Micelles Mediated Zone Fluidics Method for Hydrazine Determination in Environmental Samples

Theano D. Karakosta ¹, Christophoros Christophoridis ², Konstantinos Fytianos ² and Paraskevas D. Tzanavaras ^{3,*}

- ¹ LifeLabs Medical Laboratories, Toronto, ON M9W6J6, Canada; karakostatheano@hotmail.com
- ² Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; cchrist@chem.auth.gr (C.C); fyti@chem.auth.gr (K.F.)
- 3 Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- * Correspondence: ptzanava@chem.auth.gr; Tel.: +30-2310997721, Fax: +30-2310997719

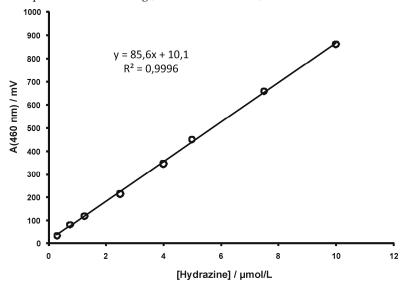


Figure 1S. Graphical depiction of the aqueous calibration curve.

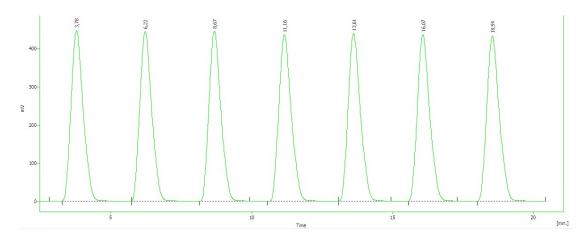
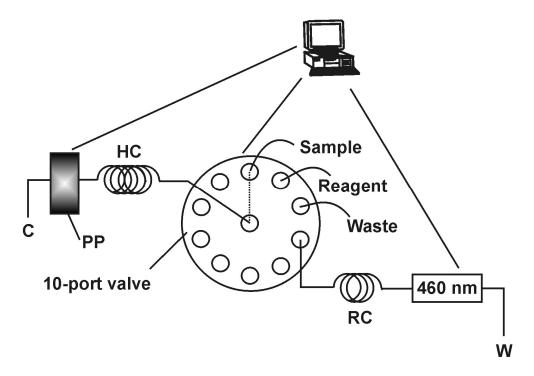



Figure 2S. Representative ZF peaks.

Molecules **2019**, 24, x 2 of 4

Figure 3S. Schematic depiction and image of the ZF configuration (for experimental details on the instrumentation see the experimental section 3.2).

Molecules **2019**, 24, x

Table 1S. Overview of automated flow methods for the determination of hydrazine.

Flow Technique	Method principle	LOD (µg L-1)	Sampling Rate (h-1)	Application	Ref
ZF	Reaction with OPA after on-line SPE and fluorimetric detection (318/376 nm)	0.9	12	Pharmaceutics	[6]
FI	Amperometric sensor based on electrocatalytic oxidation at an Au nanoparticle-modified pretreated graphite pencil electrode	0.07	120	Water samples	[7]
FI	Amperometric sensor based on electrocatalytic oxidation at pyrocatechol violet modified pencil graphite electrode	2.9	_	Water samples	[8]
FI	Electrochemical detection with a coplanar boron doped diamond microband electrode modified with Pt nano-particles	2.3	_	Pharmaceutics	[9]
FI	Electrochemical detection with a Quercetin tethered pristine-multiwalled carbon nanotube modified glassy carbon electrode	4.9	10	Cigarette smoke	[10]
FI	Voltammetric detection with a nanostructured AuCu3 alloy electrode	1.4	45	Water samples	[11]
FI	Reaction with p-DAB in highly acidic medium and spectrophotometric detection (460 nm)	2 (LOQ)	24	Water samples	[12]
FI	Amperometric determination using a surface modified nickel hexacyanoferrate graphite electrode	36	54	Water samples	[13]
FI	Indirect AAS using PbO ₂ as solid phase microcolumn packing.	101	80	Water samples	[14]
FI	Amperometric detection by cyclic voltammetry using ruthenium modified glassy carbon electrodes	306	_	N/A	[15]
FI	Electrocatalytic determination using copper-palladium alloy nanoparticle plated screen-printed carbon electrodes	9.7	180	Cigarette smoke	[16]
FI	Elelctrocatalytic determination using barrel plating rhodium disposable electrodes	2.5	45	Water samples	[17]
FI	Post-chemiluminescence arising from the permanganate-luminol reaction induced by hydrazine	30	_	N/A	[18]
FI	Inhibition of the pyrogallol red-iodate reaction (470 nm)	30	15	Water samples	[19]
ZF	Reaction with p-DAB in micellar medium and UV-vis detection (460 nm)	3.6	15	Water samples	This study

ZF = zone fluidics; **OPA** = *o*-phthalaldehyde; **SPE** = solid phase extraction; **FI** = flow injection; **N/A** = no application in real samples.

Molecules **2019**, 24, x 4 of 4