

Supplementary Materials

Sustainable Development of Enhanced Luminescence Polymer-Carbon Dots Composite Film for Rapid Cd²⁺ Removal from Wastewater

Mohammed Abdullah Issa * and Zurina Z. Abidin *

Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

* Correspondence: mohbaghdadi1@yahoo.com (M.A.I.), zurina@upm.edu.my (Z.Z.A.)

Figure S1. Zeta potential of CDs.

Figure S2. XPS spectrum of CMC, CDs and PVA-CDs.

Table S1. Elemental compositions of the EFB, CDs and PVA-CDs samples by XPS analysis.

Sample	C (%)	O (%)	N (%)	Na (%)
EFB	39.6	59.4	-	0.82
CDs	66.5	12.3	21.4	-
PVA-CDs	24.2	64.3	11.2	0.24

Figure S3. Photostability of PVA-CDs composite film at different aging times (**a**) and at different heating temperatures (**b**).

Figure S4. Selectivity removal of Ni(II), Pb(II), Cd(II), Zn(II) and Hg(II) by using PVA-CDs composite film.

Figure S5. Pseudo-first-order model (a) and Freundlich isotherm (b) for removal of Cd²⁺ onto PVA-CDs.

Figure S6. (a) TEM image, (b) Zeta potential and (c) FTIR of PVA-CDs film in the presence of Cd2+. Inset: size distribution.