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Abstract: Oxygen is an important factor in the wine aging process, and the oxygen transmission
rate (OTR) is the parameter of the wood that reflects its oxygen permeation. OTR has not been
considered in the cooperage industry yet; however, recent studies proposed a nondestructive method
for estimating the OTR of barrel staves, but an efficient method to combine these staves to build
barrels with a desired OTR is needed to implement it in the industry. This article proposes artificial
intelligence methods for selecting staves for the construction of barrel heads or bodies with a desired
target OTR. Genetic algorithms were used to implement these methods in consideration of the known
OTR of the staves and the geometry of the wine barrels. The proposed methods were evaluated in
several scenarios: homogenizing the OTR of the actual constructed barrels, constructing low-OTR
and high-OTR barrels based on a preclassification of the staves and implementing the proposed
method in real cooperage conditions. The results of these experiments suggest the suitability of the
proposed methods for their implementation in a cooperage in order to build controlled OTR barrels.

Keywords: genetic algorithm; active packaging; oxygen transmission rate; cooperage;
process optimization

1. Introduction

Wine has been traditionally aged in barrels in many wine-growing regions around the world.
This procedure improves the chemical and sensorial characteristics of the aged wines, thereby improving
the quality of the resulting wine. During the aging process, the wine properties evolve due to the
interaction between the wine compounds and the compounds released from the wood, and the oxygen
that enters through the barrel is a key factor in wine evolution.

The barrel making process is a traditional procedure in which several staves are combined to
build a barrel. This process has been traditionally performed by considering the shape of the barrel,
its capacity, and the wood that is used, which are design parameters that have changed throughout
history and vary across wine-producing regions [1]. Moreover, barrel shape and size have been
mathematically modeled in the literature to relate the barrel volume [2,3] and its surface area [4]
with the dimensions of the barrel staves. The problem of selecting the staves for the construction of
a barrel can be regarded as a mathematical multiobjective optimization problem that can be divided
into two sub-problems. The first sub-problem is selecting a set of staves with a total width equal
to the width of the barrel body, with at least one stave having sufficient width for the barrel bung.
The second sub-problem is selecting two sets of staves that fulfill the size requirements of the barrel
heads. Currently, this procedure is performed by an expert worker (Master Cooper), who chooses the
staves for the construction of each barrel without any technological aid. Moreover, only the geometrical
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characteristics of the staves are considered in the selection of the staves; other wood properties, such as
the oxygen transmission rate (OTR), are not considered.

Several authors have analyzed the relations between the wood and the gas permeation under
a pressure difference [5–11], although very few studies refer to the transverse permeability of wood to
gases as being the driving force of the oxygen concentration or consider the influence that the moisture
level of the wood exerts on this gaseous flow [12–17], which is the real scenario in a barrel oak stave.
The work of Nevares et al. [18] showed that despite the strong role of the anatomical characteristics
of Quercus petraea wood, these characteristics are not sufficient for fully explaining the capacity for
transferring oxygen or the variability in this transmission rate (OTR) via the simple correlations that
have been studied. Nevertheless, Martínez-Martínez et al. [19] proposed a method for estimating the
OTR of oak wood samples via nondestructive methods that are based on artificial neural networks
in consideration of not just one but many of the anatomical features of the oak wood. Moreover,
this method could be implemented in a cooperage because the required equipment and processing
time enable its use in a production line. Moreover, the work of Prat-García et al. [4] demonstrated that
there are significant differences in the permeation to oxygen among the low-OTR and high-OTR barrels
that are constructed by applying this method. Therefore, to implement these previously obtained
scientific results on a cooperage production line, it will be necessary for an automatic staves selection
method to construct barrels with a desired OTR taking into consideration the OTR of the staves.

Several methods are available for automating the resolution of multiobjective optimization problems.
The first group of methods are brute-force (BF) based methods, which evaluate all the possible solutions
and choose the best solution. BF-based methods find the best solution for the problem, but they have
higher computation and time requirements compared with other methods, which render them unsuitable
for use in complex problems. For this reason, these methods have been used in many fields, but always
as a part of a more complex method or with modifications that improve their performance when the
complexity of the problem increases [20]. The second group of methods are the Monte Carlo (MC)
approaches [21], which evaluate solution candidates that have been randomly chosen from the solution
set and selects the best solution among all evaluated candidates. Compared with BF-based methods,
MC methods can find satisfactory solutions in less processing time. Nevertheless, when the complexity of
the problem increases, more complex methods are needed to find satisfactory solutions to the problem in
a reasonable processing time. Artificial intelligence (AI)-based methods are one of the best options for
solving multiobjective nonlinear optimization problems, improving the performance of BF- and MC-based
methods. Examples of AI-based methods include ant colony optimization [22], artificial bee colony [23],
harmony search [24], particle swarm optimization (PSO) [25,26] and genetic algorithms (GAs) [27,28].
GAs are some of the most frequently used AI-based methods due to their flexibility and performance in
modeling all types of processes. Related to the work that is presented in this article, GA-based methods
have been applied in the development of several industrial applications to increase the productivity [29].
Furthermore, GA-based methods have been used in industrial application for quality control and defect
detection [30,31], to solve packaging problems [32,33] and to forecast production [34–36] and energy
demand [37]. Moreover, GA-based algorithms have been used in the wine field: Burratti et al. combined
electronic nose, electronic tongue and spectrophotometric measurement data for the prediction of sensorial
descriptors [38]; Beltrán et al. used GAs to extract features from high-performance liquid chromatograph
data for the classification of Chilean wines [39]; Cao et al. predicted pH and soluble solids content and
discriminated the variety of grapes with a non-destructive method based on visible and near-infrared
(Vis-NIR) spectroscopy [40]; Corcoran et al. used GAs to reduce the number of parameters that were
obtained from multisensor arrays of sensors for the classification of wine samples [41]; and Kuo and Lin
combined a GA and a PSO algorithm for clustering [42].

