

Article New terpendole congeners, inhibitors of sterol Oacyltransferase, produced by Volutella citrinella BF-0440

Elyza Aiman Azizah Nur¹, Keisuke Kobayashi^{1,2}, Ai Amagai³, Taichi Ohshiro^{1,3,4}, and Hiroshi Tomoda^{1,3*}

- ¹ Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan; ml18124@st.kitasato-u.ac.jp (E.A.A.N); kobayashikei@pharm.kitasato-u.ac.jp (K.K)
- ² Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
- ³ Department of Microbial Chemistry, School of Pharmacy, Kitasato University, Tokyo, Japan; pp14007@st.kitasatou.ac.jp (A.A)
- ⁴ Present address, ITOCHU Collaborative Research-Molecular Targeted Cancer Treatment for Next Generation, Graduate School of Medicine, Nagoya University, Aichi, Japan; tohshiro@med.nagoya-u.ac.jp (T.O)
- * Correspondence: tomodah@pharm.kitasato-u.ac.jp (H.T)

List of Figures

Figure S1: ¹H-NMR spectrum of terpendole O (2) in DMSO- d_6 . **Figure S2:** ¹³C-NMR spectrum of terpendole O (2) in DMSO- d_6 . Figure S3: HSQC spectrum of terpendole O (2) in DMSO- d_6 . **Figure S4:** ¹H-¹H COSY spectrum of terpendole O (2) in DMSO- d_6 . **Figure S5:** HMBC spectrum of terpendole O (2) in DMSO- d_6 . **Figure S6:** NOESY spectrum of terpendole O(2) in DMSO- d_6 . Figure S7: ¹H-NMR spectrum of terpendole O (2) in CDCl₃. Figure S8: ¹³C-NMR spectrum of terpendole O (2) in CDCl₃. Figure S9: HSQC spectrum of terpendole O (2) in CDCl₃. **Figure S10:** ¹H-¹H COSY spectrum of terpendole O (2) in CDCl₃. Figure S11: HMBC spectrum of terpendole O (2) in CDCl₃. Figure S12: NOESY spectrum of terpendole O (2) in CDCl₃. **Figure S13:** ¹H-NMR spectrum of terpendole N (1) in DMSO- d_6 . Figure S14: ¹³C-NMR spectrum of terpendole N (1) in DMSO- d_6 . **Figure S15:** HSQC spectrum of terpendole N (1) in DMSO- d_6 . **Figure S16:** ¹H-¹H COSY spectrum of terpendole N (1) in DMSO- d_6 . **Figure S17:** HMBC spectrum of terpendole N (1) in DMSO- d_6 . Figure S18: ROESY spectrum of terpendole N (1) in DMSO- d_6 . **Figure S19:** ¹H-NMR spectrum of terpendole P (**3**) in DMSO- d_6 . **Figure S20:** ¹³C-NMR spectrum of terpendole P (**3**) in DMSO- d_6 . Figure S21: HSQC spectrum of terpendole P (3) in DMSO- d_6 . **Figure S22:** ¹H-¹H COSY spectrum of terpendole P (3) in DMSO- d_6 . Figure S23: HMBC spectrum of terpendole P (3) in DMSO- d_6 . Figure S24: ROESY spectrum of terpendole P (3) in DMSO- d_6 . Table S1: ¹H and ¹³C NMR chemical shifts of terpendole O (2) in CDCl₃.

Figure S1. ¹H-NMR spectrum of terpendole O (2) in DMSO- d_6 .

Figure S3. HSQC spectrum of terpendole O (2) in DMSO- d_6 .

Figure S4. ¹H-¹H COSY spectrum of terpendole O (2) in DMSO- d_6 .

Figure S5. HMBC spectrum of terpendole O (2) in DMSO- d_6 .

Figure S6. NOESY spectrum of terpendole O (2) in DMSO- d_6 .

Figure S7. ¹H-NMR spectrum of terpendole O (2) in CDCl₃.

Figure S8. ¹³C-NMR spectrum of terpendole O (2) in CDCl₃.

