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Abstract: Salen ligands are a class of Schiff bases simply obtained through condensation of two
molecules of a hydroxyl-substituted aryl aldehyde with an achiral or chiral diamine. The prototype
salen, or N,N′-bis(salicylidene)ethylenediamine has a long history, as it was first reported in 1889,
and immediately, some of its metal complexes were also described. Now, the salen ligands are a class
of N,N,O,O tetradentate Schiff bases capable of coordinating many metal ions. The geometry and the
stereogenic group inserted in the diamine backbone or aryl aldehyde backbone have been utilized in
the past to efficiently transmit chiral information in a variety of different reactions. In this review
we will summarize the important and recent achievements obtained in stereocontrolled reactions
in which Al(salen) metal complexes are employed. Several other reviews devoted to the general
applications and synthesis of chromium and other metal salens have already been published.

Keywords: aluminum; aluminum metal complexes; salen; chiral ligand; Lewis Acid; catalysis;
stereoselective reactions; bifunctional catalysis; organic synthesis

1. Introduction

Schiff bases are widely used as ligands in coordination chemistry and catalysis [1], and their
complexes can be accessed by a variety of methodologies. As representative in the class of Schiff
complexes, salen metal complexes have been explored in many applications, from material science and
catalysis to coordination chemistry [2–8]. Salen compounds are typically prepared by a condensation
reaction between aromatic ortho-hydroxyaldehydes with primary 1,2-diamines in a 2:1 molar ratio
respectively [5]. Both chiral and achiral salen Schiff bases are obtained by these methodologies. Many
different types of chiral salens, containing different stereogenic elements (centers, axes, planes), have
been prepared, and salens have also been inserted in more complex structures, such as DNA [9]. The
aryl residues of a salen compound have been decorated with groups able to control the stereochemical
conformation of the ligand, as well as to hinder particular reaction pathways. In addition, functional
groups such as Brønsted bases have also been inserted in order to introduce a bifunctional behavior of
the salen metal complexes. Salen are tetradentate ligands able to coordinate a variety of metals by
subtle arrangement of the imine and hydroxyl group. With large metals the coordination becomes
more pyramidal, while with small metals a planar arrangement is preferred. Although the stability of
metal salen complexes can be influenced by the presence of organometallic species in solution [10], and
exchange between metals could be observed, normally salen complexes are quite stable and chemically
inert. Depending on the metal, one or two apical coordination sites are available, although a different
arrangement can be observed [11]. Salens are able to transmit chiral information in a very effective
way in many catalytic transformations. The stereochemical information is transmitted by various
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crucial features of the salen ligand, here summarized. First, the nature of the metal and its oxidation
state strongly affect the coordination. In oxo or imido salen complexes, one apical coordination site is
occupied by the oxo or imido ligand respectively. What is especially important for the stereochemical
outcome of the reaction is the salen metal complex conformation that is influenced by the nature of
the ancillary ligands. The conformation of salen complexes in solution is important to understand
the catalytic properties. Different conformations are in equilibrium. However, generally, a stable
octahedral configuration, with the metal tightly coordinate to the two nitrogen and oxygen atoms, is
observed by X-ray crystal structures. Chiral salen complexes adopt two different types of conformation,
namely “stepped” conformations with the arrangement of atoms illustrated in Figure 1A.
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A different type of conformation is the so-called “bowl-shaped” conformation (Figure 1B) where
the structure of the complex is now arranged as an envelope shape. Whenever the diamine backbone
bears stereogenic centers, there is an equilibrium between the possible stepped conformers. The
substituents of the diamine moiety can be arranged in a trans-diaxial or trans-diequatorial manner
(Figure 1C). The stereochemical information is therefore transmitted by these chiral conformations,
and the whole salen framework hinders one possible reaction pathway. This is crucial for the effective
design of chiral salen metal complexes, as their accessibility is not only obstructed by the stereocenters
of the diamine. Although the diaxial conformation of the diamine substituents seems unfavored, the
presence of chelating groups on the diamine can drive the equilibria towards the formation of a more
stable diaxial isomer, with a concomitant coordination of the chelating groups to the apical positions. In
addition, using an achiral diamine in the preparation for the salen metal complex can lead to complexes
with a chiral stepped conformation. In the presence of a chiral counter ion, and using a cationic salen
metal complex, one of the two chiral stepped conformations can be stabilized [12]. To add further
complexity to the design of effective salen complexes for catalysis, in many reactions in which these are
used, two salen metal complexes can work cooperatively. Indeed, a precise arrangement of two salen
units is indispensable for activating the nucleophile and the electrophile [13]. Thus, the arrangement is
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crucially controlled by active conformations. Under this perspective, oligomeric salen metal complexes
were purposely designed for taking advantage of the bifunctional behavior (Figure 2).
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Figure 2. Bifunctional behavior of salen complexes.

In this review, we have focused our attention on the aluminum complexes of salens, reporting the
applications of the stable and effective complexes in different catalytic processes.

