

Supplementary Materials

NMR-Based Metabolic Profiling of Edible Olives – Determination of Quality Parameters

Stavros Beteinakis ¹, Anastasia Papachristodoulou ¹, Georgia Gogou ^{1,2}, Sotirios Katsikis ¹, Emmanuel Mikros ³, Maria Halabalaki ¹, *

- ¹ Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece;
 E-Mails: sbeteinakis@pharm.uoa.gr (S.B.); anpapac@pharm.uoa.gr (A.P.); sotirisk@gmail.com (S.K.); mariahal@pharm.uoa.gr (M.H.)
- ² Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, 127 Vas. Sofias av., 11521 Athens, Greece; E-mail: gogo94go122@hotmail.com
- ³ Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece; E-mail: mikros@pharm.uoa.gr
- * Correspondence: mariahal@pharm.uoa.gr; Tel.: +30-210-7274781 (M.H)

Content

Table S1. Description of samples' chracteristics. 2 Figure S1. PLS-DA scores plot of the geographical origin parameter with the respective conducted permutation tests. 3 Figure S2. OPLS-DA scores plots of the geographical origin parameter with their respective S-plots. 4 Figure S3. PLS-DA scores plot of the variety parameter with the respective conducted permutation tests. 5 Figure S4. OPLS-DA scores plots of the geographical origin parameter with their respective S-plots. 6 Figure S5. PLS-DA scores plot of the processing parameter with the respective conducted permutation tests. 7 Figure S6. OPLS-DA scores plot of the processing parameter with its respective S-plot. 7 Table S2. VIPs lists from all OPLS-DA models. 8 Figure S7. Box-plots of the remaining markers in the origin parameter. 15 Figure S8. Box-plots of the remaining markers in the variety parameter. 16 Table S3. T-test applied at the processing method parameter, Greek vs Spanish. 16

Observation	Region	Subregion	Variety	Colour	Fermentation
	D 1	N6 · ·	IC 1	D1 1	<u> </u>
GMKa_1	Peloponnese	Messinia	Kalamon	Black	Greek
GLKa_2	Peloponnese	Lakonia	Kalamon	Black	Greek
GMKa_3	Peloponnese	Messinia	Kalamon	Black	Greek
GMKa_4	Peloponnese	Messinia	Kalamon	Black	Greek
GLKa_5	Peloponnese	Lakonia	Kalamon	Black	Greek
GMKa_6	Peloponnese	Messinia	Kalamon	Black	Greek
GLKa_7	Peloponnese	Lakonia	Kalamon	Black	Greek
GFKa_8	Sterea Ellada	Fthiotida	Kalamon	Black	Greek
GAKa_9	Sterea Ellada	Aitol/nia	Kalamon	Black	Greek
GAKa_10	Sterea Ellada	Aitol/nia	Kalamon	Black	Greek
GMKa_11	Peloponnese	Messinia	Kalamon	Black	Greek
GMKa_12	Peloponnese	Messinia	Kalamon	Black	Greek
GMKa_13	Peloponnese	Messinia	Kalamon	Black	Greek
GMKa_14	Peloponnese	Messinia	Kalamon	Black	Greek
GMKa_15	Peloponnese	Messinia	Kalamon	Black	Greek
GAKa 16	Sterea Ellada	Aitol/nia	Kalamon	Black	Greek
GAKa 17	Sterea Ellada	Aitol/nia	Kalamon	Black	Greek
GAKa 18	Sterea Ellada	Aitol/nia	Kalamon	Black	Greek
GAKa 19	Sterea Ellada	Aitol/nia	Kalamon	Black	Greek
GAKa 20	Sterea Ellada	Aitol/nia	Kalamon	Black	Greek
GAKa 21	Sterea Ellada	Aitol/nia	Kalamon	Black	Greek
GAKa 22	Sterea Ellada	Aitol/nia	Kalamon	Black	Greek
GAKa 23	Sterea Ellada	Aitol/nia	Kalamon	Black	Greek
GAKa 24	Sterea Ellada	Aitol/nia	Kalamon	Black	Greek
GAKa 25	Sterea Ellada	Aitol/nia	Kalamon	Black	Greek
GAKa 26	Sterea Ellada	Aitol/nia	Kalamon	Black	Greek
GAKa 27	Sterea Ellada	Aitol/nia	Kalamon	Black	Greek
CLK ₂ 28	Pelopoppese	Lakonia	Kalamon	Black	Greek
CLKa 29	Peloponnese	Lakonia	Kalamon	Black	Creek
CMK_2 162	Poloponnese	Mossinia	Kalamon	Black	Crook
CEV 1	Storea Ellada	Ethiotida	Koncorvolia	Black	Greek
CEV 2	Sterea Ellada	Ethiotida	Konservolia	Black	Greek
GFK_2	Sterea Ellada	Fullouida	Konservolia	Plack	Greek
GFK_3	Sterea Ellada	Funiouda	Konservolia	Dlack Dlack	Greek
GFK_4	Sterea Ellada	Funiouda	Konservolia	Plack	Greek
GFK_3	Sterea Ellada	Funiouda	Konservolla	DIACK	Greek
GFK_6	Sterea Ellada	Fthiotida	Konservolia	Black	Greek
GMK_I	Sterea Ellada	Magnesia	Konservolia	Black	Greek
GMK_2	Sterea Ellada	Magnesia	Konservolia	Black	Greek
GMK_3	Sterea Ellada	Magnesia	Konservolia	Black	Greek
GMK_4	Sterea Ellada	Magnesia	Konservolia	Black	Greek
GMK_5	Sterea Ellada	Magnesia	Konservolia	Black	Greek
GMK_6	Sterea Ellada	Magnesia	Konservolia	Black	Greek
GFK_7	Sterea Ellada	Fthiotida	Konservolia	Black	Greek
GFK_8	Sterea Ellada	Fthiotida	Konservolia	Black	Greek
GFK_9	Sterea Ellada	Fthiotida	Konservolia	Black	Greek
SKX_1	Makedonia	Kavala	Chalkidikis	Green	Spanish
SKX 2	Makedonia	Kavala	Chalkidikis	Green	Spanish

