## Phenyl-acetonitrile (C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>CN) ionic liquid blends as alternative electrolytes for safe and high-performance supercapacitors.

## Flavien Ivol, Marina Porcher, Arunabh Ghosh\*, Johan Jacquemin, Fouad Ghamouss\*

Laboratoire de Physico-Chimie des Matériaux et des Électrolytes pour l'Énergie (PCM2E-EA 6299), Université de Tours, Parc de Grandmont, 37200, Tours, France

\* Correspondence: arunabh.ghosh@univ-tours.fr (A.G.); ghamouss@univ-tours.fr (F.G.)

Received: 14 May 2020; Accepted: 8 June 2020; Published: 10 June 2020

## **Electronic Supporting Information**





Figure S1. Heating traces of the DSC thermograms of the pure solvents and electrolytes based on (a) ADN, (b) ADN, (c) Ph-ACN and (d) EmimTFSI.



Figure S2. Electrochemical windows of the 0.65 M Et<sub>4</sub>NBF<sub>4</sub> in Ph-ACN, EmimTFSI and 2.7 M EmimTFSI in Ph-ACN electrolytes.



Figure S3. Thermogravimetric analysis (TGA) curves of the pure solvents and electrolytes based on (a) ADN, (b) ADN, (c) Ph-ACN and (d) EmimTFSI.

Temperature (°C)

a)

Temperature (°C)



Figure S4. Overview of the liquid range temperature of pure solvents and the operating temperature range of selected electrolytes. Each  $\star$  represent the normal boiling point of pure solvent involved in a given electrolyte.



Figure S5. Frequency response of the specific capacitances, before and after the floating tests, done at 2.7 V, 3.0 V and 3.2 V, for the 0.65 M Et<sub>4</sub>NBF<sub>4</sub> in Ph-ACN (a-c), and 2.7 M EmimTFSI in Ph-ACN (d-f)



 Table S1. Structure, abbreviation, COSMO volume and sigma profile of each studied conformer.

















We also focused our attention on the charge distribution of carbon and nitrogen atoms in the carbon nitrogen triple bonds, which seems to be nearly identical for each investigated nitrile-based solvent. Please note that in the case of ADN, the partial charge distribution was identical into each atom of each cyano group. This was done thanks to ab-initio and density functional theory (DFT, COSMO-RS solvation model) calculations using Turbomole 7.0 programme package.

| Atom   | Charge   |  |  |  |  |
|--------|----------|--|--|--|--|
|        | ACN      |  |  |  |  |
| N      | -0.31763 |  |  |  |  |
| С      | 0.27123  |  |  |  |  |
| ADN    |          |  |  |  |  |
| N      | -0.31286 |  |  |  |  |
| С      | 0.27503  |  |  |  |  |
| Ph-ACN |          |  |  |  |  |
| N      | -0.31554 |  |  |  |  |
| С      | 0.28409  |  |  |  |  |

Atomic populations from total density of cyano moieties:

| AD                                      | N                                             | Ph-ACN                                  |                                               |  |
|-----------------------------------------|-----------------------------------------------|-----------------------------------------|-----------------------------------------------|--|
| [Et <sub>4</sub> NBF <sub>4</sub> ] / M | $\sigma / \mathrm{mS} \cdot \mathrm{cm}^{-1}$ | [Et <sub>4</sub> NBF <sub>4</sub> ] / M | $\sigma / \mathrm{mS} \cdot \mathrm{cm}^{-1}$ |  |
| 0                                       | 0                                             | 0                                       | 0                                             |  |
| 0.1                                     | 1.16                                          | 0.1                                     | 0.93                                          |  |
| 0.2                                     | 1.98                                          | 0.2                                     | 1.73                                          |  |
| 0.3                                     | 2.63                                          | 0.3                                     | 2.42                                          |  |
| 0.4                                     | 3.15                                          | 0.4                                     | 2.99                                          |  |
| 0.5                                     | 3.61                                          | 0.5                                     | 3.44                                          |  |
| 0.6                                     | 4.05                                          | 0.6                                     | 3.74                                          |  |
| 0.7                                     | 4.30                                          | 0.65                                    | 3.84                                          |  |

Table S2. Experimental conductivity data of Ph-ACN and ADN based electrolytes as a function of the Et4NBF4 salt concentration up to its solubility limit at 25 °C as measured in a glovebox environment.

