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Abstract: The development of high-performance sensors is of great significance for the control of the
volatile organic compounds (VOCs) pollution and their potential hazard. In this paper, high crystalline
V2O5 nanoparticles were successfully synthesized by a simple hydrothermal method. The structure
and morphology of the prepared nanoparticles were characterized by TEM and XRD, and the
cataluminescence (CTL) sensing performance was also investigated. Experiments found that the
as-prepared V2O5 not only shows sensitive CTL response and good selectivity to 2-butanone, but also
exhibits rapid response and recovery speed. The limit of detection was found to be 0.2 mg/m3 (0.07 ppm)
at a signal to noise ratio of 3. In addition, the linear range exceeds two orders of magnitude, which
points to the promising application of the sensor in monitoring of 2-butanone over a wide concentration
range. The mechanism of the sensor exhibiting selectivity to different gas molecules were probed by
quantum chemistry calculation. Results showed that the highest partial charge distribution, lowest
HOMO-LUMO energy gap and largest dipole moment of 2-butanone among the tested gases result in it
having the most sensitive response amongst other VOCs.
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1. Introduction

Volatile organic compounds (VOCs) in residential buildings and in the workplace pose serious
threats to public health [1–3]. As a typical colorless VOC, 2-butanone is produced industrially on a
large scale, is widely used as a common solvent, denaturing agent and cleaning agent. It finds wide use
in the manufacture of plastics, textiles, paints and other coatings [4]. However, short-term inhalation
exposure to 2-butanone causes irritation to the eyes, nose, and throat of humans, and even central
nervous system depression [5]. Slight neurological, liver, kidney, and respiratory effects have also
been observed in chronic inhalation studies of 2-butanone in animals. Taking measures to protect
public health, the Occupational Safety and Health Administration has promulgated an 8-h permissible
exposure limit (PEL) of 590 mg/m3 (200 ppm) for 2-butanone [6]. Therefore, the development of a
simple and low-cost method for rapid monitoring of 2-butanone in air environments, especially in
workplaces, is of significant importance to avoid its potential hazard.

Gas sensors represent a versatile technology for harmful gas monitoring because of their advantages of
low-cost, small size and easy operation [7–10]. Nowadays, various gas sensors based on different principles,
such as electrochemistry [11–14], surface acoustic wave [15,16], quartz crystal microbalance [17,18],
and cataluminescence (CTL) [19–21], have been designed for the detection of different analytes. Among them,
gas sensors based on CTL have attracted a great deal of scientific interest. CTL is a phenomenon of light
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emission produced by the catalytic oxidation of analyte on solid nanomaterial surface. During the process of
CTL emission, only sample and oxygen in air are consumed; the solid nanomaterial is not consumed [22–24].
This characteristic means that CTL-based sensors have the advantage of good stability that is essential to
long-term monitoring. With the development of material science, many advanced nanomaterials have
been introduced into the design of CTL-based sensor. For instance, F-doped cage-like SiC-based sensors
for hydrogen sulfide [25], Y-doped metal-organic framework-5-based sensors for iso-butanol [26], sensors
based on hydrotalcite-supported gold nanoparticles for acetaldehyde [27], and sensors based on Y2O3 with
multi-shelled hollow structure for methanol [28]. The expanded availability of nanomaterials has greatly
advanced the development of CTL-based sensors.

Vanadium oxide (V2O5) has gained much research interest because of its excellent structural flexibility,
lower bandgap and high energy density [29,30]. These features enable V2O5 to be utilized for numerous
applications including gas sensing. Nanosized V2O5 with different structures have been synthesized for
the electrochemical sensing of ethanol [31], ammonia [32] and xylene [33]. However, the application of
nanosized V2O5 in the design of CTL-based sensors has seldom been reported. In this paper, nanosized
V2O5 was synthesized by a simple hydrothermal method. The as-prepared V2O5 was found to be a
promising candidate for CTL sensing of 2-butanone. The CTL sensor based on V2O5 exhibited high
sensitivity, good selectivity, rapid response speed and recovery speed to 2-butanone. Other VOCs,
including acetone, 3-pentanone, n-hexane, methanol, ethanol and so on, only produced a very weak or no
response when they flowed through V2O5 surface. It is well known that CTL-based sensors have a good
selectivity due to the harsh conditions for CTL emission. However, the gas-sensing selectivity mechanism
remains uncertain. Herein, the possible gas-sensing selectivity mechanisms were investigated based on
quantum chemistry calculation.

