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Abstract: Multiwall carbon nanotube (CNT)-filled high density polyethylene (HDPE) nanocomposites
were prepared by extrusion and considered for their suitability in the offshore sheathing
applications. Transmission electron microscopy was conducted to analyse dispersion after bulk
extrusion. Monolithic and nanocomposite samples were subjected to accelerated weathering and
photodegradation (carbonyl and vinyl indices) characterisations, which consisted of heat, moisture
(seawater) and UV light, intended to imitate the offshore conditions. The effects of accelerated
weathering on mechanical properties (tensile strength and elastic modulus) of the nanocomposites
were analysed. CNT addition in HDPE produced environmentally resilient nanocomposites with
improved mechanical properties. The energy utilised to extrude nanocomposites was also less than
the energy used to extrude monolithic HDPE samples. The results support the mass substitution of
CNT-filled HDPE nanocomposites in high-end offshore applications.

Keywords: polyethylene; carbon nanotubes; nanocomposites; offshore engineering; sheathing;
applications

1. Introduction

With oil and gas exploration moving towards deeper oceans with harsher thermo-mechanical
environments, it has become ever so critical to find economical materials and umbilical systems
providing appropriate tensile stiffness to withstand large loads induced by self-weight, sea current
and the motion of the surface vessel. Umbilical cable (Figure 1) is an offshore product, utilised for
the subsea oil and gas exploitation and related projects. The cable contains a complex and telescopic
hierarchy of tubes/hoses, optical fibre cables, electrical cables, inner sheaths and fillers which are
assembled into an inner core [1]. The main aim of the cable is to provide a control and communication
channel between the surface vessel and the subsea installations and equipment. The macro-composite
structure contains multiple components and various types of engineering materials. Ferrous materials,
such as steel armour wires, are used to provide the tension capability and to achieve the necessary
internal stability against the high hydrostatic pressure [1].
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Figure 1. Schematic of a typical flexible umbilical cable for offshore engineering. 

Polyethylene (PE), consisting of ethylene monomers ((C2H4)n), is one of the simplest structured 
and commonly used plastics for a number of engineering applications, including for sheathing (inner 
and external, Figure 1) purposes in umbilical cables [1,2]. In particular, one of the commonly used 
materials for these advanced applications is high density polyethylene (HDPE), owing to its high 
strength-to-density ratio. 

Incorporation of carbon nanotubes (CNTs) in high-density polyethylene (HDPE) [3–10] and 
other polymers [11–13] has been widely explored and appreciated. CNTs were discovered in 1991 
[14] as one of the by-products of fullerene synthesis. Remarkable progress has been made since then, 
including the discovery of several types of nanotubes (single-wall and multiwall) and over last two 
decades. Significant research has been conducted for their synthesis and purification, and the 
elucidation of their fundamental physical properties; and realistic steps are being taken towards their 
substitution into key engineering applications [15–17]. 

From the analysis of the literature over nearly the past three decades, there are not many related 
research efforts looking into this practical application. Studies by Tang et al. [6] prepared composite 
films with 0%, 1%, 3% and 5% of CNT content (by weight). They reported an increase in elastic 
modulus (up to 8%), peak load (up to 13%) and work to failure (up to 5%) for the composite films 
with increasing CNT content. Achaby and Qaiss [7] prepared HDPE/CNT nanocomposites using the 
melt mixing technique and compared their thermo-mechanical properties with HDPE/graphene 
nanocomposites. They reported superior elastic modulus (up to 87% in comparison to neat HDPE), 
tensile strength (up to 77% in comparison to neat HDPE) and thermal stability for HDPE/graphene 
nanocomposites owing to the higher specific surface area, larger aspect ratio and nanoscale 2D flat 
surface of graphene. However, there was no analysis or discussion on the fibrous nature of CNTs, 
which, when aligned in the direction of extrusion, could enhance the tensile properties required for 
the umbilical cable application (Figure 1). Fouad et al. [9] prepared a series of HDPE/CNT 
nanocomposites using the melt blending technique and analysed the morphological, thermal, 
rheological, viscoelastic, mechanical and fracture toughness properties of the nano-composites. The 
group reported 4 wt% as the most optimal loading percentage for improved storage modulus, 
Young’s modulus (up to 46%) and yield strength (up to 10%) of the nanocomposites with increasing 
CNT content. However, there was no analysis on the degradation of the nanocomposites. In another 
study, Du et al. [18] processed HDPE/CNT and HDPE/graphene nanocomposites by alcohol-assisted 
dispersion and hot-pressing and compared dispersion and electrical properties. Due to the formation 
of crimps, the rolling and the aggregation of graphene in the HDPE matrix, the two-dimensional 
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Polyethylene (PE), consisting of ethylene monomers ((C2H4)n), is one of the simplest structured
and commonly used plastics for a number of engineering applications, including for sheathing (inner
and external, Figure 1) purposes in umbilical cables [1,2]. In particular, one of the commonly used
materials for these advanced applications is high density polyethylene (HDPE), owing to its high
strength-to-density ratio.