In this paper, GA-based methods for selecting the staves for the construction of a barrel are proposed.
These methods consider not only the geometry of the staves, but also their OTR in the construction of
barrels with a desired global OTR. The performance of the proposed method was analyzed with the data
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of 3064 oak wood staves, and it was compared with the performance of the method that is currently used
in several cooperages and a MC-based approach to evaluate the improvement of the proposed method.

2. Materials and Methods

2.1. Oak Wood Samples

For the experiment, 3064 French oak (Q. petraea) fresh staves, which were provided by INTONA
S.L. cooperage (Navarra, Spain) and were selected from among the oak samples that they use to
construct regular barrels, were used to characterize the fresh stave population of this cooperage.
The selection of these samples was conducted to obtain a representative sample of the wood that is used
by this cooperage, and staves were selected from different batches and with various characteristics.
These staves, which were widely analyzed in the work of Prat-Garcia et al. [4], were divided into 1836
fresh staves, with a length of approximately 96 cm, for the barrel body, and 1228, with a length of
between 42 and 73 cm, for the barrel head, and a “grain” (width of the annual growth ring) value of
between 1.88 and 4.94 mm. The OTR value of all the samples, which were measured by employing the
ANN-based method of Martínez-Martínez et al. [19], and the widths of the body staves or the widths
and lengths of the head staves were used as the dataset for the method evaluation that is presented in
this article. A wider analysis of these samples can be found in the article of Prat-Garcia et al. [4].

In the real cooperage simulation experiment, where more samples than those available were
necessary, the cumulative distribution function (CDF) of the features was used to generate the samples
that were used in this experiment. Thus, the length, width and OTR data of the head staves and
the length and OTR data of the body staves were regarded as representative of the cooperage stave
population. Therefore, they were used to calculate their five associated CDFs. Then, three and two
random vectors were initialized for the heads and bodies, respectively, with as many elements for
each vector as head samples and body samples as were needed in each case. These random vectors
were obtained from a continuous uniform distribution with values between zero and one. Finally,
the CDFs of each feature were used to calculate the feature values from the random value vectors by
using a linear interpolation to estimate the values for which the CDFs were not defined.

2.2. Barrel Construction Process

The barrels that are used to age beverages have three parts: the heads, which are the two circle
parts; the body, which is the larger part that links the two heads; and the bung, which enables the
barrel to be filled or emptied. Each cooperage company has its own procedure for constructing barrels
with various shapes, volumes and properties. Nevertheless, the barrel construction process can be
divided into three subprocesses: the barrel head construction process, the barrel body construction
process and the barrel head and body assembly process. In the next paragraphs, the process that is
used in this article will be explained.

A set of staves are needed for the construction of a circle of 597 mm in diameter in the head’s
construction process. Thus, the length and width of the staves should be sufficient for constructing
this circle. Another structural requirement is an odd number of staves so that there is one stave in the
middle of the head. It makes that the number of staves employed to build a barrel head is, typically, 7,
9 or 11 staves. The order of the staves is relevant in the barrel construction because the length of the
central stave of the head is larger than those of the staves of the extreme positions of the head.

There are two main requirements in the body construction process: at least one stave that is
wider than 10 cm is needed for the placement of the barrel bung hole, and the total width of the
staves must be 218 cm in a 225-L Bordelaise barrel. The number of staves needed to build a barrel
body is around 30, but it can vary depending on the width of the staves employed. In the body
construction process, in contrast to the head’s construction process, the position of the staves is not
relevant. Some cooperages distribute the body staves by interleaving narrow and wide staves; however,
this restriction was not considered in the barrel body GA method because the stave distribution does
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not affect the final OTR, as will be explained below. Thus, the cooper could choose from a set of
staves to build a body barrel in which narrow and wide staves are interleaved, distributed randomly,
or arranged using another criterion.

Finally, the barrel head and body assembly process consist of the assembly of two heads and
a body to build the barrel, and there are no structural requirements regarding the parts to be assembled
in this process.

3. Calculation

3.1. Head and Body OTR Calculation

The objective barrel OTR can be estimated from the staves OTR in consideration of the geometry
of the barrel. Thus, the barrel OTR can be calculated as the sum of the estimated OTR for each stave
and weighted by the ratio between each stave area and the total barrel area.