2. Results and Discussion

2.1. Characterizations of Nanosized V2O5

Figure 1 shows the XRD patterns of nanosized V2O5 and precursor before calcination. The XRD
pattern of precursor shows a poor crystallinity, the diffraction peaks cannot be assigned to any known
single compound, meaning the precursor may be an adduct, or a complex mixture of oxides and
hydroxides. For the XRD pattern of nanosized V2O5, all the diffraction peaks match the orthorhombic
crystalline phase of V2O5 (JCPDS card no. 41–1426).
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The grain sizes of V2O5 is was calculated by using the Debye-Scherrer equation [34]:

D =
κλ

β cos2θ
(1)

where κ is the shape factor and its value is 0.94, λ is the wavelength of X-ray radiation (1.5406 Å), β is
the full width at half the maximum intensity and θ is the Bragg angle in Radian. The d-spacing (Å) was
calculated by using Bragg’ equation [35]:

d =
nλ

β sin2θ
(2)

where n is the order of diffraction equal to 1. The dislocation density (nm−2) was calculated according
to the following equation [35]:

δ =
1

D2 (3)

The microstrain (ε) was calculated by using the following equation [36]:

ε =
β

4tan θ
(4)

Multiple peak fit was performed to determine the θ and β values from the XRD data. The results
are summarized in Table 1. The average grain size was calculated to be 30.46 nm. The average d-spacing,
δ and εwere determined to be 2.330 Å, 9.832 × 10−3 nm−2 and 5.275 × 10−3, respectively.

Table 1. The grain sizes, d-spacing, dislocation density and micro strain of nanosized V2O5. calculated
from the XRD data.

No. 2θ (o) Crystal Planes β (o) D (nm) d-Spacing (Å) δ × 10−3 (nm−2) ε × 10−3

1 15.33 (200) 0.2812 28.51 5.777 1.231 9.119
2 20.29 (001) 0.3049 26.47 4.373 1.427 7.434
3 21.68 (101) 0.2726 29.67 4.096 1.136 6.212
4 25.43 (201) 0.6638 12.27 3.500 6.643 12.84
5 26.09 (110) 0.2572 31.71 3.412 0.994 4.842
6 30.99 (301) 0.2598 31.73 2.883 0.993 4.088
7 32.33 (011) 0.2517 32.86 2.767 0.926 3.789
8 33.30 (111) 0.2407 34.44 2.689 0.843 3.513
9 34.38 (310) 0.3570 23.29 2.606 1.843 5.035

10 36.01 (211) 0.1961 37.80 2.492 0.551 2.632
11 37.35 (401) 0.1351 83.92 2.406 0.260 1.744
12 40.13 (311) 0.6619 12.78 2.245 6.125 7.907
13 41.22 (002) 0.2392 35.49 2.189 0.794 2.775
14 41.94 (102) 0.1983 42.91 2.152 0.543 2.257
15 44.25 (202) 0.5745 14.93 2.045 4.488 6.166
16 45.39 (411) 0.2626 32.79 1.997 0.930 2.740
17 47.33 (600) 0.2868 32.51 1.919 1.093 2.855
18 47.84 (302) 0.2932 29.64 1.900 1.138 2.884
19 48.78 (012) 0.2805 39.56 1.865 1.034 2.699
20 49.51 (112) 0.2962 90.94 1.840 1.146 2.803
21 51.20 (020) 0.2663 33.08 1.783 0.914 2.425
22 52.05 (601) 0.2992 29.55 1.756 1.145 2.673
23 52.59 (402) 0.5593 15.84 1.739 3.984 4.939
24 53.74 (220) 1.4643 6.08 1.704 27.03 12.61
25 55.56 (021) 0.2473 36.31 1.653 0.758 2.048
26 56.22 (121) 0.2986 91.35 1.635 1.099 2.439
27 58.46 (611) 0.0980 95.82 1.577 0.116 0.764
28 59.00 (412) 0.2296 39.76 1.564 0.632 1.770
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Table 1. Cont.

