Supporting Information

4-Arylthieno[2,3-*b*]pyridine-2-carboxamides are a new class of antiplasmodial agents

Sandra I. Schweda ^{1,2}, Arne Alder ^{3,4,5}, Tim Gilberger ^{3,4,5} and Conrad Kunick ^{1,2,*}

- 1 Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
- 2 Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
- 3 Centre for Structural Systems Biology, 22607 Hamburg, Germany
- 4 Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- 5 University of Hamburg, 20146 Hamburg, Germany
- * Correspondence: c.kunick@tu-braunschweig.de

Table of contents

Figure S1: Structures and names of compounds 9a-9af and 17a-17l	1
Figure S2-S5: Spectral data of 9a	9
Figure S6-S9: Spectral data of 9e	13
Figure S10-S13: Spectral data of 9 j	17
Figure S14-S18: Spectral data of 9m	21
Figure S19-S22: Spectral data of 9n	26
Figure S23-S26: Spectral data of 9y	30
Figure S27-S31: Spectral data of 9z	34
Figure S32-S35: Spectral data of 9ac	39
Figure S36-S40: Spectral data of 17a	43
Figure S41-S45: Spectral data of 17b	48
Figure S46-S49: Spectral data of 17e	53
Figure S50-S53: Spectral data of 17f	57
Figure S54-S57: Spectral data of 17g	61
Figure S58-S61: Spectral data of 17h	65
Figure S62-S79: HPLC chromatograms of 9a , 9e , 9m , 9y , 9ac , 17a , 17b , 17f and 17g	69

Figure S1:

3,6-Diamino-4-(3-chlorophenyl)-*N*-(4chlorophenyl)-5-cyanothieno[2,3-*b*]pyridine-2-carboxamide **9a** (KuSaSch018)

3,6-Diamino-*N*-(2-chlorophenyl)-5-cyano-4-(3-fluorophenyl)thieno[2,3-*b*]pyridine-2carboxamide **9b** (KuSaSch022)

3,6-Diamino-*N*-(2-chlorophenyl)-4-(3chlorophenyl)-5-cyanothieno[2,3-*b*]pyridine-2-carboxamide **9c** (KuSaSch027)

3,6-Diamino-4-(3-chlorophenyl)-5-cyano-*N*-(4-fluorophenyl)thieno[2,3-*b*]pyridine-2carboxamide **9d** (KuSaSch028)

3,6-Diamino-*N*-(4-chlorophenyl)-5-cyano-4-(3-methylphenyl)thieno[2,3-*b*]pyridine-2carboxamide **9e** (KuSaSch031)

3,6-Diamino-*N*-(2-chlorophenyl)-5-cyano-4-(3-methylphenyl)thieno[2,3-*b*]pyridine-2carboxamide **9f** (KuSaSch032)

3,6-Diamino-5-cyano-*N*-(4-fluorophenyl)-4-(3methylphenyl)thieno[2,3-*b*]pyridine-2carboxamide **9g** (KuSaSch033)

3,6-Diamino-*N*-(4-chlorophenyl)-5-cyano-4-(3-fluorophenyl)thieno[2,3-*b*]pyridine-2carboxamide **9h** (KuSaSch037)

3,6-Diamino-5-cyano-4-(3-fluorophenyl)-*N*-(4fluorophenyl)thieno[2,3-*b*]pyridine-2carboxamide **9i** (KuSaSch038)

3,6-Diamino-5-cyano-*N*-methyl-4-(3methylphenyl)thieno[2,3-*b*]pyridine-2carboxamide **9j** (KuSaSch127)

3,6-Diamino-5-cyano-*N*-heptyl-4-(3methylphenyl)thieno[2,3-*b*]pyridine-2carboxamide **9k** (KuSaSch129)

3,6-Diamino-5-cyano-*N*-isopropyl-4-(3methylphenyl)thieno[2,3-*b*]pyridine-2carboxamide **91** (KuSaSch131)

3,6-Diamino-5-cyano-*N*-cyclopropyl-4-(3methylphenyl)thieno[2,3-*b*]pyridine-2carboxamide **9m** (KuSaSch134)

3,6-Diamino-5-cyano-*N*-(2-morpholinoethyl)-4-(3-methylphenyl)thieno[2,3-*b*]pyridine-2carboxamide **9n** (KuSaSch135)