Two assumptions regarding the barrel characteristics were made in calculating the area ratio of
each stave. The first assumption is that the barrel body area is 1.50 m2, and the second assumption is
that each head barrel area is 0.25 m2. Thus, the body constitutes 74.77% of the total barrel area, and
each head area constitutes 12.61% of the total barrel area. The method that is used to calculate this ratio
differs according to whether the stave belongs to the body or to the heads. The OTR that is estimated
via this method is only the OTR of the wood staves in the barrel, which is the main pathway (up to
75% of the overall OTR) of oxygen entry in French oak barrels [14]. To calculate the OTR of a barrel,
the oxygen that flows between the staves must also be considered [13,43,44].

Considering these assumptions, the ratio for the barrel body and head staves can be calculated
with the expressions presented in Equations (1) and (2) according to the work of Prat-García et al. [4]:

ratiobody
i = 74.77%·

wi∑Nb
n=1 wn

(1)

ratiohead
i = 12.61%·

2·Ii

0.28
(2)

were wn is the width of the n-th barrel body stave, Nb is the number of staves of the barrel body and
2·Ii is the total area of the i-th stave in m2.

3.2. Genetic Algorithms

Genetic algorithms (GAs) are iterative search heuristics that were proposed and developed by
Holland and Goldberg based on the process of natural selection, and they are part of the larger
class of evolutionary algorithms [27,28]. GAs are used to solve optimization problems by combining
a randomized information exchange method with a survival-of-the-fittest strategy to identify optimal
solutions of the considered problem.

The GA methods that are proposed in this article solve the problem of identifying the staves for
the construction of barrel heads and bodies with a target global OTR. These methods implement the
typically implemented genetic operators (crossover, mutation and selection), which are adapted to
each problem. The individuals for both the body and head methods are arrays of variable length,
where each array represents one head or body and where each element of the array has the index of
one stave. In the next subsections, the remaining characteristics of the GA methods for constructing
head and body barrels and the general implementation of the GA-based algorithms will be explained.

3.2.1. Barrel Head Construction

The length of each solution in the barrel head construction GA method will have a variable odd
number of stave indexes (typically between 7 and 11), which are in the same order as they are placed
in the barrel head. The order of the staves of a head is important because it affects its global OTR and,
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in some cases, it could be impossible to construct the head because these staves in the specified order
do not comply with the size requirements.

Three genetic operators were defined for the barrel heads: mutation, in which one stave of the head
is replaced; external crossing, in which two heads are combined to generate a new head; and internal
crossing, in which two staves of the head exchange their positions. A more detailed explanation of
each genetic operator is presented in the next subsections.

Barrel Head Mutation

The barrel head mutation consists of the replacement of one stave of the head with a stave that
has not been used in this head. This replacement must be conducted in consideration of the size
requirements of a head barrel. Figure 1 illustrates this procedure.
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Figure 1. Procedure for applying the mutation operator to a head: one stave of the original head
(represented in red) is randomly chosen, and it is replaced by a stave from the idle stave group
(represented in blue) that complies the size requirements of the barrel head.

To implement the barrel head mutation operator, the staves from the head were randomly ordered
and, from the first stave to the last, the possibility of being replaced with each of the idle staves,
which were also randomly ordered, was assessed; the execution of the mutation operator was complete
when the replacement was possible. If the mutation was not possible after evaluating all the staves,
the original head was regarded as the result of the mutation operator.

Barrel Head External Crossing

The barrel head external crossing consists of the combination of two barrel heads to build a third
head. The resulting head, along with the barrel heads that were generated by the mutation operator,
must comply the barrel head requirements. Moreover, as one or more staves could be present in
the two heads to be combined, it must be checked in the resulting body that the same stave is not
considered more than once. Figure 2 illustrates this procedure.
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In the implemented barrel body external crossing operator, the stave position of the first barrel head
is chosen as the limit of the staves of the first head that will be considered in the resulting head. Then,
the staves of the second head are iteratively added to the resulting head while checking that they are
not present in the resulting head because they were also present in the first stave. Finally, the remaining
staves of the first head are also considered if they are needed to satisfy the size requirements when it
is not possible to finish the head with the staves of the second head. If it is not possible to generate
a new head with the external crossing operator, one of the two original heads is regarded as a result of
this operator.

Barrel Head Internal Crossing

The barrel head internal crossing consists of changing the positions of two staves of a head when
it is possible. Figure 3 illustrates this procedure.
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of the original head (represented in yellow) change their positions in the head if the new distribution of
the staves complies the size requirements of the barrel head.

In the implemented barrel body internal crossing operator, the two considered staves were
randomly chosen, and whether the final distribution of the staves complies the requirements for the
barrel head was checked. If the requirements are not satisfied after trying all the combinations of
staves, the operator returns the original head as its result.

3.2.2. Barrel Body Construction

The length of each solution in the barrel body construction GA method will correspond to the
number of staves that satisfy the size requirements for the barrel body. The order of the staves for this
element is irrelevant because it affects neither the global OTR nor its size requirements. Nevertheless,
after applying the GA method to select the staves for the construction of a body, the selected staves
could be reordered to distribute the staves with larger and smaller widths along the barrel body,
as some cooperages used to do.