Standard uncertainties *u* are u(T) = 0.5 °C,  $u([\text{Et}_4\text{NBF}_4]) = 0.02 \cdot [\text{Et}_4\text{NBF}_4]$  and  $u(\sigma) = 0.03 \cdot \sigma$ .

| <b>T</b> / 0 <b>C</b> | ACM                     | N              | 1 M Et <sub>4</sub> NBF <sub>4</sub> in ACN |                |                                               |  |
|-----------------------|-------------------------|----------------|---------------------------------------------|----------------|-----------------------------------------------|--|
| I/ C                  | ho / g·cm <sup>-3</sup> | $\eta$ / mPa·s | ho / g·cm <sup>-3</sup>                     | $\eta$ / mPa·s | $\sigma / \mathrm{mS} \cdot \mathrm{cm}^{-1}$ |  |
| -20                   |                         | -              | -                                           | _              | 29.80                                         |  |
| -15                   | -                       | -              | -                                           | -              | 31.86                                         |  |
| -10                   | -                       | -              | -                                           | -              | 33.93                                         |  |
| -5                    | -                       | -              | -                                           | -              | 36.03                                         |  |
| 0                     | -                       | -              | -                                           | -              | 38.13                                         |  |
| 5                     | 0.7990                  | 0.430          | 0.8670                                      | 0.785          | 40.24                                         |  |
| 10                    | 0.7935                  | 0.410          | 0.8622                                      | 0.746          | 42.36                                         |  |
| 15                    | 0.7880                  | 0.391          | 0.8574                                      | 0.707          | 44.47                                         |  |
| 20                    | 0.7824                  | 0.374          | 0.8525                                      | 0.668          | 46.59                                         |  |
| 25                    | 0.7769                  | 0.359          | 0.8476                                      | 0.639          | 48.70                                         |  |
| 30                    | 0.7714                  | 0.345          | 0.8427                                      | 0.611          | 50.81                                         |  |
| 35                    | 0.7659                  | 0.332          | 0.8377                                      | 0.591          | 52.91                                         |  |
| 40                    | 0.7604                  | 0.320          | 0.8328                                      | 0.575          | 55.01                                         |  |
| 45                    | 0.7548                  | 0.309          | 0.8278                                      | 0.550          | 57.09                                         |  |
| 50                    | 0.7493                  | 0.299          | 0.8228                                      | 0.524          | 59.16                                         |  |
| 55                    | 0.7438                  | 0.289          | 0.8179                                      | 0.501          | 61.22                                         |  |
| 60                    | 0.7383                  | 0.281          | 0.8128                                      | 0.481          | 63.27                                         |  |

Table S3. Experimental physical properties as a function of the temperature of pure solvents and selectedEt4NBF4-based electrolytes at 101 kPa.

Standard uncertainties u are u(T) = 0.1 °C,  $u([Et_4NBF_4]) = 0.01 \cdot [Et_4NBF_4], u(\rho) = 0.005 \cdot \rho,$  $u(\eta) = 0.03 \cdot \eta, u(\sigma) = 0.01 \cdot \sigma \text{ and } u(p) = 2 \text{ kPa.}$ 