2. Aluminum: General Properties and Character

Aluminum is the major constituent of many common minerals. Its name refers to the alums,
minerals containing aluminum. Because of its availability and its capability to form alloys with
peculiar characters, aluminum has found many important industrial applications. The toxicity of
aluminum is considered low as compared to other metals. In aluminum complexes, it is almost
present exclusively in the +3 oxidation state although interesting examples of Al(I) complexes were
also reported [14]. Aluminum(III) complexes have been mainly employed in many homogeneous
catalytic transformations that required a Lewis acid-type activation with polar substrates [15]. The
activation is determined by the oxophilic nature and Lewis acidity of aluminum complexes. The
possibility of tuning the Lewis acidity by making use of appropriate ligands—in particular salen
ligands, as discussed in this review—allows to control the reactivity in many catalytic reactions.
Low coordinated aluminum cationic compounds are strong Lewis acids, while a neutral five or six
coordination arrangement, such as the one observed in the case of Al(salen), gave moderate electrophilic
species. Although aluminum cannot change oxidation states in its complexes, they are able to promote
redox reactions [15]. Free metal salts and aluminum complexes have been used to catalyze hydride
transfer processes between organic molecules, the epoxidation of alkenes, and the activation of allylic
and aliphatic C–H bonds [16]. In this perspective, the use of tailored ligands improved the chemo-,
regio-, and/or stereoselectivity of the reactions catalyzed by Al(III) salts. The ability of Al(III) complexes
to promote these reactions is due to the activation of two organic molecules in the redox chemistry. A
well-known example of Al(III)-promoted redox reaction is the Meerwein-Schmidt-Ponndorf-Verley
(MSPV) reduction of carbonyl compounds by primary or secondary alcohols [17]. Furthermore, the
importance of the use of aluminum organometallic complexes in the polymer industry is enormous.
Polyolefin production accounts for more than half of the plastics demand around the world and is
still increasing. The heterogeneous conditions for the process use as principal catalytic system the
MgCl2-supported Ziegler−Natta catalysts, composed of titanium complexes supported onto a MgCl2
matrix. It is important to stress the use of aluminum alkyls AlR3 (R = alkyl) as co-catalyst in the
polymerization [18].
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The photophysical behavior of Schiff-base complexes with several different metals has been
previously investigated by some of us [19]. Among all the studied salen complexes, ClAl(salen)
presented interesting features, showing good chemical stability, high absorption coefficients and
fluorescence quantum yield. In addition, we showed that the fluorescence intensity of ClAl(salen)
was modulated by the presence of coordinating species, such as carboxylate anions, allowing the
association process to be monitored with high sensitivity. Photoredox catalysis is now undergoing very
active investigations [20]. In particular, application of Earth-abundant metals in photoredox catalysis
is an emergent topic, as the mainly used photocatalysts are based on rare and toxic ruthenium(II) and
iridium(III) complexes. Photoactive complexes based on Cu(I), Zn(II), Cr(III), Co(III) and Fe(II) were
reported in various photoredox reactions [21]. Aluminum is the most abundant metal in the Earth’s
crust and is relatively non-toxic compared to cobalt and chromium. Therefore, the photophysical
properties of Al(salen) are also worth further investigation in the photoredox catalytic applications [22].

3. Al(Salen): Synthesis, Properties and Coordination Chemistry

The preparation and chemistry of XAl(salen) species were reviewed by Atwood [23]. Al(salen)
complexes are conveniently prepared by combining the chiral or achiral salen ligand with available
solutions of trialkyl aluminum reagents in an aprotic solvent at room temperature (Scheme 1). Generally,
the reaction is performed in toluene.
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With such an approach, the desired five-coordinate alkyl derivatives of salen are obtained in very
good yields [24,25]. XAl(salen) compounds, with X = Cl, can be accessed in a similar way by using
dialkylaluminium chloride [26]. In these reactions, HCl can be formed as a byproduct. Therefore, the
addition is generally performed at low temperatures to avoid decomposition of the aluminum salen
complexes; the presence of hindered groups in the backbone of the salen can influence the yield and
the solubility of the former. Generally, the complexes bearing substituted aromatic rings in the salen
ligand are easily isolated after concentration of the solution. All Al(salen) complexes are monomeric,
with a coordinate metal-alkyl or -halide unit. It is possible to verify the formation of the desired
complex by observing the 1H-NMR signals. Generally, AlMe3 or AlEt3 are used for the synthesis of
the Al-complexes. The signal for the methyl group linked to the aluminum can be found in the range
between −1.3 and −0.98 ppm. It also is possible to record the 27Al-NMR. However, this opportunity is
generally not often explored. The XAl(salen) compounds show a five-coordinate aluminum atom. The
geometry of coordination can be trigonal bipyramidal or square pyramidal, according to the nitrogen
backbone of the salen. The more rigid the framework is, the less possible it is to observe the trigonal
bipyramidal geometry. The introduction of substituents in the aryl moiety does not modify the distance
between the apical alkyl group and aluminum in a very large manner. Alkyl groups that occupy
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the apical position can be replaced by alcohols through alkane elimination [27]. It is also possible to
introduce R3SiOH [25]. For catalytic purposes, the possibility to obtain cationic Al(salen) compounds
is significant [28,29]. The reaction solvent, due to its Lewis basicity, can be able to induce the formation
of cationic Al(salen)+Cl− starting from the ClAl(salen) [29]. Notably, although this reaction can be
induced by water, the Al(salen) complexes are stable in aqueous solution, and the dissociation is also
possible with chiral Al(salen) complexes [30]. In water solution, two molecules of water are able to
coordinate the aluminum complexes. In other reactions, acidic phenolic compounds have been used
for the construction of tailored Al(salen) or Al(salophen) complexes for multiple purposes [31]. Kinetic
and reaction rates of Al(salen) catalysts are determined by different factors. On the one hand, since
Al(salen) behaves as Lewis acids in the case of reactions performed in coordinating solvents, these can
compete with the activation of the desired substrate, slowing down the reaction rate, particularly if the
rate of exchange is not high. On the other hand, Al(salen) complexes show a cooperative behavior in
many catalytic reactions, as they are able to activate both the electrophile and the nucleophile in the
transition state. The Al(salen) molecules bring the two reactants close in proximity. In this case, kinetics
parameters are affected by this bimetallic pathway. Supporting the catalyst in polymeric matrix, favors
this proximity and increas the efficiency of the process [32].