The initialization of a solution consists of finding a set of staves for which the total width is in the
width range that is determined by the size requirements and there is at least one stave with sufficient
width for placing the barrel bung. A width range of ±0.5 mm around the total width of 218 cm was
considered in our experiments. Two genetic operators were defined for the barrel bodies: the mutation
operator, which replaces several staves of the body, and the external crossing operator, which combines
two bodies to generate a new body. In this case, the internal crossing operator was not considered
because, unlike in the barrel heads, the order of staves in the barrel body does not affect its OTR.

Barrel Body Mutation

The barrel body mutation consists of the replacement of several staves of a body with staves that
have not been used in this body. This replacement must be conducted in consideration of the size
requirements of the body barrel. Figure 4 illustrates this procedure.

With the application of the implemented barrel body mutation operator, three staves were always
removed from a body. Moreover, to facilitate the implementation of the method, the first stave of the body,
which is the stave with sufficient width for placement of the bung, was never replaced with the mutation
operator. Hence, only the width requirement of the barrel body needed to be checked in this procedure.
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Figure 4. Procedure for applying the mutation operator to a body. First, several staves of the original
body, which are represented in red, are randomly chosen and removed from the body. Then, a set of
staves that are not used in this body, which are represented in blue, are chosen to replace the removed
staves while checking that the total width of the new body is of the considered dimensions. The number
of staves that are represented in this figure is lower than is typical in a real body (approximately 30) to
improve the visibility.

Barrel Body External Crossing

The barrel body external crossing consists of the combination of two barrel bodies to build a third
barrel body. The resulting body, along with the barrel bodies that are generated with the mutation
operator, must comply with the barrel body size requirements. Moreover, as one or more staves
could be present in the two bodies to be combined, it must be checked in the resulting body that no
stave is considered more than once. As it could be difficult to attain a valid width for the barrel body
with a small set of staves, an additional mutation operator was considered to attempt to satisfy this
requirement with extra staves. Figure 5 illustrates this procedure.
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Figure 5. Procedure for applying the external crossing operator to two bodies, which are represented
with red and green staves. First, staves for a new body are chosen from the staves of the two bodies
randomly. Second, the width requirements of a body barrel are checked and, if these requirements are
not satisfied, the mutation operator is applied to build a valid body using idle staves. The number of
staves that are represented in this figure is lower than the typical number in a real body (approximately
30) to improve the visibility.

In the implemented barrel body external crossing operator, the first stave of one of the two bodies,
which is the stave with sufficient width for placement of the bung, was randomly chosen as the first
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stave of the resulting body to satisfy the first size requirement of the body. Then, the remaining staves
were considered, the duplicated staves were removed, and staves were randomly chosen for the
construction of the new body until the minimum width was reached. If the final width exceeded the
maximum allowed width, the mutation operator was applied to obtain a valid body by considering
extra staves.

3.2.3. GA-Based Method Implementation

Both the barrel head and barrel body construction methods were implemented according to the
framework that will be described in this section.

The first part of the methods is the initialization of the individuals prior to the first iterative
generation of solutions. Ten individuals were initialized in consideration of the idle staves and the
size criteria. Then, the OTR of each head or body was calculated to obtain the fitness of each element
applying the expression presented in Equation (3). The factor of −1 ensures that the quality of the
solution increases with the fitness value.

f itness = −
∣∣∣OTRtarget −OTRhead/body

∣∣∣ (3)

The second part of the methods is the iteration of generations of the method. In every generation,
the solution with the best fitness value, was always selected from the previous to the next generation.
Then, the remaining 9 individuals for the next generation were generated by randomly using one of the
following procedures: creating new solutions, reapplying a solution from the previous generation or
applying genetic operators to the solutions of the previous generation. The probabilities of generating
individuals for the next generation via the previously described procedures are listed in Table 1.
These probabilities were chosen with a trial-and-error procedure, taking into account both the previous
knowledge of the authors of the manuscript and the probabilities employed by other authors in the
literature, in order to optimize the performance of the GA-based method as much as possible.

Table 1. Probabilities of using the five procedures to generate an individual for the next generation for
the head and the body construction methods.

Procedure Head Body

Generating a new solution 40.0% 40.0%
Reapplying a solution from the previous generation 12.0% 13.4%

Applying the mutation operator 21.0% 23.3%
Applying the internal crossing operator 6.0% 0.0%
Applying the external crossing operator 21.0% 23.3%

Moreover, some of these procedures must select one or more elements from the previous generation.
This selection was conducted via the roulette wheel selection method, in which the probability of
choosing an element is proportional to its fitness. In the proposed methods, the probability of choosing
the n-th element was calculated according to Equation (4):

probability =
e
−

fn
min{fn}Nn=1∑N

n=1 e
−

fn
min{fn}Nn=1

(4)

where fn is the fitness of the n-th element and N the number of elements.
The third part of the method is the evaluation of the termination criteria. The iteration of the

