Supplementary Materials

Dota-Zol: A Promising Tool in Diagnosis and Palliative Therapy of Bone Metastasis—Challenges and Critical Points in Implementation into Clinical Routine

Michael Meisenheimer¹, Stefan Kürpig¹, Markus Essler¹ and Elisabeth Eppard^{2,*}

- ¹ Department of Nuclear Medicine, University Hospital Bonn, D-53127 Bonn, Germany; michael.meisenheimer@ukbonn.de (M.M.); stefan.kuerpig@ukbonn.de (S.K.); markus.essler@ukbonn.de (M.E.)
- ² Positronpharma SA, Rancagua 878, Providencia 7500921, Chile
- * Correspondence: eeppard@positronpharma.cl

Academic Editor: Diego Muñoz-Torrero Received: 11 June 2020; Accepted: 19 June 2020; Published: 30 June 2020

Figure S1. Schematic illustration of the fluidic kit setup of the automated synthesis of [68Ga]Ga-DOTA-ZOL.

Figure S2. Radio-TLC chromatograms of the different species potentially present in a [68Ga]Ga-DOTA-ZOL synthesis developed in acac/ac/conc. HCl (10:10:1) with silica 60 F254 TLC plates as stationary phase. Appearance in the following order: final product of a [68Ga]Ga-DOTA-ZOL synthesis, 68Ga-colloids, [68Ga]Ga³⁺.

Figure S3. Radio-TLC chromatograms of the different species potentially present in a [68Ga]Ga-DOTA-ZOL synthesis developed in acac/ac with silica 60 F254 TLC plates as stationary phase. Appearance in the following order: final product of a [68Ga]Ga-DOTA-ZOL synthesis, 68Ga-colloids, [68Ga]Ga³⁺.

Figure S4. Radio-TLC chromatograms of the different species potentially present in a [68Ga]Ga-DOTA-ZOL synthesis developed in citric buffer pH 4 with silica 60 F254 TLC plates as stationary phase. Appearance in the following order final product of a [68Ga]Ga-DOTA-ZOL synthesis, 68Ga-colloids, [68Ga]Ga3+ present as citrate complex.

Figure S5. Radio-TLC chromatograms of the different species potentially present in a [68Ga]Ga-DOTA-ZOL synthesis developed in TBAP/MeOH (9:1) with silica 60 F254 TLC plates as stationary phase. Appearance in the following order final product of a [68Ga]Ga-DOTA-ZOL synthesis, 68Ga-colloids, [68Ga]Ga³⁺.

Table S1. List of investigated radio-TLC conditions. Greyed cells represent no single peak or smear of the species.

	Stationary phase									
Mobile phase	TLC	silica 60	iTLC SG							
	Rf A	Rf B	Rf C	$\mathbf{R}_{\mathrm{f}} \mathbf{A}$	Rf B	$R_{\rm f} C$				
0.9% saline										
ac										
acac	0-0.2	0.8-1								

-

acac/ac (1:1) acac/ac/HCl (1:1:0.1) [1]	0-0.1	0.7-0.8 0.6-0.9	0.8-1				
ACN				0-0.2	0.8-1		
Citric buffer pH 4	0-0.1	0.7-1	0.1-0.2				
Citric buffer pH 5	0-0.1	0.7-1	0.1-0.2				
EtOAc							
H ₂ O							
MEK							
MeOH							
PrOH							
TBAP	0.7-1						
TBAP/ac (1:1)							
TBAP/acac (1:1)							
TBAP/acac (3:1)							
TBAP/MeOH (9:1)	0.7-0.8	0.1-0.3	0.1-0.2				
A: [68Ga]Ga-DOTA-ZOL; B: [68Ga]Ga ³⁺ ; C: 68Ga-colloids.							

Figure S6. Change of composition during incubation in the solvent system of the published radio-TLC method developed in citric buffer pH 4 with silica 60 F254 TLC plates as stationary phase. First row: radioTLC chromatogram of [⁶⁸Ga]Ga-DOTA-ZOL after synthesis. Second row: [⁶⁸Ga]Ga-DOTA-ZOL incubated 5 min in a preparation of acac/ac/conc. HCl (10:10:1). Third row: ⁶⁸Ga eluate incubated 5 min in a preparation of acac/ac/conc. HCl (10:10:1). Fourth row: [⁶⁸Ga]Ga-DOTA-TOC (initial complexation rate 98 %) after 5 min incubation in a preparation of acac/ac/conc. HCl (10:10:1).

