Curcumin-1,2,3-Triazole Conjugation for Targeting the Cancer Apoptosis Machinery

Francesca Seghetti¹[^], Rita Maria Concetta Di Martino¹, Elena Catanzaro², Alessandra Bisi¹, Silvia Gobbi¹, Angela Rampa¹, Barbara Canonico³, Mariele Montanari³, Dmitri V. Krysko⁴, Stefano Papa³, Carmela Fimognari^{2*} and Federica Belluti^{1*}

- ¹ Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; [§]Present address: Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego n.30, 16163 Genova, Italy.
- ² Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy.
- ³ Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
- ⁴ Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium; Department of Pathophysiology, Sechenov First Moscow State Medical University, Moscow, Russia.

'These authors contributed equally to this work.

* Correspondence: federica.belluti@unibo.it; Tel.:+39 0512099732 (FB) + carmela.fimognari@unibo.it; Tel.:+390541-434-658 (CF)

1. Structural Characterization of Compound 1.

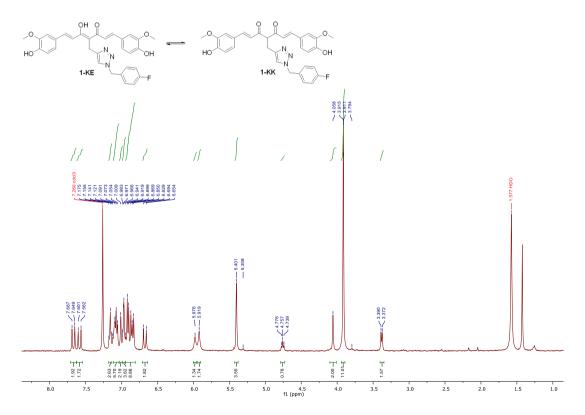


Figure S1. ¹H NMR (CDCl₃, 400 MHz) copy of compound 1.

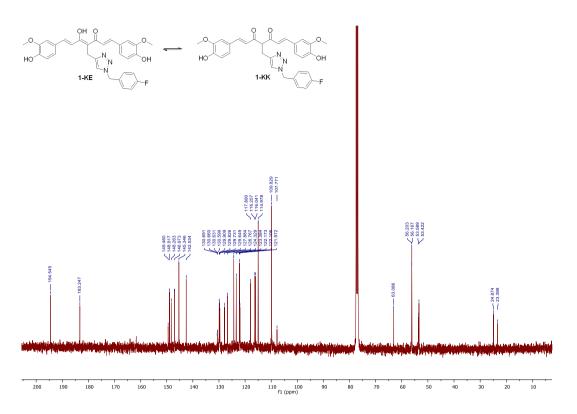


Figure S2. ¹³C NMR (CDCl₃, 101 MHz) copy of compound 1.

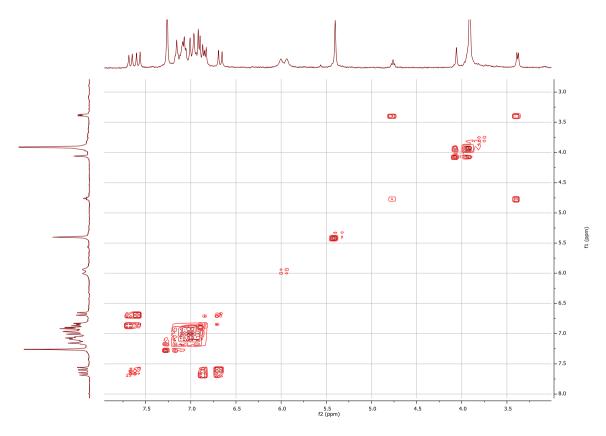


Figure S3. ¹H–¹H COSY copy of compound 1.

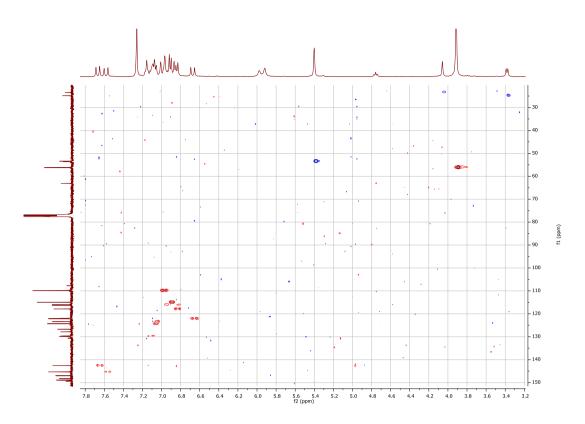


Figure S4. 1H–13C HSQC copy of compound 1.