generations, which is conducted in the second part, was terminated in our experiments according to
two termination criteria: iterating for longer than a specified iteration time or obtaining an OTR error
that is smaller than a target error. The iteration time termination criterion was used in combination
with the error criterion to avoid an infinite iteration loop.
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Finally, the methods that are presented in this article construct one head or one body. Thus,
they should be applied several times for the construction of several barrels. Each experiment will start
by considering a set of Si staves, which will be referred to as the idle stave dataset. The initialization
process consists of randomly choosing a set of Sm staves from the idle stave dataset, which will be
the staves that are used in the first iteration of the construction method and will be referred to as the
construction method stave dataset. The number of staves of the construction method stave dataset (Sm)
will be constant during each construction process. After applying the construction method in the first
iteration, the staves that are selected to build the body or the head, the number Sc(n) of which can
vary among iterations (n), will be moved to the used stave dataset and will not be used again in this
experiment. Finally, after each iteration, the construction method stave dataset randomly chooses Sc(n)
staves from the idle stave dataset to replenish Sm staves for the next iteration. The experiment iterates
until a fixed number of elements have been constructed or until the number of staves in the idle stave
dataset is zero. Figure 6 illustrates the three datasets and the number of staves in each dataset in each
iteration. The idle stave dataset contains the staves that are available for use; the method construction
stave dataset, which has a constant number Sm of staves, contains the staves that are used by the
method; and the used stave dataset contains the staves that have been used to construct barrel bodies
or heads. For the idle stave dataset, the initial number of staves is Si(0) = Si, the number of staves in
this dataset before the first iteration is Si(1) = Si − Sm, and the number of staves before iteration n is the
presented in Equation (5), while the number of staves in the used stave dataset before the first iteration
is Se(1) = 0, and the number before iteration n is shown in Equation (6).

Si(n) = Si − Sm −
∑n

k=2
Sc(k− 1), n ≥ 2 (5)

Se(n) =
∑n

k=2
Sc(n− 1), n ≥ 2 (6)
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This simulation procedure simulates the normal working conditions of a production line,
where there are constant input and output fluxes of elements on each link of the production chain.

3.3. GA-Based Method Comparison

The results that were obtained via the GA-based proposed methods were compared with the
results that were obtained with other stave selection methods to evaluate their performances.

The first selection methods that were considered were the selection methods that are used in
practice in cooperages. These methods, which will be referred to as current, consider only the lengths
and the widths of the staves and do not consider their OTRs when looking for a set of staves that
satisfy the barrel head or body size requirements.

The second selection methods that were considered were Monte Carlo selection methods, which
will be referred to as MC in the next sections. Monte Carlo methods consider both the size and the OTR
of each stave in the construction of a head or a body with a target OTR. They select random sets of
staves and check if they satisfy all the proposed requirements. They were implemented by simplifying
the proposed GA-based methods by considering only two individuals for each generation, generating
a new solution with a probability of 100%, and reapplying solutions from the previous generation
or applying mutation or crossing operators with a probability of 0%, according to Table 1. Via this
approach, there are two individuals in every generation: the best from the previous generation and
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another randomly chosen individual. Hence, these methods consider random individuals and choose
the best as the result.

4. Results and Discussion

Several scenarios were simulated to analyze the proposed stave selection method. These scenarios
correspond to cases that could occur in a cooperage with the OTR of all the staves calculated or estimated.
The next subsections will evaluate the performance of the proposed method in these scenarios.

4.1. Barrel Homogenization

One possible application of the proposed method is the homogenization of the OTR of the barrels
that are constructed in a cooperage. Currently, the staves of the barrel are chosen randomly, which leads
to a significant OTR variance among the resulting barrels.

Thus, in this first scenario, the objective of the stave selection method will be the creation of
heads and bodies with OTRs that are similar to the mean OTRs of all the head and body staves,
respectively. The proposed GA-based selection methods were simulated and compared with the current
and the MC-based selection methods. The target OTR values for the MC-based and the GA-based
methods were chosen as the mean OTR values for the body and the head staves, which are 0.03275 and
0.02928 hPa/h, respectively, as calculated in [4]. The construction of 50 barrels (50 body staves and
100 body heads) was simulated with various numbers of staves and various processing times in the
selection method. Tables 2 and 3 present the obtained results for the heads and bodies construction
simulation respectively. Moreover, Figures 7 and 8 show the performance of both MC-based and
GA-based methods when the target OTR varies.

Table 2. Results of the construction of 100 heads with a target OTR of 0.02928 hPa/h. The parameter
“method staves” refers to the number of staves that are considered in the method dataset (Figure 6),
and the time refers to the number of seconds that the methods iterate prior to outputting the best
solution that has been found during this time.

Method Staves Time (s)
Mean Coefficient of Variation

Current MC GA Current MC GA

25 1 0.029107 0.029219 0.029252 15.53% 1.4264% 0.8387%
50 1 0.028177 0.029283 0.029282 14.83% 0.0948% 0.0618%

150 1 0.029049 0.029279 0.029280 15.86% 0.0443% 0.0131%
25 5 0.028636 0.029268 0.029270 15.72% 0.4678% 0.3351%
50 5 0.028052 0.029279 0.029280 15.64% 0.0275% 0.0030%

150 5 0.028852 0.029280 0.029280 16.79% 0.0079% 0.0020%

Table 3. Results of the construction of 50 bodies with a target OTR of 0.03275 hPa/h. The parameter
staves method refers to the number of staves that are considered in the method dataset (Figure 6),
and the time refers to the number of seconds that the methods iterate prior to outputting the best
solution that has been found during this time.