4. Chiral Al(salen) Complexes Used in Stereoselective Reactions

All the effective Al(salen) complexes used for the stereoselective reactions described in the review,
are reported in Figure 3. Although different stereocenters were introduced in the diamine backbone,
the effective design first described by Jacobsen for manganese-promoted epoxidation [33] is quite
effective. In Mn(salen)-promoted epoxidation, the stereoselective reaction is due to a single unit of
the salen. In many reactions in which Al(salen) acts as a Lewis acid, the trajectory of the incoming
nucleophiles is effectively controlled by the cyclohexyldiamine backbone when hindered tert-butyl
substituents are introduced in the aldehydic moieties.
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5. Addition of CN to Electrophiles Promoted by Chiral Al(Salen) Complexes

The Strecker reaction is one of the most important and practical ways to access amino acid
derivatives [34]. The reaction consists of the addition of cyanide to imines. Many stereoselective
methodologies were reported using chiral auxiliaries covalently linked to the amine moiety [35]. One of
the first asymmetric methodologies for the addition of cyanide ion to imines was reported by Jacobsen
using a chiral Al(III)(salen) complex (Scheme 2). [36]
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to the corresponding cyanohydrin O-TMS ethers in excellent yields and with high enantioselectivities 

Scheme 2. Chiral Al(III)(salen)-mediated Strecker reactions.

Following the chemistry of the chiral Mn-, Co- and Cr-(salen) complexes studied by Jacobsen,
which were proven to promote a plethora of interesting reactions, he explored the addition of cyanide
ion to imines promoted by various M(salen) complexes. This investigation revealed that many salen
complexes (Ti, Cr, Mn, Co, Ru) were all able to promote the reaction. ClAl(salen) 1a was found
as the best suited catalyst. Such catalyst was obtained by reacting the respective salen ligand with
Et2AlCl in CH2Cl2/toluene mixture as the reaction solvent. A remarkable observation is related to the
absence of strict anhydrous conditions in the reaction mixture, suggesting that the effective cyanating
species was HCN, formed by the hydrolysis of the cyanide source Me3SiCN. Low temperatures were
necessary to suppress the background reaction. The reaction was employed in the synthesis of a
non-natural aminoacids from 2a–d. Although the mechanistic investigation was not reported in
successive studies, the reaction probably occurs via a double activation process where a CNAl(salen)
attacks an Al(Salen)-coordinated imine in the enantiodetermining step.

While Belokon and North developed effective and active Ti- and O=V-(salen) systems for the
addition of Me3SiCN to aldehydes and ketones [37], Feng reported the use of Al(salen) in the presence
of N,N-dimethylaniline N-oxide (DMAO) as an activating agent (Scheme 3) [38].
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The double activation catalysis realized by Feng was able to overcome the low electrophilicity of
ketones, allowing a stereoselective addition in good yields and good ees. The catalytic system consists
of a chiral Al(salen) complex and an amine N-oxide. It was more active for aliphatic ketones (TON
1000) and it was applicable to a wide range of aliphatic and aromatic ketones, converting them to
the corresponding cyanohydrin O-TMS ethers in excellent yields and with high enantioselectivities
(94% ee for aromatic ketones, 90% ee for aliphatic ones). The authors analyzed the reaction from a
mechanistic point of view, showing that the Al(salen) was playing the role of Lewis acid, coordinating
the ketone thanks to the free coordination site, while the N-oxide was acting as a Lewis base, activating
the TMSCN (Figure 4).
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Figure 4. Proposed transition state for addition CN to imines.