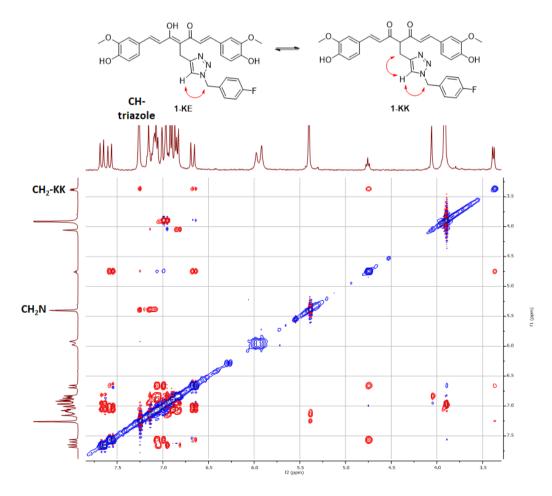
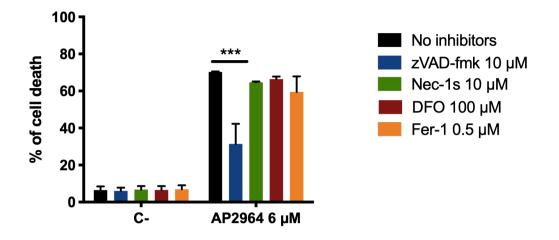
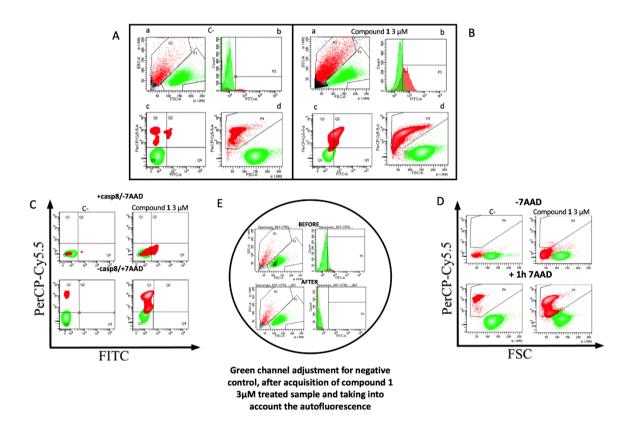




Figure S5. 2D NOESY copy of compound 1.

Figure S6. Cell-death analysis of Jurkat cells (% of dead cells) pre-treated for 1h with zVAD-fmk, Nec-1s, DFO, or Fer-1 and then treated with compound **1** for 48h. *** P < 0.001.

Figure S7. Gating strategy (**A**, **B**, **C**, **D**) and green autofluorescence management (**E**) in caspase 8 analysis. (**A**) and (**B**) show the sequence of dot plots, histograms and contour plot of control and compound **1**-treated samples, respectively. CCRF-CEM were split into different sub-populations depending on the morphologic parameters: red gate shows dead cells, green gate shows viable cells. Black represents debris which were excluded for the analysis. Dot plots in the picture show control (**Aa**) untreated cells and cells treated with the compound **1** for 24 h (**Ba**). In particular, (**Ba**), highlights the huge increase of red events, *i.e.* shrunken virtually apoptotic cells. To clear identify the apoptotic process, 7-AAD and Caspase 8 labelling were performed: histograms (**Ab**) and (**Bb**) show caspase 8 positivity (very low in control cells, while relevant in compound **1**-3 μM-treated cells); contemporary contour plots (**Ac**) and (**Bc**) highlights caspase 8+/7-AAD+ cells. Finally, the