No. 2θ (o) Crystal Planes β (o) D (nm) d-Spacing (Å) δ × 10−3 (nm−2) ε × 10−3

29 60.10 (701) 4.4027 2.08 1.538 230.1 33.21
30 61.19 (321) 0.3442 26.81 1.514 1.391 2.540
31 62.09 (003) 0.2417 38.36 1.494 0.680 1.752
32 64.58 (512) 1.0553 8.91 1.442 12.610 7.287

Average values 30.46 2.330 9.832 5.275

The lattice constants were determined according to the following formula [37]:

1

d2 =
h2

a2 +
k2

b2 +
l2

c2 (5)

where h, k, l are the miller indices. Crystal planes of (200), (002) and (001) were chosen to determine
lattice constants, and a, b and c were calculated to be 1.155 nm, 0.356 nm and 0.4373 nm, respectively.
There calculated values are in very good approximation to standard values. [29,31]

Lower magnification the transmission electron microscopy (TEM) image (Figure 2a) shows the
nanosized V2O5 displays a nearly hexagonal structure. Figure 2b narrates the high-resolution TEM
(HRTEM) image of nanosized V2O5. The d-spacing of 0.44 nm is attributed to the (001) plane of
V2O5. The selected area electron diffraction (SAED) shows the ring pattern mainly arising from the
(001) and (002) planes of V2O5 structures, indicating the crystalline nature of V2O5 nanoparticles.
Energy-dispersive X-ray spectroscopy (EDAX) with color mapping analysis was carried out to gain
insight into the chemical composition and positional distribution of V and O in V2O5, the results are
shown in Figure 2d–f. The results of the XRD pattern and TEM images indicate that highly crystalline
V2O5 has been successfully synthesized.
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2.2. Optimization of Sensing Conditions

CTL is produced during the heterogeneous catalytic reaction emitting photoemissions, the CTL
spectrum usually is a continuum emission band ranging from the ultraviolet to blue wavelength.
Under the conditions of operating temperature at 231 ◦C and flow rate of 220 mL/min, the influence of
detection wavelength on sensing of 2-butanone was investigated in the range of 400–535 nm. Figure 3a
shows the dynamic response curves of 2-butanone measured by using different interference filters.
The maximum apparent CTL intensity (I) is observed at 460 nm of wavelength. The CTL response
signal (S), background noise (N) and signal to noise ratio (SNR) at different wavelengths are plotted in
Figure 3b. It can be seen that although the maximum S value appears at 460 nm, the background noise
emitted by thermal radiation increases with the increase in wavelength, resulting in SNR reaching its
maximum at 440 nm. Therefore, 440 nm was selected as the optimal wavelength for the CTL sensing
of 2-butanone.
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The operating temperature plays a critical role in gas sensing. Figure 3c shows the dynamic
response curves of 2-butanone measured at different operating temperatures. It can be seen that
the I value increases with the increase in operating temperature before 237 ◦C, and then decreases
when the operating temperature is above 237 ◦C. The Figure 3d shows the change trends of S, N and
SNR versus operating temperatures. It shows that the S value increases almost exponentially with
increasing operating temperature until 237 ◦C, and then decreases significantly with a further increase
in operating temperature. According to the classical theory, the luminous intensity is proportional
to luminous efficiency and reaction rate [38]. Therefore, the change trend of S value perhaps can
be attributed to the reaction rate, increasing exponentially with increasing operating temperature,
but higher operating temperatures accelerate the molecular motion that leads to quenching of CTL
emission. In addition, the background noise emitted by thermal radiation also increases with the
increase in operating temperature, rendering a decrease in S value and SNR. Because the maximum
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SNR is observed at 231 ◦C, a temperature of 231 ◦C was selected as the optimal operating temperature
for the CTL sensing of 2-butanone.