3,6-Diamino-5-cyano-*N*-(2-cyclopropylethyl)-4-(3-methylphenyl)thieno[2,3-*b*]pyridine-2carboxamide **90** (KuSaSch137)

tert-Butyl 4-(3-chloro-4-{3,6-diamino-2-[(3chlorophenyl)carbamoyl]-5-cyanothieno[2,3*b*]pyridin-4-yl}phenyl)piperazine-1carboxylate **9p** (KuSaSch041)

3,6-Diamino-4-[2-chloro-4-(piperazin-1yl)phenyl]-*N*-(3-chlorophenyl)-5cyanothieno[2,3-*b*]-pyridine-2-carboxamide hydrochloride **9q** (KuSaSch043)

3,6-Diamino-4-[2-chloro-4-(pyrrolidin-1yl)phenyl]-*N*-(3-chlorophenyl)-5cyanothieno[2,3-*b*]-pyridine-2-carboxamide **9s** (KuSaSch051)

3,6-Diamino-4-[2-chloro-4-(pyrrolidin-1yl)phenyl]-*N*-(2-chlorophenyl)-5cyanothieno[2,3-*b*]-pyridine-2-carboxamid **9t** (KuSaSch055)

3,6-Diamino-4-(2-chloro-4morpholinophenyl)-*N*-(2-chlorophenyl)-5cyanothieno[2,3-*b*]pyridine-2-carboxamide **9u** (KuSaSch056)

3,6-Diamino-4-(2-chloro-4morpholinophenyl)-*N*-(3-chlorophenyl)-5cyanothieno[2,3-*b*]pyridine-2-carboxamide **9r** (KuSaSch050)

3,6-Diamino-4-(2-chloro-4morpholinophenyl)-*N*-(4-chlorophenyl)-5cyanothieno[2,3-*b*]pyridine-2-carboxamide **9v** (KuSaSch057)

tert-Butyl {2-[(3-chloro-4-{3,6-diamino-2-[(3chlorophenyl)carbamoyl]-5-cyanothieno[2,3*b*]pyridin-4yl}phenyl)(methyl)amino]ethyl}carbamate **9w** (KuSaSch058)

3,6-Diamino-4-(2-chloro-4morpholinophenyl)-5-cyano-*N*-(4fluorophenyl)thieno[2,3-*b*]pyridine-2carboxamide **9x** (KuSaSch059)

tert-Butyl {2-[(3-chloro-4-{3,6-diamino-2-[(4chlorophenyl)carbamoyl]-5-cyanothieno[2,3*b*]pyridin-4yl}phenyl)(methyl)amino]ethyl}carbamate **9y** (KuSaSch060)

3,6-Diamino-4-[2-chloro-4-(pyrrolidin-1yl)phenyl]-*N*-(4-chlorophenyl)-5cyanothieno[2,3-*b*]-pyridine-2-carboxamide **9z** (KuSaSch063)

3,6-Diamino-4-[2-chloro-4-(pyrrolidin-1yl)phenyl]-5-cyano-*N*-(4fluorophenyl)thieno[2,3-*b*]-pyridine-2carboxamide **9aa** (KuSaSch064)

tert-Butyl {2-[(3-chloro-4-{3,6-diamino-5cyano-2-[(4fluorophenyl)carbamoyl]thieno[2,3-*b*]pyridin-4-yl}phenyl)(methyl)amino]ethyl}carbamate **9ac** (KuSaSch073)

3,6-Diamino-4-(2-chloro-4-{[2-(dimethylamino)ethyl](methyl)amino}phenyl)-5-cyano-*N*-(4-fluoro-phenyl)thieno[2,3*b*]pyridine-2-carboxamide **9ab** (KuSaSch067)

tert-Butyl {2-[(3-chloro-4-{3,6-diamino-2-[(2chlorophenyl)carbamoyl]-5-cyanothieno[2,3*b*]pyridin-4yl}phenyl)(methyl)amino]ethyl}carbamate

3,6-Diamino-4-{4-[(2aminoethyl)(methyl)amino]-2-chlorophenyl}-*N*-(3-chlorophenyl)-5-cyano-thieno-[2,3-*b*]pyridine-2-carboxamide hydrochloride **9ae** (KuSaSch075)

3,6-Diamino-4-(2-chloro-4-{[2-(dimethylamino)ethyl](methyl)amino}phenyl)-N-(3-chlorophenyl)-5-cyanothieno[2,3-

tert-Butyl 4-(4-{3-amino-2-[(4chlorophenyl)carbamoyl]-6,7-dihydro-5*H*cyclopenta[*b*]thieno[3,2-*e*]pyridin-4-yl}-3chlorophenyl)piperazine-1-carboxylate **17a** (KuSaSch095)