SKX_3	Makedonia	Kavala	Chalkidikis	Green	Spanish
SKX_4	Makedonia	Kavala	Chalkidikis	Green	Spanish
SKX_5	Makedonia	Kavala	Chalkidikis	Green	Spanish
SKX_6	Makedonia	Kavala	Chalkidikis	Green	Spanish
SXX_1	Makedonia	Chalkidiki	Chalkidikis	Green	Spanish
SXX_2	Makedonia	Chalkidiki	Chalkidikis	Green	Spanish
SXX_3	Makedonia	Chalkidiki	Chalkidikis	Green	Spanish
SXX_4	Makedonia	Chalkidiki	Chalkidikis	Green	Spanish
SXX_5	Makedonia	Chalkidiki	Chalkidikis	Green	Spanish
SXX_6	Makedonia	Chalkidiki	Chalkidikis	Green	Spanish
SXX_7	Makedonia	Chalkidiki	Chalkidikis	Green	Spanish
SXX_8	Makedonia	Chalkidiki	Chalkidikis	Green	Spanish
SXX_9	Makedonia	Chalkidiki	Chalkidikis	Green	Spanish

Figure S1. (a) PLS-DA scores plot with a clear distinction of samples from Makedonia; (b) Permutation test with 500 permutations performed at the presented PLS-DA model with samples from Makedonia, verifying the validity of the model.; (c) Respective permutation test with samples from Peloponnese; (d) Respective permutation test with samples from Sterea Ellada.

Figure S2. OPLS-DA models for the geographical origin parameter with their respective S-plots. (**a**) Sterea Ellada vs Makedonia; (**b**) Respective S-plot; (**c**) Peloponnese vs Makedonia; (**d**) Respective S-plot; (**e**) Peloponnese vs Sterea Ellada; (**f**) Respective S-plot.

Figure S3. (a) PLS-DA score plot depicting the formation of three clusters, Konservolia, Kalamon and Chalkidikis; (b) Permutation test with 500 permutations performed at the presented PLS-DA model with samples from Chalkidikis variety, verifying the validity of the model.; (c) Respective permutation test with samples from Kalamon variety; (d) Respective permutation test with samples from Konservolia variety.

Figure S4. OPLS-DA models for the variety parameter with their respective S-plots. (**a**) Konservolia vs Chalkidikis; (**b**) Respective S-plot; (**c**) Konservolia vs Kalamon; (**d**) Respective S-plot; (**e**) Kalamon vs Chalkidikis; (**f**) Respective S-plot.

Figure S5. (a) PLS-DA scores plot with a clear distinction between the samples of Spanish and Greek processing style; (b) Permutation test with 500 permutations performed at the presented PLS-DA model with samples that have undergone Greek style processing, verifying the validity of the model.; (c) Respective permutation test with samples that have undergone Spanish style processing.

Figure S6. (a) OPLS-DA model between the samples of Spanish and Greek processing style; (b) Respective S-plot.