The influence of flow rate on the CTL sensing of 2-butanone was investigated by changing the
flow rate ranging from 150 to 225 mL/min. All the 2-butanone samples were introduced into the sensor
4 s after data acquisition. The dynamic response curves of 2-butanone at different flow rates are shown
in Figure 4a. It can be seen that the peak width of the dynamic response curve decreases as the flow
rate is raised. The response time (tRes) and recovery time (tRec) are two important performances to a
gas sensor. Here, the response time is defined as the time taken to reach the maximum response signal
after injection of sample, and the recovery time is defined as the time taken for maximum response
signal to recover to baseline.
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In order to further evaluate the relationship between flow rate and sensing performances,
the dynamic response curve at each flow rate was measured in three replicates, the change trends of
tRes and tRec versus flow rate are shown Figure 4b, and the relationship between S value and flow rate is
shown in Figure 4c. Both tRes and tRec decreases as the increasing of flow rate, and then almost remain
stable. For S value, it increases almost proportionally with increasing flow rate before 220 mL/min,
and then decreases with a further increase in flow rate. These results show that the catalytic oxidation
reaction of 2-butanone on nanosized V2O5 surface is controlled by diffusion rate when the flow rate
is below 220 mL/min; that is the total reaction rate is controlled by the rate of 2-butanone in the gas
phase transfer to the catalyst surface, and thereby the increase in flow rate causes increasing S value.
However, the total reaction rate is controlled by the oxidation rate of 2-butanone on the nanosized V2O5

surface when the flow rate exceeds 220 mL/min, resulting in tRec remaining stable. In addition, under
high flow rate conditions, 2-butanone molecules flow through the catalyst surface too quickly to be
sufficiently oxidized, rending a decrease in S value. In the case of 200 mg/m3 of 2-butanone, the short
response time of 2 s and quick recovery time of 9 s were observed under 220 mL/min. Therefore,
220 mL/min was used for the sensing of 2-butanone as the sensitive response, as well as the satisfactory
response and recovery time under this condition.

2.3. Evaluation of Selectivity

Selectivity is a very crucial performance for a gas sensor. The selectivity of a gas sensor can be
defined as [39]:

Selectivity =
Sother analyte

Starget analyte
× 100% (6)

The selectivity of nanosized V2O5 sensors was investigated by measuring 200 mg/m3 of 2-butanone
and 19 other kinds of gases commonly existing in workplace. Results showed that only 2-butanone,
acetone, 3-pentanone and n-hexane produce CTL responses. The dynamic response curves of 2-butanone,
acetone, 3-pentanone and n-hexane on nanosized V2O5 surface are shown in Figure 5a. A much stronger
response of 2-butanone was observed. Figure 5b displays the selectivity of the V2O5-based sensor
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calculated by equation 6. The CTL responses of acetone, 3-pentanone, n-hexane are about 8.8%, 1.4%
and 0.8% of that of 2-butanone, respectively. Other gases, including n-heptane, methanol, ethanol, ethyl
acetate, benzene, toluene, o-xylene, m-xylene, p-xylene, formaldehyde, acetaldehyde, trichloromethane,
tetrachloromethane, propyl acetate and ammonia, cannot induce a response under this condition.
The above results fully demonstrate that the CTL sensor based on nanosized V2O5 has a good selectivity
when sensing 2-butanone.

Molecules 2020, 25, x FOR PEER REVIEW 7 of 14 

 

acetaldehyde, trichloromethane, tetrachloromethane, propyl acetate and ammonia, cannot induce a 
response under this condition. The above results fully demonstrate that the CTL sensor based on 
nanosized V2O5 has a good selectivity when sensing 2-butanone. 

 

Figure 5. (a) The dynamic response curves of 2-butanone, acetone, 3-pentanone and n-hexane on 
nanosized V2O5 surface. (b) The selectivity of 2-butanone sensor based on nanosized V2O5. 
Wavelength: 440nm, temperature: 231 °C, flow rate: 220 mL/min, the concentration of all gases is 200 
mg/m3. 

