Synthetic (*E*)-3-phenyl-5-(phenylamino)-2-styryl-1,3,4-thiadiazol-3-ium chloride derivatives as promising chemotherapy agents on cell lines infected with HTLV-1

Danilo Sousa-Pereira¹, Thais Silva de Oliveira², Rojane O. Paiva², Otávio Augusto Chaves^{1,3}, José C. Netto-Ferreira^{1,4*}, Juliana Echevarria-Lima^{2*}, Aurea Echevarria^{1*}

¹ Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23.890-000, Brazil; <u>sousadanilo90@gmail.com (D.S.-P.); echevarr@ufrrj.br</u> (A.E.)

² Laboratório de Imunologia Básica e Aplicada, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21.941-590, Brazil; <u>thais.silvadeoliveira@yahoo.com.br (</u>T.S.O.); <u>rojanedeoliveirapaiva@gmail.com</u> (R.O.P.); juechevarria@micro.ufrj.br (J.E.-L.)

³ Instituto SENAI de Inovação em Química Verde (ISI QV), Maracanã, Rio de Janeiro, 20.271-030, Brazil; <u>otavioaugustochaves@gmail.com (</u>O.A.C.)

⁴ Qualidade e Tecnologia (INMETRO), Divisão de Metrologia Química, Instituto Nacional de Metrologia, Duque de Caxias, Rio de Janeiro, 25.250-020, Brazil; jcnetto.ufrrj@gmail.com (J.C.N-F.)

Supplementary Material

Index

Figure S1. FTIR, ¹H NMR and ¹³C NMR (DEPT-Q) spectra of (*E*)-3-phenyl-5-(4'- methylphenylamino)-2-styryl-1,3,4-thiadiazol-3-ium chloride (**5a**). p.3

Figure S2. FTIR, ¹H NMR and ¹³C NMR (DEPT-Q) spectra of (*E*)-3-phenyl-5-(4'- methoxyphenylamino)-2-styryl-1,3,4-thiadiazol-3-ium chloride (**5b**). p.4

Figure S3. FTIR, ¹H NMR and ¹³C NMR (DEPT-Q) spectra of (*E*)-3-phenyl-5-(4'-chlorophenylamino)-2-styryl-1,3,4-thiadiazol-3-ium chloride (**5c**). p.5

Figure S4. FTIR, ¹H NMR and ¹³C NMR (DEPT-Q) spectra of (*E*)-3-phenyl-5-(4'-bromophenylamino)-2-styryl-1,3,4-thiadiazol-3-ium chloride (**5d**). p.6

Figure S5. Fluorescence emission spectra of **5a**, **5c** and **5d** (25 μ M) in the presence of 100 ng/mL of DNA. A.U. = Arbitrary Unit.

Figure S6. Steady-state fluorescence emission spectra for HSA and its quenching upon successive additions of (A) **5a**, (B) **5b**, (C) **5c**, and (D) **5d** at pH 7.4 and 310K. [HSA] = 1.00 \times 10⁻⁵ M and [mesoionic compounds] = 0.17; 0.33; 0.50; 0.66; 0.83; 0.99; 1.15 and 1.32 \times 10⁻⁵ M.

 Figure S7. Stern-Volmer plots for the interaction (A) HSA:5a, (B) HSA:5b, (C) HSA:5c,

 and (D) HSA:5d at 296, 303, and 310K. [HSA] = 1.00×10^{-5} M and [mesoionic compounds]

 = 0.17; 0.33; 0.50; 0.66; 0.83; 0.99; 1.15 and 1.32×10^{-5} M.

 p.9

Figure S8. Time-resolved fluorescence decay for the interaction between HSA and the mesoionic compounds **5a-d** in a PBS solution. [HSA] = 1.00×10^{-5} M and [mesoionic compounds] = 1.32×10^{-5} M. IRF is the instrument response factor. p.10

Figure S9. Modified Stern-Volmer plots for the interaction (A) HSA:**5a**, (B) HSA:**5b**, (C) HSA:**5c**, and (D) HSA:**5d** at 296, 303, and 310K. [HSA] = 1.00×10^{-5} M and [mesoionic compounds] = 0.17; 0.33; 0.50; 0.66; 0.83; 0.99; 1.15 and 1.32×10^{-5} M.