1

	Gre	eek vs Sp	anish		S	terea E	llada vs N	Aakedonia	Peloponnese vs Sterea Ellada					Peloponnese vs Ma			Iakedonia
No	Var	VIP	Compound		No	Var	VIP	Compound	No	Var	VIP	Compound		No	Var	VIP	Compound
110	ID	score	Compound	_	NU	ID	score	Compound		ID	score	Compound	_	INU	ID	score	Compound
1	2.2	2.5550	TAGs		1	8.47	2.9328	FA	1	0.7	2.1569	n.i.		1	7.32	2.1706	Lut
2	8.47	2.3774	FA		2	2.2	2.6617	TAGs	2	0.69	2.0995	n.i.		2	6.15	2.1666	Lut
3	7.32	2.2569	Lut		3	1.05	2.3197	n.i.	3	0.71	2.0918	OA		3	6.39	2.1645	Lut
4	6.15	2.2488	Lut		4	6.54	2.2630	n.i.	4	0.68	2.0903	n.i.		4	2.2	2.0598	TAGs
5	6.39	2.2469	Lut		5	6.39	2.1535	Lut	5	6.96	1.9811	Tyr		5	6.84	1.9906	Lut
6	1.05	1.9995	n.i.		6	6.15	2.1462	Lut	6	6.64	1.9383	Tyr		6	7.67	1.9398	Quer
7	6.54	1.9903	n.i.		7	7.32	2.1129	Lut	7	0.65	1.8330	n.i.		7	6.13	1.9106	Quer
8	5.27	1.9619	TAGs		8	6.43	2.0967	n.i.	8	7.67	1.8261	Quer		8	6.22	1.8456	Ver
9	1.85	1.9306	AA		9	5.27	2.0630	TAGs	9	8.47	1.7782	FA		9	6.75	1.7565	n.i.
10	6.22	1.8908	Ver		10	1.85	2.0560	AA	10	6.13	1.7657	Quer		10	6.99	1.7012	Ver
11	6.84	1.8339	Lut		11	5.69	1.8720	n.i.	11	4.01	1.7457	LA		11	6.26	1.6730	n.i.
12	6.43	1.8134	n.i.		12	5.73	1.8665	n.i.	12	0.64	1.7442	n.i.		12	7.54	1.6664	Ver
13	1.97	1.7812	TAGs		13	6.22	1.8368	Ver	13	6.84	1.7276	Lut		13	6.68	1.6450	n.i.
14	5.69	1.6946	n.i.		14	1.97	1.8231	TAGs	14	7.33	1.7198	Lut		14	6.34	1.6142	Quer
15	6.75	1.6909	n.i.		15	5.68	1.8050	n.i.	15	5.61	1.6970	n.i.		15	7.58	1.6101	Quer
16	6.26	1.6752	n.i.		16	5.74	1.6786	n.i.	16	0.73	1.6871	n.i.		16	6.72	1.6055	Ver
17	6.13	1.6541	Quer		17	5.72	1.6758	n.i.	17	0.76	1.6586	MA/OA		17	Ald	1.5528	n.i.
18	6.24	1.6366	n.i.		18	6.86	1.6662	Lut	18	6.15	1.6441	Lut		18	5.27	1.5516	TAGs
19	5.73	1.6246	n.i.		19	6.51	1.6573	Ver	19	6.78	1.5861	n.i.		19	6.82	1.5234	Quer
20	1.24	1.6205	TAGs		20	6.24	1.6533	n.i.	20	6.72	1.5845	Ver		20	4.52	1.4904	n.i.
21	0.83	1.6115	TAGs		21	1.24	1.6414	TAGs	21	2.65	1.5654	Tyr		21	6.95	1.4845	Tyr
22	7.54	1.6092	Ver		22	6.26	1.6206	n.i.	22	6.39	1.5456	Lut		22	1.97	1.4717	TAGS
23	7.67	1.5975	Quer		23	0.83	1.6012	TAGs	23	6.68	1.5442	n.i.		23	6.65	1.4504	Tyr
24	5.68	1.5972	n.i.		24	2	1.5666	TAGs	24	6.82	1.4906	Quer		24	7.4	1.4309	n.i.
25	2.01	1.5526	TAGs		25	6.75	1.5437	n.i.	25	0.74	1.4714	MA		25	4	1.4214	LA
26	5.72	1.5217	n.i.		26	1.04	1.5392	PA	26	1.02	1.4297	Ver		26	8.47	1.4173	FA

Table S2. VIPs list. Variables in descending order of significance in the formation of the model with the respective identified compounds.