	SPE Cartridge	Size	Should Retain	Retain	Comments
	Agilent				
1	Bond Elut SCX	500 mg	Ga	Ga; P	Dismissed
2	Bond Elut Certify	200 mg	Ga	-	Dismissed
	Grace				
3	Alltech Extract-Clean IC-Ag	1.5 ml	Р	Ga; P	Dismissed
4	Alltech Extract-Clean IC-H	0.5 ml	Р	-	Dismissed
5	Alltech Extract-Clean IC-OH	1.5 ml	Р	Ga; P	Dismissed

Table S2. List of all evaluated SPE cartridg	zes.
--	------

-

	Macherey-Nagel				
6	Chromabond HILIC	500 mg	Р	-	Dismissed
7	Chromabond HR-XC	60 mg	Р	-	Dismissed
8	Chromafix HR-XC	S	Р	Ga; P	Dismissed
9	Chromafix C18 ec	S	Р	-	Dismissed
10	Chromafix C4	М	Р	-	Dismissed
11	Chromafix HR-P	М	Р	-	Dismissed
12	Chromafix HR-P	L	Р	-	Dismissed
13	Chromafix HR-XA	S	Р	Ga; P	Dismissed
14	Chromafix HR-XAW	S	Р	-	Dismissed
15	Chromafix HR-XAW	М	Р	Ga	Partial purification
16	Chromafix PS-Ag ⁺	L	Р	Ga; P	Dismissed
17	Chromafix PS-BA	М	Р	-	Dismissed
18	Chromafix PS-H ⁺	S	Ga	Р	No recovery
19	Chromafix PS-H ⁺	М	Ga	Ga	Partial purification
20	Chromafix PS-H ⁺	L	Ga	Ga; P	Dismissed
21	Chromafix PS-OH-	М	Р	Ga; P	Dismissed
22	Chromafix SA	М	Р	Ga	Partial purification
23	Chromafix SB	М	Р	Ga; P	Dismissed
	Waters				
24	Sep-Pak Alumina N Plus	280 mg	Р	-	Dismissed
25	Sep-Pak C18 Plus	360 mg	Р	Ga; P	Dismissed
26	Sep-Pak C18 Plus Light	130 mg	Р	-	Dismissed
27	Sep-Pak Accell Plus QMA Plus	360 mg	Р	-	Dismissed
28	Sep-Pak Accell Plus QMA Plus Light	130 mg	Р	-	Dismissed
29	Sep-Pak Silica Plus	690 mg	Р	-	Dismissed
30	Sep-Pak Silica Plus Light	120 mg	Р	-	Dismissed
31	OASIS MCX 3 cc Vac	60 mg	Р	-	Dismissed
32	OASIS MCX 6 cc Vac	150 mg	Р	-	Dismissed
	Phenomenex				
33	Strata SCX	200 mg	Ga	Ga; P	Dismissed
34	Strata-X-C	200 mg	Р	-	Dismissed
35	Strata-X-C polymeric	200 mg	Р	Р	No recovery

P: [68Ga]Ga-DOTA-ZOL.

 Table 3. List of investigated radio-HPLC conditions. Greyed cells represent no successful discrimination.

Mobile Phase		Column									
		В	С	D	Ε	F	G	Η	Ι	J	K
TBAP ^a											
TBAP/MeOH 95:5 a*											
TBAP/MeOH 90:10 ^{a*}							\checkmark				
TBAP/MeOH 85:15 ^{a*}											
TBAP/MeOH 75:25 ^{b*}											
100 mM Na3PO4/100 mM Na3C6H5O7 pH 4.5 ^c											
10 mM TBA-citrate pH 4.5/ACN ^d											
100 mM TEAP pH 2.24ª											
0.1 % TFA in H2O/0.1 % TFA in ACN ^e											
0.1 % TFA in H ₂ O/0.1 % TFA in ACN ^f											

^aisocratic, flow 0.5; 0.7; 1; 1.2 (in 15 min) and 1.5 ml/min; in 25 min. ^bisocratic, flow 0.7; 1 and 1.2 ml/min; in 25 min. ^cgradient A:B (0:100) \rightarrow A:B (0:100) in 30 min, flow 0.7; 1.2 ml/min, (provided by ITG, Germany). ^dgradient A:B (70:30) \rightarrow A:B (20:80) in 30 min, flow 0.7; 1.2 ml/min, (provided by ITG,

Germany). ^egradient A:B (95:5) \rightarrow A:B (20:80) in 25min, flow 0.7; 1.2 ml/min [1] ⁱgradient A:B (100:0) \rightarrow A:B (0:100) in 20min \rightarrow A:B (50:50) from 20 to 25min, flow 0.7 ml/m.in