Further results about such system were reported by Carpentier in 2008 [39], who has evaluated,
defined and isolated Al(salen) complexes in the reaction. The isolated catalyst was able to promote
the reaction more effectively. In addition, a key feature was encountered in evaluating different
XAl(Salen), leading to the identification of a highly active and productive species of catalyst in which
the X group was hexafluoro-2-propoxide. Zhou reported [40] a chiral (salen)Al(III) incorporating the
(R,R)-11,12-diamino-9,10-dihydro-9,10-ethanoanthracene moiety as the chiral backbone. The aluminum
complex was prepared through the standard reaction of the salen ligand with Et2AlCl and it was used
as a catalyst for the stereoselective addition of TMSCN in the presence of tributylphosphine oxide as
the activating agent of TMSCN. By using 1 mol% of the complex, cyanohydrins of aromatic aldehydes
were isolated in 76–92% ees and in high yields (85–94%) as trimethylsilyl ethers. The reaction with alkyl
aldehydes was less stereoselective as the product was isolated with up to 42% ee. In the attempt to
prepare a recoverable Al(salen) complex for stereoselective catalysis, a heterogeneous Al(salen) catalyst
was synthesized and covalently attached to a polystyrene resin, such as Merrifield and JandaJel resins.
The solid-supported catalysts were characterized by typical solid state analytical and spectroscopic
techniques, and they were tested for the Strecker type reaction. However, these showed quite modest
results in the case of Al(salen) complexes [41]. Peters reported a recent improvement for the preparation
of a cooperative catalyst (Scheme 4) [42,43].
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With the idea to use a “naked” cyanide source and, at the same time, to use the ammonium ion to
coordinate the cyanide, Peters designed the catalyst 1d shown in Figure 2. After a survey of different
Al sources, the use of Me2AlF gave high yield and ees. The superior performance of the bifunctional
Al(salen) was ascribed to an enhanced stability and Lewis acidity. The Al-F bond is quite stable, and
the catalyst did not decompose during the reaction, allowing for its subsequent recovery. Theoretical
calculation performed by DFT showed that the Al-F bond in the complex is strongly polarized towards
the F atom, thus leading to an Al atom with a higher partial charge compared to other Al(salen)metal
complexes, such as ClAl(salen) or MeAl(salen). The Al-F bond is ionic in nature, with an enhanced
capability to behave as a Lewis acid.

6. Michael-Type Reactions Promoted by Chiral Al(salen) Complexes

The conjugate Michael reaction is one of the most powerful methods for the formation of
carbon–carbon bonds in organic synthesis [44]. Both organometallic [45] and organocatalytic
methodologies [46] have been significantly improved during the past years. Al(salen) metal complexes
were used in promoting a series of stereoselective Michael reactions with different nucleophiles.
Remarkably, the other metal salen complexes were often found ineffective in these reactions, showing
the importance of the Al(salen) in these transformations. The enantioselective conjugate addition of
hydrazoic acid (HN3) to α,β-unsaturated imides catalyzed by the Al(salen) complex was reported
by Jacobsen in 1999, as the first example of the use of the Al(salen) complexes in Michael additions
(Scheme 5) [47].
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The reaction occurs through a bifunctional catalysis, with the Al(salen) acting as a Lewis acid
activating the Michael acceptor (compound 8, Scheme 5) and, contemporaneously, another molecule of
ClAl(salen) forming the N3Al(salen) species. The MeAl(salen) used as a pre-catalyst reacts with HN3

forming an active N3Al(salen) metal complex. The reaction was also possible with N-alkylmaleimides,
leading, under optimized conditions, to the desired azide adduct in 94% ee and 93% yield. Based on
the interesting results obtained with imides, other substrates were investigated and finally N-benzoyl
imide derivatives 8 were found to be active substrates, allowing the reaction at low temperatures. These
derivatives could be easily prepared by a Horner-Emmons reaction, starting from an aldehyde and a
phosphonate. Maleimides were found particularly active for the Michael reaction with Al(salen). The
reaction was then studied with different imides and good results were obtained for all the substrates.
Only cinnamate derivatives were considerably less reactive than the alkyl-substituted substrates.
Although the reaction could be rationalized as a bifunctional catalysis, where the N3Al(salen) is
the nucleophile, kinetic studies reported in the discussion established that the rate of the conjugate
addition reaction displays a first-order dependence on Al(salen) catalyst. The kinetic data suggested
that Al(salen) acts as a Lewis acid, coordinating the imide. The imide substrates were also capable of
conjugate addition of carbon-based nucleophiles.
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A high enantioselective conjugate additions of electron-deficient nitrile derivatives to acyclic
α,β-unsaturated imides, catalyzed by a Al(salen), was reported by Jacobsen [48]. Quite remarkably,
the active Al(salen) complex was found to be the µ-oxo [(S,S)-(salen)Al]2O dimer 1d, that is prepared
by partial hydrolysis of the MeAl(salen) [26].

The scope of the reaction was quite broad with respect to the electrophile. The reaction was
observed to occur better in apolar solvents, leading to increased enantioselectivities. The absolute
configuration of the final products was consistent with the previous reported Al(salen) reactions.
In another Michael reaction described by Jacobsen’s group, an oxygen-centered nucleophile was
reported [49]. In fact, due to the reversibility of the reaction, the addition of oxygen nucleophiles
to Michael acceptors was rather challenging. Jacobsen has used a masked oxygen nucleophile, the
salicylaldoxime 10 (Scheme 6), for the Michael addition to imide substrates.
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Scheme 6. Michael addition to imide substrates reported by Jacobsen.