No	Var	VIP	Compound	No	Var	VIP	Compound	No	Var	VIP	Compound		No	Var	VIP	Compound
110	ID	score	compound	110	ID	score	compound	110	ID	score	compound		110	ID	score	compound
27	1.54	1.5085	TAGs	27	5.7	1.5182	n.i.	27	0.77	1.4143	n.i.		27	5.6	1.4171	n.i.
28	ald	1.4819	n.i.	28	5.75	1.5096	n.i.	28	7.58	1.4123	Quer		28	6.17	1.4164	n.i.
29	6.68	1.4788	n.i.	29	4.14	1.5005	n.i.	29	4.5	1.3879	n.i.		29	6.9	1.4123	Ver
30	6.51	1.4728	Ver	30	1.93	1.4991	n.i.	30	2.91	1.3803	n.i.		30	4.54	1.3983	n.i.
31	5.74	1.4645	n.i.	31	1.02	1.4744	PA/Ver	31	1.3	1.3780	LA		31	6.54	1.3975	n.i.
32	6.99	1.4560	Ver	32	7.54	1.4718	Ver	32	6.75	1.3719	n.i.		32	4.41	1.3754	n.i.
33	1.93	1.4408	n.i.	33	1.54	1.4626	TAGs	33	0.66	1.3694	n.i.		33	2.71	1.3631	Lin
34	7.36	1.4302	n.i.	34	7.36	1.4621	n.i.	34	0.78	1.3693	n.i.		34	4.46	1.3629	n.i.
35	6.29	1.4291	n.i.	35	6.29	1.4251	n.i.	35	6.89	1.3683	Ver		35	1.05	1.3561	n.i.
36	4.41	1.3925	n.i.	36	2.12	1.3934	PA	36	6.74	1.3561	n.i.		36	6.29	1.3549	n.i.
37	5.7	1.3896	n.i.	37	4.09	1.3919	TAGs	37	6.99	1.3420	Ver		37	7.37	1.3509	n.i.
38	2.71	1.3748	Lin	38	6.68	1.3803	n.i.	38	7.75	1.3300	n.i.		38	5.69	1.3482	n.i.
39	5.88	1.3564	n.i.	39	5.71	1.3638	n.i.	39	1	1.3203	n.i.		39	6.37	1.3435	n.i.
40	7.4	1.3552	n.i.	40	4.41	1.3594	n.i.	40	0.79	1.3104	n.i.		40	0.83	1.3389	TAGs
41	6.34	1.3548	Quer	41	1.33	1.3414	LA	41	4.52	1.3089	n.i.		41	1.85	1.3259	AA
42	7.57	1.3435	Quer	42	5.88	1.3270	n.i.	42	2.92	1.3054	n.i.		42	2.01	1.3211	TAGs
43	7.37	1.3349	n.i.	43	6.13	1.3264	Quer	43	1.28	1.2823	TAGs		43	4.32	1.3209	Ver
44	3.75	1.3207	n.i.	44	7.56	1.3258	n.i.	44	6.93	1.2811	n.i.		44	1.54	1.3200	TAGs
45	6.37	1.3173	n.i.	45	6.37	1.3229	n.i.	45	7.78	1.2719	n.i.		45	1.24	1.3195	TAGs
46	4.09	1.3148	TAGs	46	ald	1.3162	n.i.	46	2.9	1.2712	n.i.		46	2.74	1.3057	n.i.
47	6.17	1.2969	n.i.	47	2.71	1.3034	Lin	47	1.74	1.2671	n.i.		47	2.92	1.3031	n.i.
48	7.38	1.2761	n.i.	48	6.33	1.2851	Quer	48	4.38	1.2647	n.i.		48	6.43	1.3023	n.i.
49	6.72	1.2730	Ver	49	0.71	1.2848	OA	49	6.34	1.2295	Quer		49	7.59	1.2998	n.i.
50	5.75	1.2665	n.i.	50	3.75	1.2737	n.i.	50	6.7	1.2241	n.i.		50	1.31	1.2968	LA
51	3.49	1.2551	n.i.	51	7.37	1.2678	n.i.	51	3.94	1.2234	n.i.		51	4.48	1.2861	n.i.
52	4.32	1.2484	Ver	52	7.67	1.2353	Quer	52	6.22	1.2226	Ver		52	0.65	1.2728	n.i.
53	2.12	1.2419	PA	53	5.67	1.2328	n.i.	53	1.66	1.2154	n.i.		53	5.88	1.2563	n.i.
54	1.31	1.2416	LA	54	2.3	1.2303	TAGs	54	7.72	1.2120	n.i.		54	3.75	1.2508	n.i.
55	1.04	1.2415	PA	55	6.99	1.2174	Ver	55	4.45	1.2005	n.i.		55	5.55	1.2456	n.i.