Figure S10. Van't Hoff plot for the interaction (A) HSA:**5a**, (B) HSA:**5b**, (C) HSA:**5c**, and (D) HSA:**5d** at 296, 303, and 310K. p.12

Figure S11. Circular dichroism spectra for (A) HSA:5a, (B) HSA:5b, (C) HSA:5c, and (D)HSA:5d at 310K. [HSA] = 1.00×10^{-5} M and [mesoionics] = 1.32×10^{-5} M.p.13

Figure S1. FTIR, ¹H NMR and ¹³C NMR (DEPT-Q) spectra of (*E*)-3-phenyl-5-(4'- methylphenylamino)-2-styryl-1,3,4-thiadiazol-3-ium chloride (**5a**).

Figure S2. FTIR, ¹H NMR and ¹³C NMR (DEPT-Q) spectra of (*E*)-3-phenyl-5-(4'-methoxyphenylamino)-2-styryl-1,3,4-thiadiazol-3-ium chloride (**5b**).

Figure S3. FTIR, ¹H NMR and ¹³C NMR (DEPT-Q) spectra of (*E*)-3-phenyl-5-(4'-chlorophenylamino)-2-styryl-1,3,4-thiadiazol-3-ium chloride (**5c**).

Figure S4. FTIR, ¹H NMR and ¹³C NMR (DEPT-Q) spectra of (*E*)-3-phenyl-5-(4'-bromophenylamino)-2-styryl-1,3,4-thiadiazol-3-ium chloride (**5d**).

Figure S5. Fluorescence emission spectra of 5a,5c and 5d (25 μ M) in the presence of 100 ng/mL of DNA. A.U. = Arbitrary Unit.

Figure S6. Steady-state fluorescence emission spectra for HSA and its quenching upon successive additions of (A) **5a**, (B) **5b**, (C) **5c**, and (D) **5d** at pH 7.4 and 310K. [HSA] = 1.00 × 10⁻⁵ M and [mesoionic compounds] = 0.17; 0.33; 0.50; 0.66; 0.83; 0.99; 1.15 and 1.32 × 10⁻⁵ M.

Figure S7. Stern-Volmer plots for the interaction (A) HSA:**5a**, (B) HSA:**5b**, (C) HSA:**5c**, and (D) HSA:**5d** at 296, 303, and 310K. [HSA] = 1.00 × 10⁻⁵ M and [mesoionic compounds] = 0.17; 0.33; 0.50; 0.66; 0.83; 0.99; 1.15 and 1.32 × 10⁻⁵ M.

Figure S8. Modified Stern-Volmer plots for the interaction (A) HSA:**5***a*, (B) HSA:**5***b*, (C) HSA:**5***c*, and (D) HSA:**5***d* at 296, 303, and 310K. [HSA] = 1.00×10^{-5} M and [mesoionic compounds] = 0.17; 0.33; 0.50; 0.66; 0.83; 0.99; 1.15 and 1.32×10^{-5} M.

Figure S9. Time-resolved fluorescence decay for the interaction between HSA and the mesoionic compounds **5a-d** in a PBS solution. [HSA] = 1.00×10^{-5} M and [mesoionic compounds] = 1.32×10^{-5} M. IRF is the instrument response factor.

Figure S10. Van't Hoff plot for the interaction (A) HSA:**5***a*, (B) HSA:**5***b*, (C) HSA:**5***c*, and (D) HSA:**5***d* at 296, 303, and 310K.

Figure S11. Circular dichroism spectra for (A) HSA:**5a**, (B) HSA:**5b**, (C) HSA:**5c**, and (D) HSA:**5d** at 310K. [HSA] = 1.00×10^{-5} M and [mesoionic compounds] = 1.32×10^{-5} M.