2.4. Analytical Characteristics 

Figure 6a displays the CTL response signal of V2O5 toward different concentrations of 2-
butanone under. A good linear relationship between the response signal and the concentration of 2-
butanone was observed in the range of 0.5–600 mg/m3 (0.17–203 ppm). The linear regression equation 
is S = 117.4c + 177.7 (the correlation coefficient r = 0.9961), where S is the CTL response signal, and c 
is the concentration of 2-butanone. The limit of detection (LOD) at an SNR of 3 is 0.2 mg/m3 (0.07 
ppm). The Occupational Safety and Health Administration permissible exposure limit of 2-butanone 
during an 8-h workday is 590 mg/m3 (200 ppm) [6]. The LOD of the present sensor is much lower 
than the permissible exposure limit; moreover, the linear range exceeds two orders of magnitude, 
indicating that the sensor has a potential for routine monitoring of 2-butanone in the workplace 
where 2-butanone levels may vary in concentration from low to the occasional high level. 

 
Figure 6. (a) Linear relationship between the CTL response signal and the concentration of 2-butanone. 
(b) Results of six replicate determinations of 2-butanone. Wavelength: 440nm, temperature: 231 °C, 
flow rate: 220 mL/min. 

Figure 5. (a) The dynamic response curves of 2-butanone, acetone, 3-pentanone and n-hexane on
nanosized V2O5 surface. (b) The selectivity of 2-butanone sensor based on nanosized V2O5. Wavelength:
440nm, temperature: 231 ◦C, flow rate: 220 mL/min, the concentration of all gases is 200 mg/m3.

2.4. Analytical Characteristics

Figure 6a displays the CTL response signal of V2O5 toward different concentrations of 2-butanone
under. A good linear relationship between the response signal and the concentration of 2-butanone
was observed in the range of 0.5–600 mg/m3 (0.17–203 ppm). The linear regression equation is
S = 117.4c + 177.7 (the correlation coefficient r = 0.9961), where S is the CTL response signal, and c is
the concentration of 2-butanone. The limit of detection (LOD) at an SNR of 3 is 0.2 mg/m3 (0.07 ppm).
The Occupational Safety and Health Administration permissible exposure limit of 2-butanone during
an 8-h workday is 590 mg/m3 (200 ppm) [6]. The LOD of the present sensor is much lower than the
permissible exposure limit; moreover, the linear range exceeds two orders of magnitude, indicating
that the sensor has a potential for routine monitoring of 2-butanone in the workplace where 2-butanone
levels may vary in concentration from low to the occasional high level.
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The relative standard was 4.2% for five times sensing of 2-butanone at 200 mg/m3 (Figure 6b),
indicating that the sensor has a good reproducibility. The analytical characteristics of some sensors for
2-butanone are summarized in Table 2. Compared with the other sensors for 2-butanone, the present
sensor has a wider linear range and a lower LOD.

Table 2. Comparison of the gas sensing characteristics of sensors for 2-butanone based on different materials.

Principle Materials Temperature
(◦C)

Linear Rage
(mg/m3)

LOD
(mg/m3) References

CTL V2O5 231 0.5–600 0.2 Present work
CTL Zn-doped SnO2 241 2310–92570 600 [40]

Electrochemistry ZnO 400 5.9–295 1.2 [41]
Electrochemistry WO3-Cr2O3 205 14.75–295 ND [42]

ND stands for not discussion.

2.5. Gas-Sensing Selectivity Mechanism

The gas sensing process usually relates to the surface adsorption and surface reaction of gas molecules
on the metal oxide nanoparticle. When metal oxide nanoparticles are heated in air, O2 molecules from
the air can be adsorbed on the surface of metal oxide nanoparticle, and then chemisorbed oxygen species
(O2−, O−, and O2−) are formed by trapping electrons from the conduction band [4,42]. The working
temperature has an important impact on the type of chemisorbed oxygen species. An increase in
temperature, the chemisorbed oxygen adsorbed on the surface of metal oxide nanoparticle undergoes the
following state:

O2(gas)→ O2(ads)

O2(ads) + e− → O−2 (ads)

O−2 (ads) + e− → 2O−(ads)

O−(ads) + e− → O2−(ads)