No	Var	VIP	Compound	No	Var	VIP	Compound	No Var		VIP	Compound		No	Var	VIP	Compound
INU	ID	score	Compound	INU	ID	score	Compound	INU	ID	score	Compound		INU	ID	score	Compound
56	7.61	1.2238	n.i.	56	3.49	1.2124	n.i.	56	0.8	1.1881	n.i.		56	0.73	1.2441	n.i.
57	4	1.2217	LA	57	6.6	1.2026	HT	57	2.45	1.1772	SA		57	1.66	1.2368	n.i.
58	2.3	1.2153	TAGs	58	0.77	1.1962	n.i.	58	1.49	1.1757	n.i.		58	2.91	1.2218	n.i.
59	6.82	1.2082	Quer	59	6.17	1.1945	n.i.	59	1.75	1.1632	n.i.		59	6.49	1.2075	Lut
60	4.46	1.2036	n.i.	60	7.38	1.1928	n.i.	60	6.61	1.1539	HT		60	0.69	1.1883	n.i.
61	1.02	1.2030	Ver/PA	61	7.49	1.1840	n.i.	61	1.07	1.1535	n.i.		61	1.93	1.1790	n.i.
62	5.71	1.2004	n.i.	62	7.4	1.1833	n.i.	62	6.26	1.1499	n.i.		62	3.49	1.1757	n.i.
63	2.74	1.1875	n.i.	63	4.97	1.1832	n.i.	63	1.09	1.1476	OA		63	2.93	1.1720	n.i.
64	4.52	1.1806	n.i.	64	3.64	1.1605	n.i.	64	6.49	1.1362	Lut		64	5.38	1.1618	n.i.
65	0.64	1.1784	n.i.	65	2.1	1.1510	n.i.	65	1.05	1.1335	n.i.		65	5.72	1.1389	n.i.
66	7.49	1.1721	n.i.	66	2.87	1.1464	n.i.	66	5.75	1.1323	n.i.		66	2.87	1.1386	n.i.
67	2.87	1.1574	n.i.	67	6.46	1.1409	HT	67	4.54	1.1307	n.i.		67	5.91	1.1372	n.i.
68	5.38	1.1492	n.i.	68	7.61	1.1317	n.i.	68	7.07	1.1286	n.i.		68	5.1	1.1348	n.i.
69	6.9	1.1485	Ver	69	4.32	1.1229	Ver	69	7.02	1.1230	n.i.		69	4.36	1.1330	n.i.
70	4.97	1.1460	n.i.	70	4.95	1.1207	n.i.	70	5.89	1.1176	n.i.		70	3.94	1.1220	n.i.
71	4.54	1.1415	n.i.	71	4.87	1.1061	n.i.	71	6.41	1.1167	n.i.		71	2.94	1.1196	n.i.
72	7.59	1.1367	n.i.	72	0.7	1.1034	n.i.	72	6.52	1.1095	Ver		72	3.79	1.0935	n.i.
73	4.39	1.1348	n.i.	73	0.68	1.1028	n.i.	73	7.59	1.1091	n.i.		73	5.86	1.0927	n.i.
74	5.67	1.1337	n.i.	74	7.57	1.0989	Quer	74	7.52	1.0819	Ver		74	4.97	1.0916	n.i.
75	1.13	1.1276	n.i.	75	4	1.0951	LA	75	0.94	1.0684	MA		75	6.51	1.0845	Ver
76	4.44	1.1139	n.i.	76	4.86	1.0778	Ver	76	0.97	1.0589	n.i.		76	4.88	1.0817	n.i.
77	4.95	1.1021	n.i.	77	4.46	1.0757	n.i.	77	6.46	1.0584	HT		77	2.88	1.0811	n.i.
78	3.64	1.0972	n.i.	78	5.02	1.0740	n.i.	78	6.17	1.0570	n.i.		78	2.89	1.0805	n.i.
79	6.05	1.0737	n.i.	79	5.38	1.0686	n.i.	79	5.42	1.0548	n.i.		79	7.49	1.0803	n.i.
80	5.02	1.0622	n.i.	80	4.39	1.0652	n.i.	80	7.4	1.0379	n.i.		80	6.92	1.0734	n.i.
81	2.93	1.0603	n.i.	81	2.74	1.0622	n.i.	81	2.93	1.0374	n.i.		81	4.09	1.0703	TAGs
82	5.37	1.0588	n.i.	82	2.45	1.0600	SA	82	1.85	1.0360	AA		82	4.95	1.0639	n.i.
83	4.14	1.0511	n.i.	83	4.9	1.0497	n.i.	83	2.1	1.0345	n.i.		83	2.75	1.0526	n.i.
84	5.4	1.0372	n.i.	84	6.72	1.0448	Ver	84	7.27	1.0284	n.i.		84	2.9	1.0319	n.i.
85	4.86	1.0344	Ver	85	1.13	1.0430	n.i.	85	1.1	1.0274	MA/OA		85	0.7	1.0256	n.i.