3-Amino-*N*-(4-chlorophenyl)-4-phenyl-6,7dihydro-5*H*-cyclopenta[*b*]thieno[3,2*e*]pyridine-2-carboxamide **17b** (KuSaSch100)

3-Amino-*N*-(4-fluorophenyl)-4-phenyl-6,7dihydro-5*H*-cyclopenta[*b*]thieno[3,2*e*]pyridine-2-carboxamide **17c** (KuSaSch101)

3-Amino-*N*-(4-chlorophenyl)-4-phenyl-5,6,7,8-tetrahydrothieno[2,3-*b*]quinoline-2carboxamide **17d** (KuSaSch105)

3-Amino-*N*-(4-chlorophenyl)-4-(3methylphenyl)-6,7-dihydro-5*H*cyclopenta[*b*]thieno[3,2-*e*]-pyridine-2carboxamide **17f** (KuSaSch110)

3-Amino-2-[(4-chlorophenyl)carbamoyl]-6methyl-4-(3-methylphenyl)thieno[2,3*b*]pyridine-5-carboxylic acid **17i** (KuSaSch114)

3-Amino-2-[(4-chlorophenyl)carbamoyl]-6methyl-4-phenylthieno[2,3-*b*]pyridine-5carboxylic acid **17j** (KuSaSch115)

tert-Butyl 4-(4-{3-amino-2-[(4chlorophenyl)carbamoyl]-5,6,7,8tetrahydrothieno[2,3-*b*]quinolin-4-yl}-3chlorophenyl)piperazine-1-carboxylate **17k** (KuSaSch118)

tert-Butyl 3-amino-2-[(4chlorophenyl)carbamoyl]-6-methyl-4phenylthieno[2,3-*b*]pyridine-5-carboxylate **17g** (KuSaSch111)

tert-Butyl 3-amino-2-[(4chlorophenyl)carbamoyl]-6-methyl-4-(3methylphenyl)thieno[2,3-*b*]-pyridine-5carboxylate **17h** (KuSaSch112)

tert-Butyl 4-(4-{3-amino-2-[(4chlorophenyl)carbamoyl]-6-methylthieno[2,3b]pyridin-4-yl}-3-chlorophenyl)piperazine-1carboxylate **171** (KuSaSch122)

Figure S4: IR spectrum of **9a** (KuSaSch018).

14

Figure S8: IR spectrum of **9e** (KuSaSch031).

Figure S9: APCI-MS spectrum of **9e** (KuSaSch031).

Figure S12: IR spectrum of 9j (KuSaSch127).

Figure S13: APCI-MS spectrum of **9j** (KuSaSch127).

Figure S14: ¹H-NMR spectrum of **9m** (KuSaSch134).

Figure S15: ¹³C-NMR spectrum of **9m** (KuSaSch134).

Figure S16: HSQC-NMR spectrum of **9m** (KuSaSch134). The black circle confirms two protons under one carbon signal.

Figure S17: IR spectrum of **9m** (KuSaSch134).

Figure S18: APCI-MS spectrum of **9m** (KuSaSch134).

Figure S20: ¹³C-NMR spectrum of **9n** (KuSaSch135).

Figure S21: IR spectrum of 9n (KuSaSch135).

Figure S22: APCI-MS spectrum of **9n** (KuSaSch135).

Supporting Information

Figure S25: IR spectrum of **9y** (KuSaSch060).

Figure S26: APCI-MS spectrum of **9y** (KuSaSch060).

Supporting Information

Figure S30: IR spectrum of **9z** (KuSaSch063).

Figure S31: APCI-MS of **9z** (KuSaSch063).

Figure S ²	32+1H_NMR	spectrum	of 9ac	(KuSaSch()73)
i iguie de	2.11 1	spectrum	Juc	(Itububerio).

Supporting Information

Figure S33: ¹³C-NMR spectrum of **9ac** (KuSaSch073).

Figure S34: IR spectrum of **9ac** (KuSaSch073).

Figure S35: APCI-MS spectrum of **9ac** (KuSaSch073).

El	13C NIN 10	are a character	~f 17-	$(V_{22}C_{2}C_{2}C_{2}I_{2}OOE$	Υ.
Figure 537	- 1 VIX	spectrum	OT I 7 a	IKUSASCHUSS	1
		op cour ann	· · · ·	(10000000000000000000000000000000000000	1

Figure S38: HSCQ-NMR spectrum of **17a** (KuSaSch095). The black circle confirms 4 protons under a missing signal for two carbons.

Figure S39: IR spectrum of 17a (KuSaSch095).