| т / ос | ADI                     | N              | 0.7 M Et <sub>4</sub> NBF <sub>4</sub> in ADN |                |                                               |  |
|--------|-------------------------|----------------|-----------------------------------------------|----------------|-----------------------------------------------|--|
| 17 C   | ho / g·cm <sup>-3</sup> | $\eta$ / mPa·s | ho / g·cm <sup>-3</sup>                       | $\eta$ / mPa·s | $\sigma / \mathrm{mS} \cdot \mathrm{cm}^{-1}$ |  |
| -40    | -                       | -              | -                                             | -              | 0.0003                                        |  |
| -35    | -                       | -              | -                                             | -              | 0.0002                                        |  |
| -30    | -                       | -              | -                                             | -              | 0.0002                                        |  |
| -25    | -                       | -              | -                                             | -              | 0.0002                                        |  |
| -20    | -                       | -              | -                                             | -              | 0.0002                                        |  |
| -15    | -                       | -              | -                                             | -              | 0.0003                                        |  |
| -10    | -                       | -              | -                                             | -              | 0.0003                                        |  |
| -5     | -                       | -              | -                                             | -              | 0.0005                                        |  |
| 0      | -                       | -              | -                                             | -              | 0.0023                                        |  |
| 5      | 0.9740                  | 11.80          | 0.9963                                        | 15.85          | 2.16                                          |  |
| 10     | 0.9702                  | 9.900          | 0.9927                                        | 13.09          | 2.54                                          |  |
| 15     | 0.9664                  | 8.413          | 0.9890                                        | 10.95          | 2.97                                          |  |
| 20     | 0.9627                  | 7.224          | 0.9853                                        | 9.304          | 3.45                                          |  |
| 25     | 0.9589                  | 6.272          | 0.9817                                        | 7.996          | 3.98                                          |  |
| 30     | 0.9551                  | 5.499          | 0.9780                                        | 6.936          | 4.57                                          |  |
| 35     | 0.9514                  | 4.858          | 0.9744                                        | 6.080          | 5.20                                          |  |
| 40     | 0.9476                  | 4.328          | 0.9707                                        | 5.368          | 5.89                                          |  |
| 45     | 0.9439                  | 3.885          | 0.9671                                        | 4.784          | 6.64                                          |  |
| 50     | 0.9402                  | 3.509          | 0.9635                                        | 4.291          | 7.44                                          |  |
| 55     | 0.9364                  | 3.190          | 0.9599                                        | 3.874          | 8.31                                          |  |
| 60     | 0.9327                  | 2.919          | 0.9563                                        | 3.519          | 9.23                                          |  |
| 65     | 0.9290                  | 2.688          | 0.9527                                        | 3.217          | 10.21                                         |  |
| 70     | 0.9253                  | 2.490          | 0.9491                                        | 2.958          | 11.26                                         |  |
| 75     | 0.9216                  | 2.319          | 0.9455                                        | 2.734          | 12.36                                         |  |
| 80     | 0.9179                  | 2.170          | 0.9420                                        | 2.541          | 13.53                                         |  |

Standard uncertainties u are u(T) = 0.1 °C,  $u([Et_4NBF_4]) = 0.01 \cdot [Et_4NBF_4], u(\rho) = 0.005 \cdot \rho,$  $u(\eta) = 0.03 \cdot \eta, u(\sigma) = 0.01 \cdot \sigma \text{ and } u(p) = 2 \text{ kPa.}$ 

| T/OC | Ph-A0                       | CN             | 0.65 M Et <sub>4</sub> NBF <sub>4</sub> in Ph-ACN |                |                                               |  |
|------|-----------------------------|----------------|---------------------------------------------------|----------------|-----------------------------------------------|--|
| 1/°C | $\rho$ / g·cm <sup>-3</sup> | $\eta$ / mPa·s | ho / g·cm <sup>-3</sup>                           | $\eta$ / mPa·s | $\sigma / \mathrm{mS} \cdot \mathrm{cm}^{-1}$ |  |
| -40  | -                           | -              | -                                                 | -              | 0.52                                          |  |
| -35  | -                           | -              | -                                                 | -              | 0.70                                          |  |
| -30  | -                           | -              | -                                                 | -              | 0.89                                          |  |
| -25  | -                           | -              | -                                                 | -              | 1.13                                          |  |
| -20  | -                           | -              | -                                                 | -              | 1.22                                          |  |
| -15  | -                           | -              | -                                                 | -              | 1.40                                          |  |
| -10  | -                           | -              | -                                                 | -              | 1.60                                          |  |
| -5   | -                           | -              | -                                                 | -              | 1.84                                          |  |
| 0    | -                           | -              | -                                                 | -              | 2.10                                          |  |
| 5    | 0.7990                      | 2.807          | 1.0451                                            | 4.572          | 2.40                                          |  |
| 10   | 0.7935                      | 2.536          | 1.0412                                            | 4.016          | 2.73                                          |  |
| 15   | 0.7880                      | 2.300          | 1.0373                                            | 3.558          | 3.11                                          |  |
| 20   | 0.7824                      | 2.093          | 1.0334                                            | 3.186          | 3.53                                          |  |
| 25   | 0.7769                      | 1.910          | 1.0295                                            | 2.884          | 4.00                                          |  |
| 30   | 0.7714                      | 1.761          | 1.0256                                            | 2.624          | 4.53                                          |  |
| 35   | 0.7659                      | 1.584          | 1.0217                                            | 2.408          | 5.13                                          |  |
| 40   | 0.7604                      | 1.489          | 1.0178                                            | 2.229          | 5.80                                          |  |
| 45   | 0.7548                      | 1.365          | 1.0138                                            | 2.078          | 6.54                                          |  |
| 50   | 0.7493                      | 1.263          | 1.0099                                            | 1.949          | 7.37                                          |  |
| 55   | 0.7438                      | 1.172          | 1.0060                                            | 1.839          | 8.29                                          |  |
| 60   | 0.7383                      | 1.089          | 1.0021                                            | 1.743          | 9.31                                          |  |
| 65   | 0.7327                      | 1.015          | 0.9982                                            | 1.660          | 10.46                                         |  |
| 70   | 0.7272                      | 0.947          | 0.9943                                            | 1.588          | 11.72                                         |  |
| 75   | 0.7217                      | 0.886          | 0.9904                                            | 1.524          | 13.13                                         |  |
| 80   | 0.7162                      | 0.830          | 0.9865                                            | 1.454          | 14.68                                         |  |