No	Var	VIP	Compound												
INU	ID	score	Compound												
86	5.6	1.0339	n.i.	86	2.93	1.0396	n.i.	86	5.71	1.0140	n.i.	86	2.65	1.0222	Tyr
87	6.65	1.0314	Tyr	87	4.93	1.0333	n.i.	87	1.78	1.0130	n.i.	87	2.3	1.0167	TAGs
88	6.08	1.0312	n.i.	88	6.06	1.0301	n.i.	88	1.54	1.0003	TAGs	88	3.51	1.0100	G
89	5.87	1.0264	n.i.	89	2.6	1.0159	HT								
90	1.67	1.0106	n.i.	90	4.44	1.0043	n.i.								

Table S2. (continued)

	Kalamon vs Chalkidikis				Kalam	on vs Ko	nservolia	(Chalkid	ikis vs Ko	onservolia
No	Var ID	VIP score	Compound	No	Var ID	VIP score	Compound	No	Var ID	VIP score	Compound
1	2.2	2.2297	TAGs	1	6.64	1.5885	Tyr	1	8.47	3.0005	FA
2	6.15	1.9330	Lut	2	6.96	1.5748	Tyr	2	1.05	2.1221	n.i.
3	7.32	1.8961	Lut	3	0.71	1.4511	OA	3	1.85	2.0346	AA
4	6.39	1.8961	Lut	4	0.7	1.4381	n.i.	4	6.43	1.9858	n.i.
5	5.27	1.8806	TAGs	5	0.68	1.4195	n.i.	5	6.54	1.9611	n.i.
6	6.22	1.8697	Ver	6	1.02	1.4089	Ver	6	6.51	1.9607	Ver
7	6.84	1.7719	Lut	7	1.3	1.4085	LA	7	0.71	1.8385	OA
8	1.97	1.7662	TAGs	8	6.99	1.4078	Ver	8	6.46	1.8025	HT
9	6.13	1.6924	Quer	9	6.72	1.3985	Ver	9	1.02	1.7790	PA
10	7.67	1.6651	Quer	10	2.65	1.3631	Tyr	10	6.64	1.7649	Tyr
11	0.83	1.6481	TAGs	11	0.73	1.3504	n.i.	11	6.96	1.7398	Tyr
12	6.75	1.6395	n.i.	12	5.61	1.3485	n.i.	12	6.6	1.7264	HT
13	1.24	1.6370	TAGs	13	0.69	1.3451	n.i.	13	2.2	1.6892	TAGs
14	7.54	1.6130	Ver	14	6.22	1.3410	Ver	14	0.7	1.6842	n.i.
15	6.99	1.5918	Ver	15	0.65	1.3316	n.i.	15	0.68	1.6727	n.i.
16	1.54	1.5744	TAGs	16	8.47	1.3240	FA	16	2.6	1.6644	HT
17	2.01	1.5553	TAGs	17	2.71	1.3221	Lin	17	7.78	1.5732	n.i.
18	6.26	1.5509	n.i.	18	7.59	1.3079	n.i.	18	1	1.5518	n.i.
19	5.69	1.5423	n.i.	19	6.61	1.3015	HT	19	6.39	1.5481	Lut