Previous studies demonstrated that O− is the most active and stable chemisorbed oxygen species
in the range of 100–300 ◦C [38]. Upon exposure to VOCs, VOCs can be oxidized into CO2 by the
chemisorbed oxygen species on the surface of metal oxide nanoparticle [43]. If an excited intermediate
was formed during the above process, and the excited intermediate returned to the ground state via
radiative transition, CTL emission could be observed. From Figure 2, it can be seen that nanosized
V2O5 exhibits a sensitive CTL response to 2-butanone, and a weak response to acetone, 3-pentanone
and n-hexane. Although it is very difficult to identify the luminous species due to the very short-lived
excited states, we can conclude that the catalytic reaction of the 2-butanone is more favorable to produce
CTL emission than other VOCs (e.g., acetone, 3-pentanone and n-hexane) on nanosized V2O5 surface.

The sensing response is affected by the reactivity and absorptivity of gas molecules on sensing
materials. In order to probe the mechanism behind the sensor shows different response to different
VOCs, quantum calculations were implemented, and 2-butanone, acetone, and 3-pentanone and
n-hexane were selected as representatives. All the optimization of structures and analysis of vibrational
frequencies (energy calculation) in this study were performed using Gaussian 09 with B3LYP/6-311G
(d, p) basis set.

The 3D molecular structures of the four molecules and their partial charge distribution calculated
by Gaussian are shown in Figure 7. It can be seen that C1 site in 2-butanon, C1/C3 sites in acetone,
O1 site in 3-pentanone, and C1/C6 sites in n-hexane are the more active sites to occur reactions due to
these sites has higher charge dense than other sites in corresponding molecular structures. Because C1
site in 2-butanon has highest charge dense (−0.3249 e), meaning that 2-butanone is easier to react with
the chemisorbed oxygen species than other gas molecules.
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It has been revealed that the highest occupied and lowest unoccupied molecular orbitals (HOMO and
LUMO) play a prominent role in governing chemical reaction. A large energy gap (Eg = EHOMO-ELUMO)
between HOMO and LUMO implies high stability, which indicates low chemical reactivity. In turn, a small
energy gap implies low stability and thereby high chemical reactivity [44]. Figure 8 illustrates the energy
gaps in graph forms respective to the HOMO and LUMO levels of four molecules. The HOMO-LUMO
energy gaps for 2-butanone, acetone, and 3-pentanone and n-hexane are 6.11, 6.18, 6.39 and 9.71 eV.
It means that in order of reactivity from highest to lowest is 2-butanone, acetone, and 3-pentanone
and n-hexane. A high level of consistency exists between the energy gap and the CTL response signal.
Moreover, it was reported that the absorptivity of gas molecules on sensing materials is associated
with the dipole moment of molecule in its gaseous state. The larger the dipole moment, the higher
the attractive force between the gas molecule and sensing material [45,46]. The dipole moments in the
molecular structure of 2-butanone, acetone, and 3-pentanone and n-hexane were calculated to be 2.7497,
2.6475, 2.6246 and 0 D, respectively. The dipole moment of 2-butanone is larger than other gas molecule,
suggesting the interaction between 2-butanone molecules and nanosized V2O5 is strongest among these
gases. Therefore, more 2-butanone molecules can react with the chemisorbed oxygen species on the
nanosized V2O5 surface, displaying the observed selective response toward 2-butanone.Molecules 2020, 25, x FOR PEER REVIEW 10 of 14 
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According to the above discussion, we can conclude that the catalytic oxidations of 2-butanone,
acetone, and 3-pentanone and n-hexane on nanosized V2O5 surfaces are able to form excited
intermediates and favor their radiative transitions. The highest partial charge distribution, lowest
HOMO-LUMO energy gap and largest dipole moment of 2-butanone among the tested gases are
responsible for its strongest sensing response. However, more research is still needed to better explain
the detailed mechanism relating to excited state chemistry.