Standard uncertainties u are u(T) = 0.1 °C,  $u([Et_4NBF_4]) = 0.01 \cdot [Et_4NBF_4], u(\rho) = 0.005 \cdot \rho$ ,  $u(\eta) = 0.03 \cdot \eta, u(\sigma) = 0.01 \cdot \sigma$  and u(p) = 2 kPa.

| $T / \circ C$ | $C_{IL}/M$  | 0.8    | 1.4    | 1.9    | 2.3    | 2.7    | 3.0    | 3.2    | 3.5    | 3.7    | 4.0    |
|---------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| I / C         | $x_{ m IL}$ | 0.1000 | 0.2000 | 0.3070 | 0.3800 | 0.4990 | 0.6000 | 0.7000 | 0.7920 | 0.8700 | 1.0000 |
| -             | -20         | 2.51   | 2.87   | 2.52   | 2.60   | 2.28   | 1.65   | 1.73   | 1.50   | 1.27   | 1.08   |
| -             | -15         | 3.02   | 3.53   | 3.22   | 3.33   | 2.97   | 2.24   | 2.32   | 2.05   | 1.75   | 1.50   |
| -             | -10         | 3.57   | 4.26   | 4.01   | 4.15   | 3.78   | 2.94   | 3.01   | 2.72   | 2.34   | 2.03   |
|               | -5          | 4.16   | 5.06   | 4.89   | 5.09   | 4.70   | 3.77   | 3.81   | 3.51   | 3.05   | 2.66   |
|               | 0           | 4.79   | 5.92   | 5.87   | 6.13   | 5.74   | 4.72   | 4.72   | 4.43   | 3.87   | 3.41   |
|               | 5           | 5.45   | 6.84   | 6.94   | 7.28   | 6.89   | 5.80   | 5.75   | 5.47   | 4.81   | 4.27   |
|               | 10          | 6.14   | 7.82   | 8.10   | 8.52   | 8.15   | 7.00   | 6.88   | 6.64   | 5.88   | 5.25   |
|               | 15          | 6.86   | 8.86   | 9.35   | 9.87   | 9.52   | 8.33   | 8.12   | 7.94   | 7.07   | 6.35   |
| ,<br>-        | 20          | 7.60   | 9.93   | 10.67  | 11.30  | 10.99  | 9.77   | 9.47   | 9.37   | 8.39   | 7.57   |
| ,<br>-        | 25          | 8.36   | 11.06  | 12.06  | 12.83  | 12.57  | 11.34  | 10.91  | 10.91  | 9.83   | 8.90   |
|               | 30          | 9.14   | 12.22  | 13.52  | 14.44  | 14.23  | 13.01  | 12.45  | 12.57  | 11.38  | 10.36  |
|               | 35          | 9.94   | 13.41  | 15.05  | 16.13  | 15.98  | 14.79  | 14.07  | 14.34  | 13.05  | 11.92  |
| 4             | 40          | 10.75  | 14.64  | 16.64  | 17.89  | 17.82  | 16.67  | 15.78  | 16.22  | 14.83  | 13.59  |
| 4             | 45          | 11.56  | 15.90  | 18.27  | 19.72  | 19.73  | 18.65  | 17.57  | 18.20  | 16.71  | 15.37  |
| :             | 50          | 12.39  | 17.18  | 19.96  | 21.61  | 21.71  | 20.71  | 19.43  | 20.28  | 18.70  | 17.24  |
| :             | 55          | 13.23  | 18.48  | 21.69  | 23.57  | 23.75  | 22.86  | 21.35  | 22.44  | 20.78  | 19.21  |
| (             | 60          | 14.06  | 19.79  | 23.46  | 25.57  | 25.86  | 25.09  | 23.34  | 24.69  | 22.95  | 21.27  |
| (             | 65          | 14.91  | 21.13  | 25.26  | 27.62  | 28.02  | 27.38  | 25.38  | 27.01  | 25.20  | 23.42  |
| ,             | 70          | 15.75  | 22.47  | 27.10  | 29.72  | 30.22  | 29.74  | 27.47  | 29.41  | 27.53  | 25.64  |
| ,             | 75          | 16.60  | 23.83  | 28.96  | 31.86  | 32.48  | 32.17  | 29.61  | 31.87  | 29.94  | 27.94  |
| :             | 80          | 17.44  | 25.19  | 30.84  | 34.03  | 34.77  | 34.64  | 31.79  | 34.40  | 32.41  | 30.30  |