Figure S9. HSQC spectrum of terpendole O (2) in CDCl₃.

Figure S10. ¹H-¹H COSY spectrum of terpendole O (2) in CDCl₃.

Figure S11. HMBC spectrum of terpendole O (2) in CDCl₃.

Figure S12. NOESY spectrum of terpendole O (2) in CDCl₃.

Figure S15. HSQC spectrum of terpendole N (1) in DMSO- d_6 .

Molecules **2020**, 25, x FOR PEER REVIEW

Figure S16. ¹H-¹H COSY spectrum of terpendole N (1) in DMSO- d_6 .

Figure S17. HMBC spectrum of terpendole N (1) in DMSO- d_6 .

Figure S18. ROESY spectrum of terpendole N (1) in DMSO- d_6 .

Figure S22. ¹H-¹H COSY spectrum of terpendole P (**3**) in DMSO- d_6 .

Figure S23. HMBC spectrum of terpendole P (3) in DMSO- d6.

D	Terpendole O (2)		
Position	δc ª, type	δ _H ^b (multi, J Hz)	HMBC
1-NH	-	7.90 (s)	2, 18, 19, 24
2	151.5, C	-	-
3	50.3, C	-	-
4	42.3, C	-	-
5	27. 4, CH2	1.34 (t, 6.4) 2.70 (br td, 13,4 6.4)	13, 26
6	28, CH2	2.28 (m) 1.78 (m)	4
7	71.5, CH	4.38 (t, 10.0)	9, 11, 12
9	71.18, CH	3.57 (d, 10.0)	7, 27, 28, 29
10	71.12, CH	3.91 (d, 9.6)	27
11	61.1, CH	3.61 (s)	7
12	67.8, C	-	-
13	78, C	-	-
13-OH	-	-	-
14	30.2, CH ₂	1.43 (br m) 1.56 (br s)	-
15	20.5, CH ₂	1.60 (br m) 1.90 (br m)	-
16	50.2, CH	2.80 (br m)	-
17	29, CH ₂	2.60 (br t, 11.2) 2.83 (t, 6.0)	2, 18
18	116.7, C	-	-
19	124.7, C	-	-
20	129, C	-	-
21	119.3, CH	6.86 (d, 6.8)	19, 23
22	120.9, CH	7.02 (t, 7.6)	20, 24
23	109.9, CH	7.19 (d, 7.6)	19, 21
24	139.6, C	-	-
25	15.9, CH3	1.27 (s)	2, 4, 16
26	18.8, CH3	1.14 (s)	3, 4, 5, 14, 16
27	74.7, C	=	-
28	16.6, CH₃	1.29 (d, 2.8)	9, 27, 29
29	28.2, CH₃	1.29 (d, 2.8)	9, 27, 28
31	92.6, CH	5.53 (d, 6.8)	10, 27, 34
33	121.9, CH	5.30 (d, 6.8)	35, 36
34	139.6, C	-	-
35	18.6, CH₃	1.74 (d, 0.8)	33, 34, 36
36	25.6, CH₃	1.73 (d, 1.2)	33, 34, 35
37	32.7, CH2	2.98 (m)	21, 39
38	64.3 CH	3.29 (m) 3.09 (dd 5.2)	19 20
39	587 C		
40	100.7, C	- 1.42 (a)	-
4U	10.9, CH3	1.42 (S)	20, 27, 41
41	∠4.9, CH3	1.34 (S)	38, 39, 40

Supplementary Table 1. ¹H and ¹³C NMR chemical shifts of 2 in CDCl₃

¹³C (100 MHz) and 1H (400 MHz) spectra were taken on the NMR system 400 MHz spectrometer (Agilent). Chemical shifts are shown with reference to ^aCDCl₃ as δ 77.0, ^bCDCl₃ as δ 7.26. Multiplicity of signals as follows: s = singlet, d = doublets, dd = double doublets, t = triplet, m = multi. Coupling constants (Hz) were determined by the ¹H-¹H decoupling experiments.