Method Staves Time (s)
Mean Coefficient of Variation

Current MC GA Current MC GA

50 1 0.032259 0.032711 0.032789 7.749% 1.7901% 1.0290%
100 1 0.032094 0.032744 0.032734 6.716% 0.8282% 0.1383%
300 1 0.032538 0.032737 0.032746 7.752% 0.4966% 0.1090%
50 5 0.032762 0.032776 0.032751 8.053% 0.4985% 0.0218%

100 5 0.032650 0.032743 0.032749 7.289% 0.1223% 0.0263%
300 5 0.032412 0.032757 0.032750 6.751% 0.1030% 0.0166%



Molecules 2020, 25, 3312 11 of 20Molecules 2020, 25, x FOR PEER REVIEW 11 of 20 

 

 

(a) 

 

(b) 

Figure 7. Error rates of the head stave (a) and the body stave (b) by selection method for the various 
target OTR values. A simulation was regarded as an error when the maximum iteration time was 
reached without identifying a head or a body barrel with the desired OTR value. 

 

(a) 

0%

20%

40%

60%

80%

100%
er

ro
r (

%
)

OTR (hPa/h)

heads error
MC GA

0%

20%

40%

60%

80%

100%

0.
01

8
0.

01
9

0.
02

0
0.

02
1

0.
02

2
0.

02
3

0.
02

4
0.

02
5

0.
02

6
0.

02
7

0.
02

8
0.

02
9

0.
03

0
0.

03
1

0.
03

2
0.

03
3

0.
03

4
0.

03
5

0.
03

6
0.

03
7

0.
03

8
0.

03
9

0.
04

0
0.

04
1

0.
04

2
0.

04
3

0.
04

4
0.

04
5

0.
04

6
0.

04
7

0.
04

8

er
ro

r (
%

)

OTR (hPa/h)

body errors
MC GA

0
1
2
3
4
5
6
7
8
9

10

tim
e 

(s
)

OTR (hPa/h)

heads convergence time
MC GA

Figure 7. Error rates of the head stave (a) and the body stave (b) by selection method for the various
target OTR values. A simulation was regarded as an error when the maximum iteration time was
reached without identifying a head or a body barrel with the desired OTR value.

Analyzing the results in Tables 2 and 3, several observations are made. Analyzing the mean value
of the bodies and heads, these values are close to the target OTR in the three methods. This finding
could be explained by the central limit theorem that denotes that the mean value of the barrels and
bodies will be close to the mean value of the staves even for the current method, in which the OTR is not
considered in the construction of the barrel element. However, analyzing the coefficient of variation
there are differences among the methods considered. First, there are large differences between the
coefficient of variation for the current method and the coefficients of variation for the MC and GA
methods, which is expected because the latter two methods consider the OTR of the staves in the
barrel element construction. Moreover, this coefficient of variation, which is between 14% and 17%
for the heads and between 6% and 9% for the bodies, is an approximation of the actual variance of
the barrels that are constructed in a cooperage. The second observation in comparing the methods
is that, despite the small coefficients of variations for the MC and GA methods, there is a consistent
difference between them: the coefficient of variation for the GA-based methods is always smaller.
Furthermore, the GA-based compared with the MC-based methods performance is better when the
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absolute difference between the OTR and the mean OTR increases, as it can be seen in Figures 7 and 8.
This observation shows the utility and robustness of the proposed GA-based methods.
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Figure 8. Mean convergence times of the head stave (a) and the body stave (b) by selection method for
various target OTR values. The mean time was calculated considering only the heads and bodies that
were constructed prior to reaching the maximum iteration time.

Comparing the simulation parameters that are considered for the MC and GA methods, increasing
the simulation time reduces the variability of the constructed elements because the construction
methods have more time to perform iterations and the probability of finding better solutions increases.
Nevertheless, increasing the number of iterations increases the processing time of the method, which is
an undesirable feature of the method. Moreover, analyzing the number of staves that are considered in
the method, the variability is reduced as the number of staves increases because it is easier to find staves
with satisfactory characteristics for the construction of an element, but the increment of the staves
makes the process more complex to implement in a cooperage due to the storage and the logistical
requirements that are associated with this modification. For these reasons, choosing the iteration time
and the number of staves is a compromise solution. In the next experiments of this article, we are
going to use an iteration time of 1 s, 50 staves for the head stave selection method, and 100 staves for
the body stave selection method.
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Finally, by comparing the construction of the heads and bodies, interesting differences are
identified. The coefficient of variation for the heads is larger than the coefficient of variation for the
bodies for the current method. This finding could be explained by the bodies having approximately
3 times more staves than the heads; hence, the variance when a set of staves is randomly chosen
decreases when the number of staves increases. Nevertheless, it is difficult to draw a similar conclusion
when comparing the MC-based and the GA-based methods. In these cases, there are differences among
the stave selection criteria that are considered that render impossible the comparison of the head
and the body construction methods in the same conditions to analyze the differences of the obtained
coefficient of variation values.