Incorporation of carbon nanotubes (CNTs) in high-density polyethylene (HDPE) [3–10] and other
polymers [11–13] has been widely explored and appreciated. CNTs were discovered in 1991 [14] as one
of the by-products of fullerene synthesis. Remarkable progress has been made since then, including
the discovery of several types of nanotubes (single-wall and multiwall) and over last two decades.
Significant research has been conducted for their synthesis and purification, and the elucidation of
their fundamental physical properties; and realistic steps are being taken towards their substitution
into key engineering applications [15–17].

From the analysis of the literature over nearly the past three decades, there are not many related
research efforts looking into this practical application. Studies by Tang et al. [6] prepared composite
films with 0%, 1%, 3% and 5% of CNT content (by weight). They reported an increase in elastic
modulus (up to 8%), peak load (up to 13%) and work to failure (up to 5%) for the composite films
with increasing CNT content. Achaby and Qaiss [7] prepared HDPE/CNT nanocomposites using
the melt mixing technique and compared their thermo-mechanical properties with HDPE/graphene
nanocomposites. They reported superior elastic modulus (up to 87% in comparison to neat HDPE),
tensile strength (up to 77% in comparison to neat HDPE) and thermal stability for HDPE/graphene
nanocomposites owing to the higher specific surface area, larger aspect ratio and nanoscale 2D flat
surface of graphene. However, there was no analysis or discussion on the fibrous nature of CNTs,
which, when aligned in the direction of extrusion, could enhance the tensile properties required for the
umbilical cable application (Figure 1). Fouad et al. [9] prepared a series of HDPE/CNT nanocomposites
using the melt blending technique and analysed the morphological, thermal, rheological, viscoelastic,
mechanical and fracture toughness properties of the nano-composites. The group reported 4 wt% as
the most optimal loading percentage for improved storage modulus, Young’s modulus (up to 46%)
and yield strength (up to 10%) of the nanocomposites with increasing CNT content. However, there
was no analysis on the degradation of the nanocomposites. In another study, Du et al. [18] processed
HDPE/CNT and HDPE/graphene nanocomposites by alcohol-assisted dispersion and hot-pressing
and compared dispersion and electrical properties. Due to the formation of crimps, the rolling
and the aggregation of graphene in the HDPE matrix, the two-dimensional graphene was not as
effective as multi-wall CNTs (MWCNTs) at forming conductive/electrical networks and resulted in
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poor dispersion as well. Similarly, Ferreira et al. [19] and Johnson et al. [20] reported improved
hardness and wear resistance respectively when CNTs were dispersed in HDPE. In 2007, Kanagaraj
et al. [21] reported improved toughness (up to 33%), modulus (up to 22%), tensile strength (up to
4%) and strain to failure (up to 24%) by adding small amounts on CNTs; i.e., less than 0.45 vol%.
Che et al. [22] prepared ternary composites by adding CNTs and expanded graphite in HDPE. They
reported significant rises in electrical and thermal conductivities, tensile strength (up to 84%) and
Young’ modulus (up to 25%) without commenting on any weathering effects. Similarly, Mokashi et
al. [23] and Okolo et al. [16] also found improvements in the tensile strength and elastic stiffness of
CNT-filled polyethylene nanocomposites. Kodije et al. [24] studied the morphology, crystallisation
behaviour and thermal stability of HDPE/CNT nanocomposites and reported improved thermal
stability for the nanocomposites. However, it was a laboratory study prepared by solution blending
technique and there was no analysis of the mechanical properties. Mohsin et al. [25] added mixed
fillers, such as montmorillonite and maleic-anhydride-grafted high density polyethylene to HDPE/CNT
nanocomposites and reported enhanced mechanical properties without affecting the basic thermal
properties (crystallisation and melting temperatures) of the nanocomposites. From the processing
perspective, Zou et al. [8] concluded that HDPE/CNT nanocomposites fabricated at higher screw speed
give uniform dispersion of CNT in HDPE. Other studies by Xiang et al. [10] analysed the influences of
processing route on the mechanical properties of the nanocomposites; the authors used a combination
of compression moulding and blown film extrusion techniques.

