20	4.86	5.81	F35	4.57	4.73
F6	4.93	6.48	F21	4.60	5.91	F36	4.84	5.71
F7	4.97	6.13	F22	4.97	5.55	F37	4.84	6.11
F8	4.87	6.61	F23	4.96	5.94	F38	5.00	4.53
F9	4.86	6.77	F24	4.87	6.44	F39	4.76	4.96
F10	4.77	5.57	F25	4.72	5.58	F40	4.75	5.35
F11	4.90	6.31	F26	5.07	6.38	F41	5.09	5.47
F12	4.69	5.69	F27	4.55	4.85	F42	5.11	5.63
F13	4.87	6.16	F28	4.78	5.66	F43	4.97	5.42
F14	4.78	6.10	F29	4.96	5.26	F44	4.56	4.94
F15	4.68	6.23	F30	5.00	5.49	F45	4.70	5.15
Curcumin								
1	4.37	10.27						
2	4.24	9.13]					

Table S9. Predicted pIC_{50} of screened substances against AChE and BACE-1

Comp. Structure Comp. Structure -0 H._O O 0 Н Н ò Н Н F1 F25 Н Н H-Н Ή Ĥ Η H Н Н Н Ή ÌΗ H H H H _Н `Н Н H Н Н н Н Н 0. Н Н F2 F26 —нн́ н Н C O || 0 Н Н 0 Η S Ĥ Ĥ Н Ĥ Н Н н Ңн H ́Н О́ Н ΗO Н Н F3 F27 н H H Ĥ H-Ó Н Ή H С H Н н Ĥ H-N Н =0 Н C н CI F4 F28 0 Ή_Η Н ⊢ H Ĥ H Н Н Ò H_ H∠I Ĥ Н Н Н ,H Ö Η Н .Η H O Ö H 0. Н Н F5 F29 부 부 -H Ĥ F Ń_{`H} Ŏ H O Ĥ 0 H Η Ή ĥ н́ H∕↑ H Ή

Table S10. Structures of 47 screened substances