After deprotection, the process can give a practical access to β-hydroxycarboxylic acid derivatives,
with high stereoselection. Furthermore, in this case, the [(S,S)-(salen)Al]2O dimer was found the most
active catalyst. The free OH group was obtained after hydrogenolysis of the crude oxime ethers,
affording the product with R configuration at the newly formed stereocenter. Different imides bearing
chiral alkoxy groups were also evaluated in double diastereoselective addition, affording quite high
ratios for the desired diastereoisomer. To add further interest to the paper, the final transformation of
the acylamides into esters was possible through a direct reaction with EtOH in the presence of catalytic
amounts of Er(OTf)3. The effective enantioselective conjugate addition of indoles as nucleophiles to
E-arylcrotyl ketones in the presence of an Al(salen) complex was reported by Bandini and Umani-Ronchi
(Scheme 7) [50,51].
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In such reaction, ClAl(salen) was found to be active in the presence of a catalytic amount of
coordinating base (10 mol%). The isolated products were obtained with ees up to 89% when 2,6-lutidine
was utilized. For the first time in salen-mediated reactions, a theoretical investigation at the B3LYP
level of theory was performed to explain the obtained results. The structural optimization of penta-
and hexacoordinate complexes between the Al(salen), the base and an unsaturated ketone substrate
revealed an interaction between the coordinating base and the aluminum complex. This interaction
generates a stable cationic hexacoordinate chiral trans complex, like the one arising whenever a
coordinating base such as Me3N is used together with an enone. This arrangement can be considered
as the Lewis acid complex responsible for the stereocontrol (Figure 5).
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the presence of an Al(salen) complex.

The monomeric activation of the electrophile (i.e. the enone) was also confirmed by kinetic
evidences and non-linear effect (NLE) investigations, ruling out possible double activation pathways.
By using a catalytic amount of [(S,S)-(salen)Al]2O, it was also possible to promote the asymmetric
conjugate addition of NH-heterocycles (e.g. purines, benzotriazoles) to α,β-unsaturated ketones
and imides, a rather direct and useful methodology for the synthesis of non-natural nucleotides [52].
Pursuing further studies with these electrophiles, Jacobsen reported a general approach for highly
enantioselective and efficient conjugate addition of carbon and nitrogen nucleophiles catalyzed
by [(S,S)-(salen)Al]2O [53]. As was reported by Bandini and Umani-Ronchi, the simple-one point
coordination of the electrophile is sufficient for observing a quite high stereoselective addition of a
variety of nucleophiles (nitriles, nitroalkanes, and hydrazoic acid) (Scheme 8). The application of this
methodology to the total synthesis of (+)-lactacystin was reported [54].
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In all the described Michael-type reactions, mechanistic investigations revealed that Al(salen)
complexes effectively behave as Lewis acids, capable to coordinate the unsaturated compounds,
controlling the approach of the nucleophiles. However, the addition of cyanide to unsaturated amides
was proven unsuccessful. Regarding the capability of Al(salen) complexes to activate unsaturated
imides, Jacobsen wanted to investigate the possibility to perform a double activation process, adding a
complex able to activate the nucleophilic cyanide towards the addition [55]. In order to improve the
rate and scope of the reaction, the incorporation of a (pybox)YbCl3 complex (Scheme 9) was considered.Molecules 2019, 24, x FOR PEER REVIEW 11 of 23 

 

 
Scheme 9. Double activated conjugate addition mediated by Al(salen) and (pybox)YbCl3. 

The combination of the two catalysts led to a highly reactive and enantioselective system. 
Mechanistic investigations carried out on the dual-catalyst system revealed a first-order dependence 
on both [(S,S)-(salen)Al]2O and (pybox)ytterbium (Figure 6). The chiral complex also works in 
matching combination, since replacing the ytterbium complex with its enantiomer led to decreased 
ees and conversions. Additionally, a similar active covalently-linked dinuclear [Al(salen)O]2–
(PyBOX)ErCl3 complex was found relatively active in the conjugate cyanation of α,β-unsaturated 
imides [56]. 

 

Figure 6. Proposed transition state in the addition of CN to activated unsaturated imides. 

An interesting use of Al(salen) was described by Sibi, who reported the radical addition to cyclic 
ketones, with a fixed cis geometry, performing the reaction in the presence of an Al(salen) complex 

Scheme 9. Double activated conjugate addition mediated by Al(salen) and (pybox)YbCl3.

The combination of the two catalysts led to a highly reactive and enantioselective system.
Mechanistic investigations carried out on the dual-catalyst system revealed a first-order dependence on
both [(S,S)-(salen)Al]2O and (pybox)ytterbium (Figure 6). The chiral complex also works in matching
combination, since replacing the ytterbium complex with its enantiomer led to decreased ees and
conversions. Additionally, a similar active covalently-linked dinuclear [Al(salen)O]2–(PyBOX)ErCl3
complex was found relatively active in the conjugate cyanation of α,β-unsaturated imides [56].

Molecules 2019, 24, x FOR PEER REVIEW 11 of 23 

 

 
Scheme 9. Double activated conjugate addition mediated by Al(salen) and (pybox)YbCl3. 