4.2. Low-OTR and High-OTR Barrel Production

The second scenario was proposed to construct low-OTR (L-OTR) and high-OTR (H-OTR) barrels
in the regular production of a cooperage. The body and the head staves were preclassified into
three groups of staves each: low-OTR, mid-OTR, and high-OTR body and head staves, respectively,
repeating the strategy of Prat-García et al. [4] by using the OTR estimation method proposed in [19].
In our work, the threshold values that were considered in the formation of the groups were 0.0157 and
0.0396 hPa/h for the body staves and 0.0230 and 0.0434 hPa/h for the head staves, which were the same
threshold values utilized in the work of [4].

After preclassifying the staves, the proposed methods were applied to homogenize the OTR of
the constructed barrels in a similar way to the procedure followed in the first scenario. The previously
selected parameters of 25 and 50 staves for the head and body construction methods, respectively,
were chosen, and a maximum iteration time of 1 s was set in both cases. Moreover, the target
OTR value was chosen as the mean OTR value of the staves that were considered in each case,
which was 0.0148985 and 0.0165681 hPa/h for the L-OTR head and body, respectively, and 0.0501335
and 0.0528710 hPa/h for the H-OTR head and body, respectively. Table 4 presents the obtained results
for the L-OTR and the H-OTR barrels, while Figures 9–12 show the performance of MC-based and GA
based methods when the target OTR varies.

Table 4. Results of the construction of the heads and bodies for 50 low-OTR (L-OTR) or high-OTR
(H-OTR) barrels.

Barrel Element Stave Type Target OTR
Mean Coefficient of Variation

Current MC GA Current MC GA

Heads L-OTR 0.0148985 0.014750 0.014917 0.014915 5.585% 0.6261% 0.4849%
Body L-OTR 0.0165681 0.016483 0.016583 0.016566 3.155% 0.2608% 0.0650%

Heads H-OTR 0.0501335 0.050293 0.050133 0.050133 4.178% 0.0298% 0.0284%
Body H-OTR 0.0528710 0.052992 0.052873 0.052869 1.804% 0.1110% 0.0387%
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the constructed barrels in a similar way to the procedure followed in the first scenario. The previously 
selected parameters of 25 and 50 staves for the head and body construction methods, respectively, 
were chosen, and a maximum iteration time of 1 s was set in both cases. Moreover, the target OTR 
value was chosen as the mean OTR value of the staves that were considered in each case, which was 
0.0148985 and 0.0165681 hPa/h for the L-OTR head and body, respectively, and 0.0501335 and 
0.0528710 hPa/h for the H-OTR head and body, respectively. Table 4 presents the obtained results for 
the L-OTR and the H-OTR barrels, while Figures 9–12 show the performance of MC-based and GA 
based methods when the target OTR varies. 

Table 4. Results of the construction of the heads and bodies for 50 low-OTR (L-OTR) or high-OTR (H-
OTR) barrels. 

Barrel 
Element 

Stave 
Type 

Target 
OTR 

Mean Coefficient of Variation 
Current MC GA Current MC GA 

Heads L-OTR 0.0148985 0.014750 0.014917 0.014915 5.585% 0.6261% 0.4849% 
Body L-OTR 0.0165681 0.016483 0.016583 0.016566 3.155% 0.2608% 0.0650% 

Heads H-OTR 0.0501335 0.050293 0.050133 0.050133 4.178% 0.0298% 0.0284% 
Body H-OTR 0.0528710 0.052992 0.052873 0.052869 1.804% 0.1110% 0.0387% 
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Figure 9. Error rates of the for the head stave (a) and the body stave (b) by selection method for various
target OTR values obtained by using the head and body low-OTR staves. A simulation was regarded
as an error if the maximum iteration time was reached without identifying a head or a body barrel with
the desired OTR value.
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Figure 10. Mean convergence times of the for the head stave (a) and the body stave (b) by selection
method for various target OTR values obtained by using the head and body low-OTR staves. The mean
time was calculated with consideration of only the heads and bodies that were constructed before
reaching the maximum iteration time.
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Figure 11. Error rates of the for the head stave (a) and the body stave (b) by selection method for
various target OTR values obtained by using the head and body high-OTR staves. A simulation was
regarded as an error if the maximum iteration time was reached without identifying a head or a body
barrel with the desired OTR value.

First, analyzing the obtained results and comparing them with the results in Section 4.1,
several observations from the previous subsection are also valid for this experiment: the evaluated
MC and GA methods significantly reduce the variability of the constructed elements according to
a comparison of their coefficients of variation with those obtained by the current method. Moreover,
the proposed GA methods improve the performance of the MC methods, being also more robust to
changes in the target OTR.

Second, the obtained results demonstrate the advantages of preclassifying staves as L-OTR and
H-OTR. Comparing the obtained results with those presented in Figures 7 and 8, preclassifying staves
is the best strategy if the construction of barrels with two OTR levels is the objective. The first reason to
justify it is the high error rate obtained in Figures 7 and 8 for the extreme OTR values. The second
reason is that it is possible to construct L-OTR and H-OTR barrels via the current selection method.
Nevertheless, the difference in the variability that is presented in Table 4 suggests that the proposed
GA-based method should be implemented.
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Third, the L-OTR and the H-OTR barrels differ as follows: the coefficients of variation are smaller
for the H-OTR heads and bodies. This is mainly due to the difference in the mean OTR values, which are
between 3 and 4 times greater for the H-OTR elements; hence, the variability, which is regarded as the
standard deviation, is larger for the H-OTR barrel elements.
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Figure 12. Mean convergence times of the head stave (a) and the body stave (b) by selection method
for various target OTR values obtained by using the head and body high-OTR staves. The mean time
was calculated in consideration of only the heads and bodies that were constructed before reaching the
maximum iteration time.