No	Var	VIP	Compound	No	Var	VIP	Compound	No	Var	VIP	Compound
INU	ID	score	Compound	INU	ID	score	Compound	 INU	ID	score	Compound
20	6.68	1.5196	n.i.	20	6.9	1.2958	Ver	20	7.32	1.5458	Lut
21	2.71	1.4892	Lin	21	0.83	1.2913	TAGs	21	2.1	1.5281	n.i.
22	6.72	1.4840	Ver	22	1.54	1.2842	TAGs	22	3.61	1.5004	HT/Tyr
23	6.24	1.4611	n.i.	23	1.97	1.2818	TAGs	23	7.27	1.4880	n.i.
24	7.58	1.4510	Quer	24	7.54	1.2722	Ver	24	1.29	1.4799	LA
25	6.54	1.4346	n.i.	25	5.27	1.2721	TAGs	25	2.12	1.4766	PA
26	7.4	1.4227	n.i.	26	0.66	1.2670	n.i.	26	6.15	1.4748	Lut
27	5.73	1.4219	n.i.	27	2.2	1.2636	TAGs	27	2.87	1.4715	n.i.
28	6.95	1.4148	Tyr	28	1.24	1.2549	TAGs	28	0.77	1.4647	n.i.
29	1.31	1.4030	LA	29	7.67	1.2504	Quer	29	1.72	1.4532	n.i.
30	3.75	1.3989	n.i.	30	6.13	1.2498	Quer	30	4	1.4377	LA
31	8.47	1.3946	FA	31	7.4	1.2495	n.i.	31	2.65	1.4276	Tyr
32	2.74	1.3652	n.i.	32	2.01	1.2485	TAGs	32	1.89	1.4226	n.i.
33	6.82	1.3649	Quer	33	6.46	1.2473	HT	33	2.45	1.4116	SA
34	6.65	1.3564	Tyr	34	7.78	1.2411	n.i.	34	0.69	1.4089	n.i.
35	1.05	1.3505	n.i.	35	1.66	1.2235	n.i.	35	7.21	1.4068	n.i.
36	3.49	1.3380	n.i.	36	0.77	1.2205	n.i.	36	7.75	1.3831	n.i.
37	7.36	1.3377	n.i.	37	2.74	1.2170	n.i.	37	6.71	1.3700	Ver
38	1.93	1.3357	n.i.	38	7.58	1.2157	Quer	38	0.97	1.3668	n.i.
39	6.9	1.3275	Ver	39	0.79	1.2135	n.i.	39	2.05	1.3495	n.i.
40	4.32	1.3205	Ver	40	6.69	1.2116	n.i.	40	sum ald	1.3305	n.i.
41	7.38	1.3201	n.i.	41	2.6	1.2103	HT	41	1.38	1.3078	n.i.
42	7.37	1.3197	n.i.	42	1	1.2086	n.i.	42	0.76	1.2827	MA/OA
43	7.59	1.2994	n.i.	43	3.61	1.2083	HT/Tyr	43	0.79	1.2817	n.i.
44	5.88	1.2924	n.i.	44	1.18	1.1925	n.i.	44	1.48	1.2653	n.i.
45	4.09	1.2894	TAGs	45	3.62	1.1924	HT/Tyr	45	2.07	1.2579	n.i.
46	6.29	1.2873	n.i.	46	0.74	1.1830	MA	46	0.66	1.2469	n.i.
47	5.6	1.2807	n.i.	47	6.82	1.1801	Quer	47	7.55	1.2388	Ver
48	2.3	1.2706	TAGs	48	6.93	1.1785	n.i.	48	6.7	1.2221	n.i.

	Var	VIP			Var	VIP			Var	VIP	
No	ID	score	Compound	No	ID	score	Compound	No	ID	score	Compound
49	6.43	1.2641	nj	 49	0.97	1.1731	n.i	 49	5.74	1.2214	ni
50	6.34	1.2586	Ouer	50	5.55	1.1711	n.i.	50	7.04	1.2173	n.i.
51	4.41	1.2536	n.i.	51	6.84	1.1710	Lut	51	1.8	1.2147	n.i.
52	7.61	1.2527	n.i.	52	0.76	1.1677	MA/QA	52	3.62	1.2075	HT/Tvr
53	1.13	1.2512	n.i.	53	4.06	1.1655	TAGs	53	2.36	1.2041	n.i.
54	6.37	1.2250	n.i.	54	7.27	1.1651	n.i.	54	6.93	1.2021	n.i.
55	6.17	1.2204	n.i.	55	3.75	1.1608	n.i.	55	2.86	1.1992	MA
56	sum ald	1.2169	n.i.	56	2.08	1.1589	n.i.	56	3	1.1984	n.i.
57	4.52	1.1984	n.i.	57	1.74	1.1527	n.i.	57	0.92	1.1925	n.i.
58	1.66	1.1821	n.i.	58	4.03	1.1445	LA	58	2.69	1.1786	TAGs
59	5.55	1.1761	n.i.	59	5.13	1.1432	Ver	59	2.93	1.1687	n.i.
60	4.54	1.1733	n.i.	60	7.02	1.1369	n.i.	60	3.02	1.1678	n.i.
61	1.85	1.1698	AA	61	5.15	1.1274	n.i.	61	1.9	1.1634	n.i.
62	5.02	1.1673	n.i.	62	3.49	1.1214	n.i.	62	5.27	1.1534	TAGs
63	4.97	1.1666	n.i.	63	2.75	1.1143	n.i.	63	0.91	1.1502	OA
64	5.37	1.1594	n.i.	64	1.09	1.1111	OA	64	7.82	1.1478	n.i.
65	4.95	1.1502	n.i.	65	3.77	1.1084	n.i.	65	0.94	1.1419	MA
66	1.18	1.1446	n.i.	66	4.32	1.1049	Ver	66	4.41	1.1364	n.i.
67	7.49	1.1410	n.i.	67	5.1	1.1033	n.i.	67	1.09	1.1194	OA
68	4.88	1.1410	n.i.	68	7.72	1.1007	n.i.	68	3.04	1.1101	n.i.
69	4.39	1.1280	n.i.	69	3.58	1.1007	G	69	5.17	1.1042	MA/OA
70	4.86	1.1221	Ver	70	1.89	1.0998	n.i.	70	5.18	1.1023	MA/OA
71	5.1	1.1101	n.i.	71	6.75	1.0963	n.i.	71	2.99	1.0974	n.i.
72	4.46	1.1061	n.i.	72	2.29	1.0885	TAGs	72	2.83	1.0886	n.i.
73	6.45	1.0995	HT	73	1.85	1.0884	AA	73	1.79	1.0874	n.i.
74	6.92	1.0906	n.i.	74	2.45	1.0801	SA	74	5.15	1.0838	n.i.
75	1.14	1.0840	n.i.	75	3.47	1.0773	G	75	2.68	1.0793	n.i.
76	3.79	1.0837	n.i.	76	3.52	1.0490	G	76	1.47	1.0764	n.i.
77	3.58	1.0757	G	77	2.23	1.0441	n.i.	77	7.06	1.0722	n.i.