The combination of the two catalysts led to a highly reactive and enantioselective system. 
Mechanistic investigations carried out on the dual-catalyst system revealed a first-order dependence 
on both [(S,S)-(salen)Al]2O and (pybox)ytterbium (Figure 6). The chiral complex also works in 
matching combination, since replacing the ytterbium complex with its enantiomer led to decreased 
ees and conversions. Additionally, a similar active covalently-linked dinuclear [Al(salen)O]2–
(PyBOX)ErCl3 complex was found relatively active in the conjugate cyanation of α,β-unsaturated 
imides [56]. 

 

Figure 6. Proposed transition state in the addition of CN to activated unsaturated imides. 

An interesting use of Al(salen) was described by Sibi, who reported the radical addition to cyclic 
ketones, with a fixed cis geometry, performing the reaction in the presence of an Al(salen) complex 

Figure 6. Proposed transition state in the addition of CN to activated unsaturated imides.



Molecules 2019, 24, 1716 12 of 23

An interesting use of Al(salen) was described by Sibi, who reported the radical addition to
cyclic ketones, with a fixed cis geometry, performing the reaction in the presence of an Al(salen)
complex (Scheme 10 and Figure 7) [57]. Stereoselective addition of radicals in Michael reactions is
a challenging subject [58]. Recently, photoredox catalysis has been used to access the simple and
accessible formation of radical precursors. Furthermore, stereoselective photoredox methodologies are
under active investigations [59]. Suitable and available chiral Lewis acids, stable in reaction conditions
and in the presence of radicals, are quite interesting for the above mentioned topic.
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For the catalyst recovery in Michael reactions, the possibility to link the Al(salen) metal complexes
to solid supports was examined. (R,R)-(Salen)AlCl complexes, immobilized on poly(norbornene)s,
exhibited excellent activities and enantioselectivities as catalysts for the 1,4-conjugate addition of
cyanide to α,β-unsaturated imides [60].

As was previously discussed, the imides showed an insufficient reactivity towards cyanides.
Nevertheless, kinetic studies indicated that these polymer-supported catalysts were significantly more
active than their corresponding unsupported analogues. Presumably, the catalyst is also able to play a
role in activating the cyanide towards the addition. Recently, the salen µ-oxo [(S,S)-(salen)Al]2O 1e was
reported to catalyze the asymmetric 1,4-addition of 3,4,5,6-tetrafluoro- phthalimide 23 to unsaturated
ketones (Scheme 11) [61].
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Scheme 11. Asymmetric 1,4-addition of 3,4,5,6-tetrafluoro phthalimide to unsaturated ketones mediated
by 1e.

The products are formed in up to 89% yield and 97% ee. The tetrafluoro phthalimide group
can easily be removed under mild conditions to afford the free primary amines in high yields. The
mechanistic analysis was carefully performed, considering kinetic and isotopic effects, and a study of
non-linear effect. All the data suggested a dual activation mechanism. A pre-equilibrium formation of
a 1:1 complex between tetrafluoro phthalimide and the catalyst was observed, and an Al(salen)-enone
complex was formed. The rate-determining step is the addition of the tetrafluoro phthalimide catalyst
complex to the catalyst-activated enone.

7. Reaction of Nucleophiles/Enolates Promoted by Chiral Al(salen) Complexes

Chiral cyanohydrin derivatives can be easily accessed by Al(salen) catalysis. Cyanohydrins
are masked nucleophiles and in the presence of strong bases, are converted to the corresponding
anions able to react with suitable electrophiles. During the formation of the anionic cyanohydrin,
stereochemical information is lost. For this reason, and due to the presence of a strong base, the reaction
appears challenging. Johnson [62] has employed chiral Al(salen) metal complexes to generate the
anion of protected cyanohydrins via a carbon-to-oxygen silyl migration (Brook rearrangement) and a
subsequent reaction with an electrophile (Scheme 12).
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Scheme 12. Use of Al(salen) metal complexes to achieve Brook rearrangement proposed by Johnson.

After an extensive investigation of catalyst/metal alkoxide combination, iPrOAl(salen) catalyst
was found to be the most effective catalyst. The reaction is quite sensitive to traces of water and it is
carried out in toluene in sealed tube. Formation of the CNAl(salen), or its isomeric form NCAl(salen),
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was revealed. The nucleophilic cyanide then reacts with the acylsilane and a (metallo)silyloxynitrile is
formed through the Brook rearrangement. This species is nucleophilic and reacts with the acylnitrile
present in the reaction conditions to undergo an acylation reaction. In another reaction promoted
by Al(salen), a nucleophilic species is formed under the reaction conditions, and is related to the
nucleophilicity of isocyanide [63]: the classical Passerini [64] and Ugi [65] reactions.