Table S4. Experimental conductivity data ( $\sigma$  / mS·cm<sup>-1</sup>) of investigated Ph-ACN + EmimTFSI blends as a function of the composition, expressed in IL mole fraction, xIL and IL concentration in mol.L-1, and the temperature at 101 kPa.

Standard uncertainties *u* are u(T) = 0.1 °C,  $u(x_{IL}) = 2 \cdot 10^{-4}$ ,  $u(\sigma) = 0.01 \cdot \sigma$  and u(p) = 2 kPa.

| т / ос | EmimT                                  | TFSI           | 2.7 M EmimTFSI in Ph-ACN |                |  |
|--------|----------------------------------------|----------------|--------------------------|----------------|--|
| 1 / °C | $\rho/\mathrm{g}\cdot\mathrm{cm}^{-3}$ | $\eta$ / mPa·s | ho / g·cm <sup>-3</sup>  | $\eta$ / mPa·s |  |
| 5      | 1.5389                                 | 76.48          | 1.3753                   | 20.20          |  |
| 10     | 1.5338                                 | 61.06          | 1.3705                   | 16.76          |  |
| 15     | 1.5287                                 | 49.31          | 1.3657                   | 14.12          |  |
| 20     | 1.5236                                 | 40.56          | 1.3609                   | 12.04          |  |
| 25     | 1.5185                                 | 33.85          | 1.3561                   | 10.40          |  |
| 30     | 1.5135                                 | 28.81          | 1.3514                   | 9.069          |  |
| 35     | 1.5084                                 | 24.51          | 1.3466                   | 7.979          |  |
| 40     | 1.5034                                 | 21.40          | 1.3418                   | 7.083          |  |
| 45     | 1.4984                                 | 18.68          | 1.3371                   | 6.334          |  |
| 50     | 1.4934                                 | 16.48          | 1.3324                   | 5.697          |  |
| 55     | 1.4885                                 | 14.66          | 1.3277                   | 5.158          |  |
| 60     | 1.4835                                 | 13.04          | 1.3230                   | 4.693          |  |
| 65     | 1.4786                                 | 11.71          | 1.3183                   | 4.298          |  |
| 70     | 1.4737                                 | 10.65          | 1.3136                   | 3.957          |  |
| 75     | 1.4688                                 | 9.624          | 1.3090                   | 3.658          |  |
| 80     | 1.4639                                 | 8.901          | 1.3043                   | 3.396          |  |

Table S5. Experimental physical properties as a function of the temperature of pure IL and 2.7 M EmimTFSI in Ph-ACN electrolyte at 101 kPa.