4.3. Real Cooperage Simulation

The last scenario that was considered in the evaluation of the proposed method was the production
of 50 wine barrels, which is a regular daily production of cooperages such as INTONA S.L. cooperage.
Fifty L-OTR and 50 H-OTR barrels with the same characteristics as in experiment 4.2 were constructed:
25 and 50 staves were regarded as the method dataset for the head and the body construction methods,
with a maximum iteration time of 1 s and target OTR values of 0.0148985 and 0.0165681 hPa/h for
the L-OTR head and body, respectively, and 0.0501335 and 0.0528710 hPa/h for the H-OTR head and
body, respectively. These configuration parameters are the same as those that were chosen in the
previous scenarios.
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The method procedure was similar to the procedures for the previous scenarios but with the
generation of 100 heads or 50 bodies per simulation instead of one. 2000 L-OTR and 2000 H-OTR
stave samples for both the head and the body were considered, which were generated based on the
CDF of the features of the original data according to the procedure that is described in Section 2.1.
These samples were organized as presented in Figure 6; hence, at the beginning of the experiment,
all the staves were in the idle stave dataset. From this dataset, 25 or 50 staves for the heads or the bodies,
respectively, were randomly extracted to the method construction stave dataset for the construction
of a head or a body. After the stave selection methods had been executed, the selected staves were
moved to the used stave dataset, and the remaining staves were moved to the idle stave dataset.
This procedure was iteratively repeated until all the heads and bodies were constructed, and it was
applied for both the MC-based methods and the GA-based methods.

The 2000 samples of each experiment were randomly ordered at the beginning of the experiment
in an ordered queue. With this randomly initialized queue for the idle stave dataset, the method
construction stave dataset always selected the first 25 or 50 staves of this queue and moved the
unused staves after the application of the method to the last position of the idle stave dataset queue.
This procedure was applied to the MC-based methods and the GA-based methods with the same initial
idle stave dataset queue to obtain similar conditions and to avoid differences in the comparison that are
due to differences in the orders of the dataset. Moreover, the proposed queue simulates the production
line of a cooperage; hence, it could be implemented on the production line.

Table 5 presents the results that were obtained in this experiment. These results provide an example
of the performance that could be realized by the proposed methods in a real cooperage.

Table 5. Results of the real cooperage simulation, where the OTRs of 50 barrels that were constructed
via the proposed methods were analyzed with their mean values, standard deviations, coefficients of
variation, and minimum and maximum values.

L-OTR H-OTR

MC GA MC GA

mean 0.01615057 0.01614661 0.05216888 0.05219895
standard deviation 2.6795 × 10−5 1.6284 × 10−5 1.0365 × 10−4 9.1959 × 10−5

coefficient of variation 0.16591% 0.10085% 0.19868% 0.17617%
minimum 0.01607707 0.01608685 0.05182518 0.05179106
maximum 0.01626386 0.01622588 0.05243214 0.05244636

The first observation is that the GA-based methods outperform the MC-based methods in the
real simulation.

The second observation regards the homogeneity of the obtained barrels. On the one hand,
it can be seen that the coefficient of variation is very low, which is an important parameter for the
homogeneity. On the other hand, when analyzing the worst cases, the homogeneity is again highly
satisfactory: the variation range between the minimum and the maximum OTR values of the barrels is
less than 1.3% with respect to the mean OTR.

The last observation regards the head and body assembly procedure. In this scenario, each barrel
was constructed with the first available body and heads, e.g., the first barrel with the first body and the
first and second heads and the second barrel with the second body and the third and fourth heads.
It will be possible to reduce the variability of the resulting barrels by selecting the heads and bodies that
are used to build each barrel to compensate the OTR values of the elements of the barrels. Nevertheless,
implementing this procedure in a real cooperage will be difficult because it will be necessary to store
several heads and bodies and to manage them for its assembly; it may not be worth applying this
approach because sufficiently low variability can be realized without using this method.
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5. Conclusions

The results that are presented in this article demonstrate that artificial intelligence methods that
were implemented by using the genetic algorithm could be employed in real production to select the
staves that are needed for the construction of barrels with various OTR values. The proposed methods
can select the staves for the construction of the heads and the body of a barrel with one second of
processing time for each element. Moreover, the experimental results demonstrate the performance of
the proposed methods in constructing barrels with a desired OTR value, which significantly outperform
brute-force MC methods. Finally, the preclassification of the staves according to their OTR values
enabled the construction of low-OTR and high-OTR barrels, with mean OTR values of 0.016 and
0.052 hPa/h, respectively, and coefficients of variation of 0.10% and 0.18%, respectively.
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