These are well-known and powerful multicomponent reactions [66] that have found an extensive
use in medicinal chemistry, synthesis, and catalysis. Multicomponent stereoselective Passerini
reactions [67] were found quite difficult to develop, and only recently a stereoselective variant of the
Ugi reaction [68] was reported. Quite remarkably, ClAl(salen) was found capable of catalyzing the
enantioselective addition of α-isocyanoacetamides to aldehydes (Scheme 13) [69]. The catalyst tolerates
a wide range of aldehydes to afford the diversely substituted 2-(1-hydroxyalkyl)-5-aminooxazoles 29
in good yields and enantioselectivities (Scheme 13).
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Scheme 13. Enantioselective addition of α-isocyanoacetamides to aldehydes catalyzed by ClAl(salen).

The mechanism of the reaction considers that the Al(salen) behaves as a Lewis acid, activating the
aldehyde towards the addition. As the (S)-configuration of the oxazole resulted from the addition
reaction, the observed (S)-configured product most likely derives from an attack of the isocyanide
nucleophile on the Re-face of the coordinated aldehyde (Figure 8).
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Figure 8. Proposed mechanism in the reaction of isocyanides with aldehydes.

The intermediate electrophile formed after the addition is captured by the nucleophilic oxygen of
the amide moiety. Up to 80% ee was obtained, with the reaction showing a sufficient scope, as both
aliphatic and aromatic aldehydes were found reactive.
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8. Cycloaddition and Multicomponent Stereocontrolled Reactions Promoted by Chiral
Al(Salen) Complexes

As mentioned in the previous section, the development of a truly catalytic enantioselective
three-component Passerini reaction was a challenge for a long time, due to some factors related to
the intricate consecutive mechanism, and the rate of the uncatalyzed reaction. In addition, as the
components are Lewis basic, the catalyst turnovers and its acidity need to be taken into account.
Al(salen) complexes are rather stable in the presence of carboxylic acid, and they are able to promote
a stereoselective variant of the Passerini reaction in the presence of isocyanide and aldehydes
(Scheme 14) [70].
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Scheme 14. Passerini three-component reaction catalyzed by Al(salen) complexes.

In the standardized protocol for the reaction, it is important to add slowly the carboxylic acid
to minimize the background reaction. The stereoselectivity of the reaction was also influenced by
the group coordinated to the Al(salen). According to the reported results, the presence of a Cl as an
electron-withdrawing substituent on the Al center was crucial to improve the stereoselectivity of the
reaction. Again, for this reaction, the use of Al(salen) was absolutely necessary as other salen metal
complexes were found active, but gave a relatively modest stereoselection. To eliminate the background
competing pathways, the reaction needs to be performed at −40 ◦C. The selectivity of the reaction
improved with less-reactive aromatic isocyanides. However, the reaction was only reported with
aliphatic aldehydes. Different carboxylic acids were tested, and the presence of functional groups (Cl,
SH, OH, alkene) was tolerated. By replacing the carboxylic acid with hydrazoic acid, which we have
already seen to be compatible with Al(salen) complexes, the same research group was able to perform
a catalytic enantioselective synthesis of 5-(1-hydroxyalkyl)tetrazoles [71]. The reaction can be seen as a
three-component Passerini reaction (P-3CR) of aldehyde, isocyanide and hydrazoic acid. The reaction
is applicable to a wide range of aliphatic aldehydes and to both aromatic and aliphatic isocyanides
with tetrazoles (45–99% yields, 51–95% ees). Peters has reported an Al(salen) trans-stereoselective
catalytic formation of β-lactones by cyclocondensation with acyl bromides (Scheme 15) [72].
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The Al(salen) catalyst bearing pyridinium rings and its efficiency were studied by inserting
different substituents on the heteroaromatic residues. A more active and selective catalyst was obtained.
The reaction can be rationalized by the in situ formation of a ketene that is transformed into the
corresponding aminium enolate. The [2+2] cycloaddition occurs between the aldehyde coordinated to
the aluminum Lewis acid, and the aminium enolate. The most effective Al(salen) complex is obtained
by the reaction with AlMe3. Enantiomeric excesses up to 96% in favor of the trans diastereoisomer
are obtained.

9. Chiral Al(salen) Complexes, CO2 and Related Electrophiles

The global warming that is causing severe climate problems is caused by the increasing levels of
atmospheric carbon dioxide [73]. Controlling, reducing and using CO2 as natural source for chemicals
will represent a formidable challenge for the near future. Under this perspective, the use of Al(salen)
for CO2 activation and fixation has been explored. Chiral Al(salen) metal complexes have been
reported in stereoselective reactions with CO2. In addition, other related electrophiles, such as CS2

or R-N=C=O have also been studied. One important reaction employed in many catalytic studies
with CO2 is its insertion into epoxides to generate cyclic carbonates or a polycarbonate, interesting
products from the industrial point of view [74]. Epoxides can be obtained from many sources. Many
new green methodologies for their production were developed, with cheap oxidants and under mild
conditions [75]. Many catalytic processes for the obtainment of cyclic carbonates from epoxides and
CO2 have been reported, and some of them are based on Al(salen) complexes [76–78]. Al(salen) offers
a number of advantages, such as the activity reported, and the possibility to use simple reaction
conditions. However, in these preliminary studies, racemic Al(Salen) complexes were employed.
Using all the experience gained in salen chemistry, North reported [79,80] an enantio-enriched chiral
bimetallic oxo aluminum(salen) complex which showed relatively good activities for the synthesis of
cyclic carbonates by using terminal epoxides at room temperature and pressure conditions (Scheme 16).
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aluminum(salen) complex.