However, CNT-based materials are very much lost in the research domain, where we are finding
a number of papers without any evidence-supported commentary on industrial application or real
impact. This work is the first study to explore the utilisation of CNT-based HDPE nanocomposites
for offshore umbilical cable applications. None of the previous studies analysed holistically within
the context of umbilical cable (Figure 1) applications used for offshore oil and gas exploration. This
research looked into degradability in offshore conditions and the relevant mechanical properties
desirable for umbilical hoses for deeper waters. The current research also examined the manufacturing
economics, providing a comprehensive materials substitution analysis for the presently and commonly
used HDPE materials by the incorporation of CNTs.

2. Results and Discussion

TEM analysis was carried out to investigate the dispersion, distribution and orientation of CNTs
in HDPE nanocomposites prepared using different filler content and their correlation in relation to
the monolithic HDPE, as shown in Figure 2. The relatively low TEM magnification was strategically
used to analyse a larger area for analysis of homogenisation at higher resolution to achieve an accurate
representation. Whilst at high magnification, one can clearly resolve individual CNTs, the approach
does not show the representative factual picture of overall dispersion, for which it is appropriate to
select a magnification where fibre-like morphology could be observed and overall homogenisation
can be assessed (Figure 2). There are varying regions of CNT aggregates and individual and sparse
CNTs (Figure 2b–d). The conventional melt mixing (extrusion) is not effective at deagglomerating and
homogenously dispersing CNTs at such a high loading of 6 wt% in HDPE matrix (Figure 2d). Some
aggregates can also be seen in the representative image for 4 wt% CNT filled HDPE nanocomposite
(Figure 2c). However, it can be concluded that the CNT dispersion/exfoliation is much better in the
nanocomposites with low CNT loadings (Figure 2b,c) where the fibre-like morphology of individual
CNTs can be seen as well. Direction of extrusion is represented by the arrow on the top right of all the
images (Figure 2). In comparison to monolithic HDPE (Figure 2a), CNTs (and their aggregates) seem to
be aligned in the direction of extrusion, which was also observed in other reports [26–28] as well.
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Figure 2. Representative TEM images for: (a) monolithic HDPE; and nanocomposites containing: (b) 
2 wt% CNTs; (c) 4 wt% CNTs; and (d) 6 wt% CNTs. Direction of extrusion is represented by the arrow 
on the top right. Scale bar represents 500 nm. 

Mechanical properties from tensile testing of the neat HDPE and CNT filled nanocomposites are 
shown in Figure 3; Figure 4. The data presented are the averages of at least five samples. As compared 
to neat polymer (0 wt%), the elastic moduli (Figure 3) of all the unweathered nanocomposites 
improved (e.g., 81% for 6 wt% nanocomposites) because of the presence of CNTs, which stiffen the 
polymer matrix, as confirmed previously [9,10,23,25,29,30]. Similarly, as compared to neat polymer 
(0 wt%), the tensile strengths of all the unweathered nanocomposites improved (e.g., 17% for 6 wt% 
nanocomposites) because of the presence of CNTs. The enhancement in the tensile strength (Figure 
4) can be attributed to better stress transfer that resists breakage, giving superior strength to the 
nanocomposites, as confirmed in number of previous studies as well [9,16,23,25,31]. 

Figure 2. Representative TEM images for: (a) monolithic HDPE; and nanocomposites containing: (b) 2
wt% CNTs; (c) 4 wt% CNTs; and (d) 6 wt% CNTs. Direction of extrusion is represented by the arrow on
the top right. Scale bar represents 500 nm.