3. Experimental Section

3.1. Synthesis and Characterizations of Nanosized V2O5

Nanosized V2O5 was synthesized by a simple hydrothermal method. briefly, ammonium
metavanadate solution (30 mL, 30 mg/mL) was mixed with dilute hydrochloric acid solution (20 mL,
1.0 mol/L) under vigorous stirring at room temperature till appearing bright yellow clarified liquid.
The resultant solution was transferred into a 100 mL Teflon container. The Teflon container was sealed
tightly by a stainless-steel autoclave, and then the autoclave was subjected to hydrothermal reaction
at 180 ◦C for 12 h in a vacuum oven. The resultant precipitates were centrifuged and washed with
deionized water and ethanol five times. Afterwards, the collected precipitates were dried at 100 ◦C for
10 h in a vacuum oven. Finally, the dried powders were calcined at 500 ◦C in the air for 2 h to obtain
nanosized V2O5.

The morphology of the as-prepared nanosized V2O5 was characterized by TEM (FEI Tecnai G2
F20) with an accelerating voltage of 200 kV. Elemental analyses were performed by EDAX (Bruker Nano
GmbH). The phase structure was investigated by Powder X-ray diffraction (XRD, Rigaku, Ultima IV)
with Cu Kα radiation (λ = 1.5406 Å).

3.2. Fabrication of the Sensor System

The schematic diagram of the sensor for 2-butanone is shown in Figure 9. Nanosized V2O5 was
sintered onto a ceramic heater to form a catalyst layer. The ceramic heater was inserted into a home-made
quartz tube (length = 10 cm, diameter = 0.6 cm) with gas-inlet and gas-outlet. The quartz tube was
placed into a sample chamber with a nono-paque widow at the bottom. The temperature of catalyst layer
was controlled by adjusting the output voltage of the temperature controller connecting to the ceramic
heater, and the detailed temperature could be measured by thermocouple. A photomultiplier (PMT) was
assembled into a cylindrical tube under the nono-paque widow for measurement of luminous signal.
Interference filters were used to reduce the background noise, and the detection wavelength can be
selected by inserting different interference filters between the quartz tube and PMT. The air and sample
were delivered by an air pump. The sample reacted with the oxygen in air on the surface of nanosized
V2O5 to produce light emission. A commercial BPCL ultra-weak luminescence analyzer was used record
and process the signal intensity.

The peak intensity on dynamic response curves directly recorded by the instrument is defined as
apparent CTL intensity. The CTL response signal (S) is equal to the apparent CTL intensity minus the
background noise, and can be expressed as:

S = I−N (7)

where I is the apparent CTL intensity on dynamic response curves, N stands for the background noise.
The signal to noise ratio (SNR) is described as:

SNR =
S
N

(8)
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3.3. Methods for Quantum Calculations

Quantum calculations were implemented to reveal the mechanism of the difference of gas-sensing
selectivity mechanism. Three compounds, 2-butanone, acetone, and 3-pentanone and n-hexane were
selected as representatives in this theoretical study. All the optimization of structures and analysis
of vibrational frequencies (energy calculation) in this study were performed by using Gaussian 09
with B3LYP/6-311G (d, p) basis set. After the structural optimization, Mulliken charges were obtained.
Based on these values, the dipole moment (µ) along X, Y, and Z axis (µx, µy, and µz) can be calculated.
The dipole moment is calculated on the basis of the following equation:

(µ) =
√

u2
x + u2

y + u2
z (9)

The energy of the HOMO) and LUMO were calculated based on the population analysis using
Self-Consistent Field density.

4. Conclusions

In conclusion, V2O5 nanomaterials were successfully synthesized by a simple and facile hydrothermal
method. CTL-based gas sensor fabricated by nanosized V2O5 shows high sensitivity, good selectivity, rapid
response and recovery speed to 2-butanone. The detection conditions, including detecting wavelength,
operating temperature and flow rate on the sensing of 2-butanone, were investigated in detail. Quantum
chemistry calculation was performed to probe the gas-sensing selectivity mechanism. The CTL sensor
based on V2O5 shows high sensitivity and selectivity to 2-butanone which can be attributed to 2-butanone
having a highest partial charge distribution, the lowest HOMO-LUMO energy gap and the largest dipole
moment. All these factors favor 2-butanone molecules reacting more easily with the chemisorbed oxygen
species on the nanosized V2O5 surface. This work provides a promising method for the monitoring of
2-butanone in the indoor air environment, including in the workplace, in industry, and in houses.
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