Figure S40: APCI-MS spectrum of **17a** (KuSaSch095).

Figure S41: ¹H-NMR spectrum of **17b** (KuSaSch100).

Figure S42: ¹³C-NMR spectrum of **17b** (KuSaSch100).

Figure S43: HSQC-NMR spectrum of **17b** (KuSaSch100). The black circle confirms 3 protons under one carbon signal.

Figure S44: IR spectrum of **17b** (KuSaSch100).

Figure S46: ¹H-NMR spectrum of **17e** (KuSaSch107).

Figure S47: ¹³C-NMR spectrum of **17e** (KuSaSch107).

Figure S48: IR spectrum of **17e** (KuSaSch107).

-7500000	-7000.000	-6500 000	-6000000	-5500 000	-5000 000	-4500.000	-4000000	-3500 000	000000E-	-2500.000	-2000 000	-1500000	-1000000	-5000.00	0 E0000	
_	T0'0- 00'0- T0'0-															- 0.0
			\bigcirc	CH ₃												0.5
	atom 1 m	\frown	Ĭ,	NH ₂												- 01
	60'Zh		N	∽s∕ /==	NH											1.5
	90'Z- 20'Z- 60'Z- 01'Z-			CI	//											50- 57- 57- 57- 57- 57- 57- 57- 57- 57- 57
050	10672	_											-		} ⊐ ⊥-88	52
050	-5'21 Di -5'21 Di -5'22 -5'22			_											= I-60	- 0 m
	29°C 89°C- 89°C- 89°C-														1	3.5
	20 E 60'E- 01'E-															- 0.
a	CH 82 8.															a, 5 - 1
																5.0 f1 (ppn
																- 55
	68'S	-													⊐ -00	7 - 0.
	52"2" 52"2" 52"2"															6.5
	52721 52721 52721															2.0
	HE'L										_		-			7.5
	96°2- 96°2- 26°2-														- P 80	- 0.8
	8612- 8612- 8612- 8612-															8.5
	85121 95121 85121 65121															- 0'6
	69'2' 69'2' 02'2' 12'2- 7															-0 -2;6 -
	12'2- 22'2- 55'6															0.0

Figure S50: ¹H-NMR spectrum of **17f** (KuSaSch110).

Figure S52: IR spectrum of **17f** (KuSaSch110).

Figure S53: APCI-MS spectrum of **17f** (KuSaSch110).

Figure S55: ¹³C-NMR spectrum of **17f** (KuSaSch111).

Figure S56: IR spectrum of **17f** (KuSaSch111).

Figure S58: ¹H-NMR spectrum of **17h** (KuSaSch112).

Supporting Information

Figure S59: ¹³C-NMR spectrum of **17h** (KuSaSch112).

Figure S60: IR spectrum of 17h (KuSaSch112).

Figure S62: HPLC chromatogram of **9a** (KuSaSch018) – gradient method (HPLC 3)

Figure S63: HPLC chromatogram of 9a (KuSaSch018) – isocratic method (HPLC 1)

Figure S64: HPLC chromatogram of **9e** (KuSaSch031) – gradient method (HPLC 3)

Figure S65: HPLC chromatogram of 9e (KuSaSch031) – isocratic method (HPLC 1)

Figure S66: HPLC chromatogram of **9m** (KuSaSch134) – gradient method (HPLC 3)

Figure S67: HPLC chromatogram of 9m (KuSaSch134) – isocratic method (HPLC 1)

Figure S68: HPLC chromatogram of 9y (KuSaSch060) – gradient method (HPLC 3)

Figure S69: HPLC chromatogram of 9y (KuSaSch060) – isocratic method (HPLC 1)

Figure S70: HPLC chromatogram of **9ac** (KuSaSch073) – gradient method (HPLC 3)

Figure S71: HPLC chromatogram of **9ac** (KuSaSch073) – isocratic method (HPLC 1)

Figure S73: HPLC chromatogram of 17a (KuSaSch095) – isocratic method (HPLC 1)

Figure S74: HPLC chromatogram of **17b** (KuSaSch100) – gradient method (HPLC 3)

Figure S75: HPLC chromatogram of **17b** (KuSaSch100) – isocratic method (HPLC 1)

1: 254 nm. 4 nm

Figure S77: HPLC chromatogram of **17f** (KuSaSch110) – isocratic method (HPLC 1)

Figure S79: HPLC chromatogram of 17g (KuSaSch111) – isocratic method (HPLC 1)

Sample Availability: Samples of the compounds are not available from the authors.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).