Mechanical properties from tensile testing of the neat HDPE and CNT filled nanocomposites are
shown in Figure 3; Figure 4. The data presented are the averages of at least five samples. As compared
to neat polymer (0 wt%), the elastic moduli (Figure 3) of all the unweathered nanocomposites improved
(e.g., 81% for 6 wt% nanocomposites) because of the presence of CNTs, which stiffen the polymer matrix,
as confirmed previously [9,10,23,25,29,30]. Similarly, as compared to neat polymer (0 wt%), the tensile
strengths of all the unweathered nanocomposites improved (e.g., 17% for 6 wt% nanocomposites)
because of the presence of CNTs. The enhancement in the tensile strength (Figure 4) can be attributed to
better stress transfer that resists breakage, giving superior strength to the nanocomposites, as confirmed
in number of previous studies as well [9,16,23,25,31].
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Figure 4. Effect of weathering on tensile strengths of monolithic and nanocomposite samples. 

From the analysis of the effect of weathering, it can be seen that the UV radiation caused 
embrittlement/stiffening for the neat polymer and reduction of moduli for the nanocomposites 
(Figures 3 and 4). It is widely known that HDPE gains its mechanical strength from its long chains of 
polymers. The UV radiation (mimicking sunlight) attacks the polymer by breaking it into smaller 
chains, typically known as chain-scission [32–34]. The longer the exposure of UV radiation for a neat 
polymer, the lower the strength of the material (Figure 4). However, CNTs help to increase the 
strength and modulus and lower the weathering damage by an absorption mechanism. This has also 
been reported in other types of polymers, where CNT fillers stabilized epoxy and polyurethane 
matrices against UV-induced environmental degradation [35,36]. With CNTs, the UV absorption is 
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From the analysis of the effect of weathering, it can be seen that the UV radiation caused
embrittlement/stiffening for the neat polymer and reduction of moduli for the nanocomposites
(Figures 3 and 4). It is widely known that HDPE gains its mechanical strength from its long chains
of polymers. The UV radiation (mimicking sunlight) attacks the polymer by breaking it into smaller
chains, typically known as chain-scission [32–34]. The longer the exposure of UV radiation for a neat
polymer, the lower the strength of the material (Figure 4). However, CNTs help to increase the strength
and modulus and lower the weathering damage by an absorption mechanism. This has also been
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reported in other types of polymers, where CNT fillers stabilized epoxy and polyurethane matrices
against UV-induced environmental degradation [35,36]. With CNTs, the UV absorption is taking
place via vibrational transitions due to carbon–carbon bond stretching and other vibrationally active
modes [37]. Breakdown of the polymer matrix by photoreaction or other weathering mechanisms
can negatively affect mechanical properties of the HDPE by weakening interfacial interactions with
CNTs (Figures 3 and 4). This would also increase the potential for environmental release over the
monolithic polymer.

From the analyses of Figures 3 and 4, that there is a very minimal difference in improvements
between 4 and 6 wt% compositions can be observed. CNTs are enhancing the elastic moduli and
strengths of their respective HDPE nanocomposites. For 6 wt% nanocomposites, it can be noted that
because of the presence of agglomerates, the modulus and strength are almost the same as those of 4
wt% nanocomposites. Furthermore, their ability to absorb UV radiations is almost the same or lower
for 400–600 h of exposure and presented in Figures 3 and 4. For instance, the tensile strength after
600 h of exposure was found to be 16.75 or 16.71 MPs for 4 wt% and 6 wt% CNT-filled nanocomposites
respectively. The cause of such minimal or nearly no improvement in mechanical properties is due to
the agglomeration, as evident in Figure 2d and reported in other publications [18,20,27]. Agglomerates
(Figure 2d) reduce the surface area of CNTs interacting with the polymeric chains; hence, the mechanical
properties were negatively affected (Figures 3 and 4).

The changes in structural properties of HDPE and CNT-filled HDPE nanocomposites exposed
to UV-B radiation were studied (Figures 5–7). The complete infrared spectra of HDPE, CNTs and
nanocomposites without exposure to UV radiation are shown in Figure 5. After the UV light
exposure, the carbonyl (ICO) and vinyl (IV) index were used to evaluate the photooxidation of these
polymers and nanocomposites (Figures 6 and 7). The carbonyl and vinyl groups, quantified by their
respective absorption indices obtained from the IR spectroscopy (Figure 5), are considered the main
photooxidation products for polyethylene [38–40]. The spectrum of HDPE presented typical bands
of C–H group at 2923 and 2853 cm−1 (Figure 5) that were ascribed to asymmetric and symmetric
stretching vibrations, respectively [41,42]. The presence of peaks between 1450–1490 cm−1, in both
HDPE and nanocomposites, originate due to CH2 bending [43,44]. For raw CNTs, the peaks between
500–1000 and 1650 cm−1 are due to alkenyl C=C stretching [45,46], as presented in Figure 5. The bands
between 2850 and 2922 cm−1 are associated with the symmetrical and asymmetrical stretching of CH2

groups [47].
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Figure 7. Vinyl indices (ICO) of the monolithic and nanocomposite films exposed to UV-B radiation.