No	Var	VIP	Compound		No	Var	VIP	Compound		No	Var	VIP	Compound
	ID	score	compound	_	110	ID	score	compound	_	110	ID	score	compound
78	4.44	1.0637	n.i.		78	5.38	1.0400	n.i.		78	0.89	1.0713	MA/OA
79	0.73	1.0613	n.i.		79	2.68	1.0393	n.i.		79	2.82	1.0671	n.i.
80	3.59	1.0537	HT/Tyr		80	1.48	1.0337	n.i.		80	0.65	1.0625	n.i.
81	4.9	1.0398	n.i.		81	5.17	1.0336	MA/OA		81	1.27	1.0572	TAGs
82	3.06	1.0345	n.i.		82	2.41	1.0281	n.i.		82	0.95	1.0500	MA
83	5.03	1.0331	n.i.		83	0.94	1.0240	MA		83	0.88	1.0447	MA/OA
84	3.51	1.0283	G		84	6.51	1.0228	Ver		84	1.58	1.0416	TAGs
85	4.04	1.0189	LA		85	5.16	1.0101	MA/OA		85	1.6	1.0395	n.i.
86	1.16	1.0059	n.i.		86	0.91	1.0098	OA		86	6.86	1.0328	Lut
87	4.5	1.0034	n.i.		87	0.95	1.0053	MA					
88	6.49	1.0027	Lut										
89	5.13	1.0022	Ver										

3 Abbreviations: AA: Acetic Acid, FA: Formic Acid, G: Glycerol, HT: Hydroxytyrosol, LA: Lactic Acid, Lin: Linoleic Acid, Lut: Luteolin, MA: Maslinic Acid, n.i.: non-identified, OA:

4 Oleanolic Acid, PA: Propionic Acid, Quer: Quercetin, SA: Succinic Acid, TAGs: Triacylglycerols, Tyr: Tyrosol, Ver: Verbascoside.

Figure S7. Box-plots of the remaining markers in the geographical origin parameter. Depicted are FA,

HT, Quer, MA, PA, OA, Ver, Tyr, total TAGs and SA (Vertical axis expressed in absolute intensity).

8

9 Figure S8. Box-plots of the remaining markers in the variety parameter. Depicted are AA, FA, LA,

10 Lut, MA, SA and Ver (Vertical axis expressed in absolute intensity).

11

 Table S3. T-test applied at the processing method parameter, Greek vs Spanish.

Compound	p-value	Statistically Significant (p<0.05)*
OA	0.23322	No
MA	0.87551	No
TAGs	0.00011	Yes
AA	0.02988	Yes
PA	0.01732	Yes
SA	0.00640	Yes
HT	0.06452	No
Tyr	0.82319	No
LA	0.02137	Yes
Lut	0.00000	Yes
Ver	0.00032	Yes
Quer	0.00000	Yes
FA	0.03459	Yes

12 * Statistically significant markers for the discrimination between the two processing methods with p value lower

13 than 0.05 are: TAGs, Quer, Lut, Ver, AA, PA, SA, LA and FA. Values have been rounded up at the fifth decimal disit