Standard uncertainties u are u(T) = 0.1 °C,  $u([IL]) = 0.01 \cdot [IL]$ ,  $u(\rho) = 0.005 \cdot \rho$ ,  $u(\eta) = 0.03 \cdot \eta$  and u(p) = 2 kPa.



Table S6. Optimized structure of investigated Emim+ cation + Ph-ACN clusters.

Table S7. Electrochemical stability windows of selected electrolytes.

| Electrolete               | Ec vs. Ag/Ag⁺ | Ea vs. Ag/Ag <sup>+</sup> | ESW  |
|---------------------------|---------------|---------------------------|------|
| Electrolyte               | (V)           | (V)                       | (V)  |
| 0.65 M Et4NBF4 in Ph-ACN  | -2.39         | +1.90                     | 4.29 |
| 2.7 M Emim-TFSI in Ph-ACN | -2.27         | +2.67                     | 4.94 |
| Pure Emim-TFSI            | -1.89         | +2.51                     | 4.40 |

| Species                 | Structure                                                                                                       | HOMO (eV) | LUMO (eV) |
|-------------------------|-----------------------------------------------------------------------------------------------------------------|-----------|-----------|
| BF4 <sup>-</sup>        | -                                                                                                               |           |           |
|                         |                                                                                                                 | -4.231    | +0.2426   |
| $Et_4N^+$               |                                                                                                                 |           |           |
|                         |                                                                                                                 | -13.461   | -3.200    |
| Et4NBF4                 | and the state                                                                                                   |           |           |
|                         |                                                                                                                 | -7.255    | -0.746    |
| TFSI                    | in the                                                                                                          |           |           |
|                         |                                                                                                                 | -4.188    | +3.347    |
| $\operatorname{Emim}^+$ | in the second |           |           |
|                         |                                                                                                                 | -11.807   | -5.165    |
| EmimTFSI                | $\mathbf{x}_{\mathbf{a}}^{\mathbf{a}},\mathbf{x}^{\mathbf{a}}$                                                  |           | ***       |
|                         |                                                                                                                 | -7.377    | -1.951    |

Table S8. Structure, HOMO and LUMO energies of each selected solvent, ion and salt.



Table S9. Electrolyte resistance (Rs), electrolyte series resistance (ESR), and specific capacitances (C), before and after floating tests for both the 0.65 M Et4NBF4 in Ph-ACN (a), and 2.7 M EmimTFSI in Ph-ACN (b)

a)

|                                                         | Before floating         |              |            | After floating          |              |            |
|---------------------------------------------------------|-------------------------|--------------|------------|-------------------------|--------------|------------|
| 0.65 M<br>Et <sub>4</sub> NBF <sub>4</sub> in<br>Ph-ACN | R <sub>s</sub><br>(Ohm) | ESR<br>(Ohm) | C<br>(F/g) | R <sub>s</sub><br>(Ohm) | ESR<br>(Ohm) | C<br>(F/g) |
| 2.7 V                                                   | 4.77                    | ~8           | 17.86      | 5.8                     | ~13          | 20.45      |
| 3.0 V                                                   | 6.61                    | ~10          | 17.69      | 7.76                    | ~22          | 20.84      |
| 3.2 V                                                   | 4.7                     | ~11          | 17.46      | 8.5                     | ~32          | 18.09      |

b)

|                          | Before floating         |              |            | After floating          |              |            |
|--------------------------|-------------------------|--------------|------------|-------------------------|--------------|------------|
| EmimTFSI<br>in<br>Ph-ACN | R <sub>s</sub><br>(Ohm) | ESR<br>(Ohm) | C<br>(F/g) | R <sub>s</sub><br>(Ohm) | ESR<br>(Ohm) | C<br>(F/g) |
| 2.7 V                    | 3                       | ~6           | 20.22      | 3.01                    | ~7           | 23.48      |
| 3.0 V                    | 3                       | ~6           | 22.34      | 3.5                     | ~10          | 23.72      |
| 3.2 V                    | 4.2                     | ~6           | 23.39      | 5.1                     | ~15          | 22.84      |