Supplementary Materials

Stabilisation of Exotic Tribromide (Br₃⁻) Anions via Supramolecular Interaction with A Tosylated Macrocyclic Pyridinophane. A Serendipitous Case.

Álvaro Martínez-Camarena ^{1,+}, Matteo Savastano ^{2,+}, Carla Bazzicalupi ², Antonio Bianchi ^{2,*} and Enrique García-España ^{1,*}

- ¹ ICMol, Department of Inorganic Chemistry, University of Valencia, C/Catedrático José Beltrán 2, 46980, Paterna, Spain.; alvaro.martinez@uv.es
- ² Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy; matteo.savastano@unifi.it (M. S.); carla.bazzicalupi@unifi.it (C. B.).
- * Correspondence: antonio.bianchi@unifi.it (A.B.); Enrique.Garcia-Es@uv.es (E. G-E.).
- ⁺ These authors contributed equally.

Academic Editor: György Szöllösi

Received: 18 June 2020; Accepted: 08 July 2020; Published: date

Table of anion-ligand interactions for the crystal structures analysed in this work. Table of Hirshfeld surface data for the $(H_2L-T_s)(Br_3)_{1.5}(NO_3)_{0.5}$ crystal structure. ¹H NMR spectrum of the ligand L showing the presence of ca. 2% impurity of L-Ts.

Table S1. Breakdown of main anion-ligand interactions contributing to H-bond tip and anion- π swoosh as found in crystal structures presented in Figures 11-14. Full information can be retrieved from original publications and/or directly from CSD database.

Crystal Structure	Anion ^a	H-bond tip	Anion-π swoosh		
(Figure)		(contact distance range) ^{+b}	(contact distance range) ^{+c}		
HUDVOU (Fig. 11)	l ⁻ (1)	5 CH l contacts (3.82-4.03)	1 anion-π contact (3.61)		
AVISEE (Fig 12)	HgBr ₄ ²⁻ (1)	3 CH Br contacts (3.80-3.94)	1 anion-π contact (3.35)		
		8 NH Br contacts (3.38-3.63)			
AVISII (Fig. 12)	HgCl ₄ ²⁻ (1)	3 CH Cl contacts (3.45-3.57)	1 anion-π contact (3.13)		
		6 NH [®] CI contacts (3.23-3.49)			
IDIJAJ (Fig. 12)	[Co(CN) ₆] ^{3−} (2) ^α	6 NH N contacts (2.81-3.03)	2 anion-π contacts (2.78-3.44)		
		6 OH N contacts (2.68-2.84)			
YOJDAD (Fig. 13)	Br ₃ - (1)	4 CH Br contacts (3.60-3.88)	3 anion-π contacts (3.25-3.83)		
YOJDEH (Fig. 13)	BrlBr⁻ (1)	4 CH Br contacts (3.49-3.84) ^e	2 anion- π contacts (3.28-3.58) ^e		
DETRIG (Fig. 14)	F ⁻ /FHF ⁻ (1 each)	10 CH F contacts (3.25-3.54)	1 anion-π contact (3.01)		
DETMOH (Fig. 14)	Cl ⁻ (1)	3 CH-Cl contacts (3 52-3 71)	1 anion- π contact (3.31)		
		1 NHCl contact (3.06)			
DETMUN (Fig. 14)	Br⁻ (1)	5 CH Br contacts (3.60-3.99)	1 anion- π contact (3.41)		
		1 NH […] Br contacts (3.23)			
KAMLOC (Fig. 14)	l⁻ (2) ^d	5 CH I contacts (4.01-4.22)	2 anion-π contacts (3.67-3.70)		
		2 NH I contacts (3.45-3.48)			

⁺ All distances in Å; ^a number of non-equivalent anions within the crystal structure in brackets; ^b given distance range is intended as anion-heavy (non-hydrogen) atom distance; ^c all distances given as anion-centroid distances; ^d in these cases, qualitative image shown in the text represents the closest anion- π contact within the crystal structure; ^e contacts with I cannot be classified as short, yet CH^{...}I and I- π interactions are till distinguishable in the fingerprint plot.

Table S2 . Breakdown of (H ₂ L-Ts) ²⁺	Hirshfeld surface in (H ₂ L-Ts)(Br ₃) _{1.5} (NO ₃)	0.5 crystal structure

(H ₂ L-Ts) ²⁺										
Inside Atom		Total								
	Br	S	Ν	Н	0	С				
С	2.3	•	0.1	5.5	0.4	3.5	11.8			
Н	25.6	•	•	40.1	12.2	3.3	81.2			
N	0.1	0.1	•	•	0.5	0.1	0.8			
0	0.0	•	0.5	4.2	0.9	0.4	6.1			
S	•	•	0.1	•		•	0.1			
Total	28.1	0.1	0.7	49.8	14.1	7.3				

Figure S1. ¹H NMR spectrum recorded on a D_2O solution (pD ca. 3) of L·3HBr. a) Aliphatic and aromatic signals; b) an enlarged detail of aromatic signals. The spectrum allows to detect and quantify the presence of an impurity of L-Ts (monotosylated ligand) in about 2%.