ICO indices were calculated using IR absorption band values of 1740 and 909 cm−1 respectively,
as marked in Figure 6. The value 1740 cm−1 corresponds to the stretching vibration of the vinyl
group (CH2=CH)n, whereas 909 cm−1 corresponds to the stretching vibration of the carbonyl group
(C=O) [48,49]. Similarly, IV indices were calculated using IR absorption band values of 1835 and 2020
cm−1 respectively, as elaborated in Figure 7. These absorbances values of 1835 and 2020 cm−1 are just
reference values required to measure IV indices. From the analysis of Figures 6 and 7, it can be observed
that CNT inclusion supresses the photodegradation of the respective HDPE nanocomposites due to
absorption of UV radiation. Lower carbonyl and vinyl groups were observed for nanocomposite with
higher CNT content (Figures 6 and 7). ICO indicates a higher level of polymer backbone scission [50,51].
IV of HDPE increases with almost linear tendency due to the embrittlement process and breaking of
bonds in the tertiary carbons of the branches of the polymer backbone [50,51]. It was also observed
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that after 60 days of cyclic exposure, the amounts of carbonyl and vinyl groups in 4 wt% and 6 wt%
nanocomposites were almost the same.

For successful adoption of these novel materials, energy consumed (by manufacturer just before
the end-user) is a key business critical variable for bulk manufacturing of sheathing layer in an
umbilical cable (Figure 1). Energy consumed by the band heaters (Figure 8) during the extrusion of
CNT filled nanocomposites was compared with neat HDPE by calculating the electricity used for
10 min extrusion cycle. Figure 9 shows the energy used by respective band heater, as positioned in
Figure 8 with the respective maintained target temperatures. The total energy, the sum (

∑
) of energy

data points for every concentration, is on the horizontal axis line (Figure 9). It can be seen that, in
comparison to monolithic HDPE, 4 wt% and 6 wt% nanocomposites used 23% and 39% less energy
respectively. This is because of the high thermal conductivity of CNT-filled HDPE nanocomposites
widely reported by other research groups [51–56]. Owing to the higher thermal conductivities of these
nanocomposites, less energy was consumed by the band heater locally to achieve programmed target
temperatures (Figure 8). Hence, it can be concluded that lower energy is required to mass-extrude
CNT filled thermoplastic nanocomposites, making them energy friendly for offshore sheathing layer in
an umbilical cable.
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3. Materials and Methods

A commercial master batch grade of nanocomposite granules, PLASTICYLTM HDPE1501,
supplied by Nanocyl SA, Sambreville, Belgium, was used in this study [57]. PLASTICYL HDPE1501
is a masterbatch based on HDPE loaded with 15 wt% of MWCNTs. According to the supplier, the
masterbatch contains CNTs (diameter ranging between 30 and 80 nm, 1.5 mm average length, purity
90% by TGA, NC700 series) synthesised by catalytic carbon vapour deposition method. HDPE
commercial grade, BorPure MB7541, supplied by Borealis Plastomers B.V., Sittard-Geleen, Netherlands,
was used to prepare nanocomposite samples of the required compositions.

The masterbatch containing 15 wt% CNTs was carefully compounded with the HDPE matrix
in a twin-screw extruder to produce nanocomposite concentrations of 2 wt%, 4 wt% and 6 wt%.
A twin-screw extruder was used to ensure good dispersion and chemistry integrated within the
masterbatch by the commercial supplier. The extruded strands were pelletized into smaller granules
followed by vacuum drying at 70 ◦C for 24 h. The next step was the actual extrusion of HDPE and
the nanocomposite materials. Melt intercalation was performed with Brabender PL-19 single screw
extruder (Brabender Measuring Extruder 19/25D, supplied by Brabender GmbH and Co. KG, Duisburg,
Germany) at screw speed of 95 RPM and temperatures between 180 and 225 ◦C. A rectangular shaped
die (80 × 2 mm), with a unique funnel design was used. The extrudate was received as rectangular
strip samples from which standard dumbbell-shaped samples were punched out. Figure 8 shows a
schematic of the extruder elaborating the locations and temperatures of the band heaters used in this
research. During the extrusion process, the extruder variables (screw speed and temperature) were
systematically optimised to ensure consistency of the extrudate quality. For consistency purposes, once
the target temperatures were achieved, a 10 min cycle of extrusion (yielding around 3 m of extrudate)
was used to calculate the energy consumed in this comparative study. After every batch, the extruder
barrel was thoroughly cleaned using HDPE granules, according to the standard operating procedures
provided by the manufacturer. The energy consumed, for comparative analysis, was measured using
Equation (1). Kilowatt-hour is a composite unit of energy equal to one kilowatt of power used for
one hour.