Various oxo Al(salen) derivatives were synthesized and tested in a model reaction using styrene
oxide and carbon dioxide. The presence of tetrabutylammonium bromide as co-catalyst was mandatory,
even at greater carbon dioxide pressures. The mechanism of the reaction was investigated in detail [81].
The second-order dependence of the reaction rate on tetrabutylammonium bromide concentration was
observed and in addition, the authors detected the presence of tributylamine in the reaction mixture.
Under the reaction conditions, tetrabutylammonium bromide decomposed to tributylamine. In the
catalytic cycle the Al(salen) complex is acting as a Lewis acid coordinating the epoxide and activating
it toward ring opening by the bromide nucleophile. The arising ammonium ion reacts reversibly
with carbon dioxide to form carbamate salt, linked to Al(salen). This carbamate is in a preorganized
arrangement for an intramolecular reaction with the bromo alkoxide derived from the epoxide.

Finally, the observed cyclic carbonate is obtained by intramolecular SN2 reaction of the Al alkoxide
with the bromo substituted carbon. Optimization of the process for reducing its cost was also reported,
and a practical methodology for the synthesis of the Al(salen) complex in situ, avoiding the use of
expensive aluminum alkyl derivative, was reported [82]. The combined use of [Al(salen)]2O and
tetrabutylammonium bromide (or tributylamine) was also reported to promote the addition of carbon
disulfide to epoxides, to produce 1,3-oxathiolane-2-thiones [83]. North also reported the synthesis of
oxazolidinones promoted by catalytic amount of Al(salen) complexes, in a reaction of epoxides and
isocyanates (Scheme 17) [84].Molecules 2019, 24, x FOR PEER REVIEW 17 of 23 
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absence of co-catalysts and the proposed mechanism considered the breaking and reforming of the
Al−O−Al bridge as the reaction progressed. Finally, the reaction with carbon dioxide can be used for
a practical and inexpensive methodology, the kinetic resolution [85] of terminal epoxides [86]. The
reaction was carried out under mild conditions (0−25 ◦C and 1 bar of CO2 pressure) in the presence of
tetrabutylammonium bromide as a co-catalyst and in the absence of solvent. Although the relative
reaction rate of the two enantiomers of epoxide (krel) was not high and substrate-dependent, the
highest krel obtained was 15.4 and it was possible to obtain moderate enantiomeric excesses for the
desired product.

10. Polymerization Reactions Promoted by Chiral Al(Salen) Complexes

Biodegradable and biocompatible polyesters are important polymers that have found a wide
range of practical applications [87]. Among all the polyesters reported, polylactide (PLA), which
is obtained from lactic acid as a renewable source, has recently assumed a wide importance due to
its biodegradability and biocompatibility [88]. Polylactide is generally obtained via ring-opening
polymerization (ROP) of lactides, promoted by organometallic compounds. Many metal alkoxides
were proved to be suited for such polymerizations. Among all the metals employed, aluminum-based
catalysts are quite efficient initiators, due to their ability to control the polymer tacticities by modification
of the ancillary ligands [89–93]. Under this perspective, the employment of chiral Salen-type Schiff bases
to control stereospecificity is important and Al(salen) complexes are employed in the polymerization
of lactides. Pang reported the synthesis of Salen-type aluminum complexes bearing binaphthyl-imine
derivatives [94,95]. An aluminum salen complex generated in situ was reported to display a high
activity for the ROP of a racemic lactide at room temperature (Scheme 18) [96].Molecules 2019, 24, x FOR PEER REVIEW 18 of 23 
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Scheme 18. ROP of a rac-lactide catalyzed by an Al(salen) complex generated in situ.

DFT studies performed on the catalytic process were able to illustrate that initiation and
propagation proceeded via an external alkoxide attack on the coordinated monomer. Polylactide
efficient preparation was recently reported with a novel trinuclear salen−aluminum complex. In this
process, the direct ring-opening polymerization (ROP) of inexpensive racemic lactide (rac-LA) occurs
with high activity and stereoselectivity [97].

11. Conclusions

The ability of Al(salen) to act as an effective Lewis acid in many beinteresting transformations
was highlighted and summarized in this review. Al(salen) metal complexes are particularly effective
in promoting Michael reactions, compared to other salen metal complexes. Furthermore, one of the
most effective Al(salen) catalysts is the oxo dimer obtained by a controlled hydrolysis. The remarkable
stability towards nucleophiles and water conditions of these species can be further exploited under
affordable and friendly reaction conditions. The interesting luminescent properties of Al(salen) can
be advantageously explored in many stereoselective catalytic reactions. The simple and convenient
chemistry necessary to introduce functional groups in the salen framework add other possibilities to
this interesting picture. Tailored ligands, able to display bifunctional behaviors, are easily accessible.
Furthermore, the coordination step for the preparation of Al complexes is straightforward and makes
use of commercially available reagents. All these advantages are available to interested researchers
who want to explore the fascinating chemistry of the Al(salen) for further developments.
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