contour plot FSC vs PerCpCy5.5 demonstrates how 60 minutes of incubation at RT for 7-AAD well discriminate between apoptotic (7-AAD^{low}) and necrotic-or late apoptotic (7-AAD^{bright}) cells. Since compound **1** emits fluorescence, the test required several steps and checkpoints, however it was possible to perform it. In (**C**), contour plots FITC vs PerCpCy5.5 are shown for control and compound **1**-treated samples: the first-row highlights both samples only for caspase 8 labelling, the second row only for 7-AAD uptake. Furthermore, (**D**) underlines, for control and compound **1**-treated samples, the positioning of the area of 7-AAD positivity (for both 7AAD^{low} and 7AAD^{bright} events), taking into account distribution of events in unlabeled samples (the upper row). Finally, in (**E**), as stated in the figure, the step of green channel adjustment.

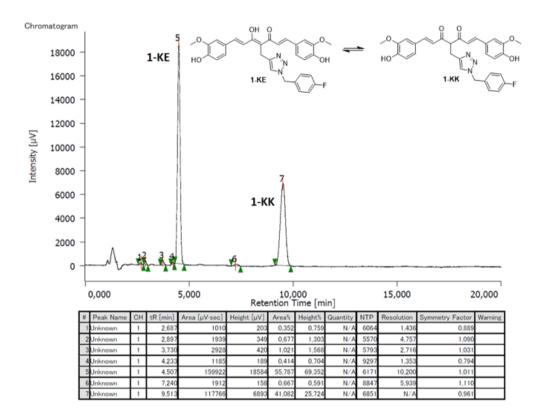


Figure S8. HPLC copy for compound 1.

Physicochemical Properties Prediction. The online server FAFDrugs4 (server available at http://fafdrugs4.mti.univ-paris-diderot.fr) was used to predict physicochemical properties of compounds **1-6**, including logP, logD (at pH 7), flexibility, aqueous solubility (logSw), number of rotatable bonds, hydrogenbond acceptors (HBAs), and hydrogen-bond donors (HBDs). FAFDrugs4 was also applied to predict the filter PAINS elements among compounds **1-6**. The screening was performed using all three available PAINS filters (PAINS filter A, B and C). None of the screened target compounds contained a PAINS substructure.

	logP	logD	logSw	RotatableB	RigidB	Flexibility	HBD	HBA	HBD_HBA
1	5.41	5.37	-6.23	11	27	0.29	3	9	12
2	5.28	5.08	-6.14	12	27	0.31	3	10	13
3	5.33	5.68	-6.0	11	27	0.29	2	8	10
4	5.2	5.38	-5.92	12	27	0.31	2	9	11
5	6.67	7.74	-7.61	15	38	0.28	1	10	11

Table S1. Physicochemical properties prediction for compounds 1-6

6	6.41	7.14	-7.44	17	38	0.31	1	12	13
---	------	------	-------	----	----	------	---	----	----

ù	Rin	MaxSize	NumCha	TotalCh	HeavyAt	CarbonAt	HeteroAt	ratio	LipinskiViol
	gs	Ring	rges	arge	oms	oms	oms	H/C	ation
1	4	6	0	0	41	31	10	0.32	2
2	4	6	0	0	42	32	10	0.31	2
3	4	6	0	0	39	30	9	0.30	2
4	4	6	0	0	40	31	9	0.29	2
5	6	6	0	0	51	39	12	0.31	2
6	6	6	0	0	53	41	12	0.29	3

Table 2. Physicochemical properties prediction for compounds 1-6

Table S3. PAINS filters for compounds 1-6

	Solubility ForecastIn dex	Oral Bioavaila bility VEBER	Oral Bioavaila bility EGAN	Phospholip idosis	Fsp3	PAIN S Filter A	PAIN S Filter B	PAIN S Filter C	Result
1	Reduced Solubility	Low	Low	NonInduce r	0.13	0	0	0	Accepted
2	Reduced Solubility	Low	Low	NonInduce r	0.16	0	0	0	Accepted
3	Reduced Solubility	Good	Good	NonInduce r	0.10	0	0	0	Accepted
4	Reduced Solubility	Good	Good	NonInduce r	0.13	0	0	0	Accepted
5	Reduced Solubility	Good	Good	NonInduce r	0.10	0	0	0	Accepted
6	Reduced Solubility	Low	Low	NonInduce r	0.15	0	0	0	Accepted