Energy consumed = Watts × time (hrs)/1000 (1)

The dumbbell-shaped monolithic and nanocomposites samples were subjected to 200–600 h of
accelerated weathering test using Weice Xenon test chamber. The accelerated weathering test was
carried out in compliance with the standard ASTM G155–13 and the variables were carefully selected
to imitate the real offshore conditions. UV radiation and wavelength were set to 0.60 W/m2 and 342
nm respectively. The details of the 200 h weathering cycle used for the test are shown below. Here, 2
and 3 cycles of 200 h were used for completing 400 and 600 h of weathering respectively:

40 min light, 65% relative humidity (RH), 60 ◦C;
40 min light and sea water spray on specimen, 95% RH, 40 ◦C;
60 min light, 65% RH, at 60 ◦C;
60 min dark and sea water spray on specimen, 95% RH, 40 ◦C.

The mechanical characterisations of the monolithic and nanocomposite samples were performed
at 21–23 ◦C with humidity levels ranging between 52% and 60%. The tensile properties were measured
according to ISO 527-2 (5A) using an Instron testing machine (model 6800 using advanced video
extensometer, AVE 2).

The morphological analyses for the monolithic and nanocomposite samples were carried out
using a transmission electron microscope (Jeol 2010, Jeol Ltd., Tokyo, Japan) with an accelerating
voltage of 100 kV. The samples were thinned to around 70–100 nm in thickness using Leica Artos3D
ultra-microtome technology having a 4 mm high precision diamond knife.

For measuring carbonyl (ICO) and vinyl (IV) indexes (photodegradation analyses), monolithic and
nanocomposite films (having thickness of 50 microns) were prepared using ultra-microtome technology.
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Samples were mounted around 5 cm away from the lamp and analysed at regular time intervals of 0,
15, 30, 45, and 60 days. UV radiation and wavelength were set to 3 W/m2 and 342 nm respectively.
The samples were then characterised by IR spectroscopy with Attenuated Total Reflectance (ATR),
using a Nicolet iS10 FTIR spectrometer (supplied by ThermoFisher Scientific, Paisley, UK) having
a Ge mirror and a resolution of 2 cm−1 in the range of 700–2500 cm−1. IR absorption band values
(AXXX) corresponding to respective stretching/vibration of key molecular groups were obtained from
the IR spectroscopy. Carbonyl (ICO) and vinyl (IV) indices were calculated using Equations (2) and (3)
respectively [48,49].

ICO = (A1740 − A1835)/(T × 0.008) (2)

IV = A909/A2020 (3)

where T is the thickness of the sample in mm.

4. Conclusions

CNT-filled HDPE nanocomposites with 4 wt% and 6 wt% loadings are the most optimal
concentrations, as they provide a good balance between mechanical properties and resilience of
mechanical properties against UV exposure for the offshore umbilical sheathing layer (Figure 1).
Good dispersion was achieved for nanocomposites up to 4 wt% CNT loading. The mechanical
properties (elastic modulus and tensile strength) of all the unweathered nanocomposites improved
because of the presence of fibrous CNTs aligned with the direction of extrusion. For weathered
nanocomposite samples, CNTs aided in supressing the matrix damage, which resulted in superior
mechanical properties as compared to neat HDPE. Little or no difference in mechanical properties
(before and after weathering) was observed between 4 wt% and 6 wt% filled nanocomposites. CNTs
also suppressed the photodegrading in HDPE nanocomposites by creating lower photodegradation
products (carbonyl and vinyl groups). In comparison to neat HDPE, lower energy is required to
mass-extrude CNT filled thermoplastic nanocomposites, making them attractive (energy friendly) for
offshore sheathing applications.
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