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Abstract: Food quality and nutritional habits strongly influence human health status. Extensive
research has been conducted to confirm that foods rich in biologically active nutrients have a positive
impact on the onset and development of different pathological processes, including cardiovascular
diseases. However, the underlying mechanisms by which dietary compounds regulate cardiovascular
function have not yet been fully clarified. A growing number of studies confirm that bioactive
food components modulate various signaling pathways which are involved in heart physiology and
pathology. Recent evidence indicates that microRNAs (miRNAs), small single-stranded RNA chains
with a powerful ability to influence protein expression in the whole organism, have a significant
role in the regulation of cardiovascular-related pathways. This review summarizes recent studies
dealing with the impact of some biologically active nutrients like polyunsaturated fatty acids
(PUFAs), vitamins E and D, dietary fiber, or selenium on the expression of many miRNAs, which
are connected with cardiovascular diseases. Current research indicates that the expression levels of
many cardiovascular-related miRNAs like miRNA-21, -30 family, -34, -155, or -199 can be altered by
foods and dietary supplements in various animal and human disease models. Understanding the
dietary modulation of miRNAs represents, therefore, an important field for further research. The
acquired knowledge may be used in personalized nutritional prevention of cardiovascular disease or
the treatment of cardiovascular disorders.
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1. Introduction

Cardiovascular diseases (CVD) represent one of the most frequent causes of death worldwide.
This has occurred despite the development of many different pharmaceutical substances to improve the
lifespan, as well as the quality of life, of humans. The most likely explanation for this CVD morbidity
despite the pharmacopeia of drugs available may be the unhealthy lifestyle patterns exhibited in most
countries. Adherence to a regular diet of specific healthy nutrients, therefore, could be an effective
strategy for prevention of CVD [1,2]. For example, people consuming the Mediterranean diet have a
lower incidence of CVD [3,4]. Nutrients abundant in the Mediterranean diet like polyphenols, vitamins,
dietary fiber, coenzyme Q10, polyunsaturated fatty acids (PUFAs) and minerals are thought to provide
beneficial effects for many diseases, including CVD [3,4]. The molecular mechanism through which
these bioactive nutrients produce their beneficial effects on CVD remains unclear.
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MicroRNAs (miRNAs) are short RNA sequences belonging to the non-coding region of RNA [5].
MiRNAs have a significant effect on the expression of a wide range of proteins that will ultimately affect
different molecular pathways [5]. Significant differences have been observed in the expression of many
miRNAs in various diseases compared to healthy subjects [6,7]. As a result, miRNAs are considered to
be potential biomarkers for many diseases as well as progressive therapeutic tools. Due to the impact
of diet on CVD, research has begun to focus on the influence of diet on miRNA expression and the
potential application of this information to therapeutic procedures in CVD [8].

The main goal of this review is to summarize recent information and studies concerned with
the beneficial effects of bioactive dietary compounds on the cardiovascular system, with particular
attention on the expression of different miRNAs. Understanding the mechanisms of action of nutrients
through modulation of miRNA expression could be helpful in the prevention or treatment of diseases
connected with the cardiovascular system.

2. Origin and Function of miRNAs

MicroRNAs belong to a group of non-coding RNAs which can exert a strong effect on gene
expression post-transcriptionally by binding to the 3′ untranslated region (3′-UTR) of the target
messenger RNA (mRNA) [9]. They are small (approximately 19–25 nucleotides long) RNA molecules
and their binding to mRNA results in the inhibition of translation or mRNA degradation [10,11]. It is
assumed that miRNAs are able to regulate at least 30% of the human protein-coding genome [12].
Interestingly, each miRNA can regulate several targets and more than one miRNA can function on a
single mRNA. This suggests that miRNAs play a huge regulatory role in many biological processes like
apoptosis, cell differentiation, cell proliferation or cell cycle progression [10,12–14]. The first miRNA,
lin-4, was discovered by Ambros and colleagues in 1993 [15] and was isolated from Caernohabditis
elegans. Presently, almost 2000 miRNAs have been identified in humans (http://www.miRbase.org –
7.3.2019). Approximately 150–200 of these have been found in the heart and were also connected with
cardiovascular diseases [7].

The biogenesis of miRNA starts with the transcription of miRNA genes by RNA polymerase
II (Figure 1). This process leads to the formation of a primary miRNA transcript—pri-miRNA—
containing a cap structure at the 5′ end and a poly-adenylation at the 3′ end [16]. Pri-miRNA is
then cleaved by a microprocessor complex, which consists of the double-stranded RNase III enzyme
DROSHA and its essential cofactor—the DiGeorge syndrome critical region 8 (DGCR8) [11]. The activity
of these enzymes results in the production of a hairpin structure precursor miRNA (pre-miRNA) in the
nucleus. The pre-miRNAs are double-stranded, approximately 70 nucleotides in length and contain a
terminal loop. The nuclear export factor exportin-5 then transfers pre-miRNA to the cytoplasm for
additional processing by the RNase III enzyme (DICER) to create a mature miRNA:miRNA duplex
without a hairpin structure (approximately 22 nucleotides long) [17]. In the last step of miRNA
synthesis, miRNA duplexes are processed by a helicase into single-stranded miRNAs which are loaded
onto the Argonaute (AGO) protein to form the multiprotein RNA-induced silencing complex (RISC)
(Figure 1). In this complex, single-stranded miRNAs are able to affect gene expression. Generally,
only one strand will be the single-stranded, mature miRNA, and the other strand will be degraded.
Usually the miRNA strand with the thermodynamically less stable 5′ end is incorporated in the RISC
complex [16–18]. In the RISC complex, miRNAs inhibit the translation of target mRNAs or promote
their destabilization and degradation by imperfect sequence-specific binding to the 3′-UTR of target
mRNAs [9,14,16,17].

http://www.miRbase.org
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Figure 1. Schematic overview of microRNA (miRNA) biogenesis. DROSHA—RNase III enzyme; 
DGCR8—DiGeorge syndrome critical region 8; DICER—RNase III enzyme; RISC—RNA-induced 
silencing complex; and AGO—Argonaute protein. 

To date, the most widely used approaches for investigating the impact of miRNAs in various 
biological conditions are systemic and organ-specific knockdowns/transgenic strategies, gain-of-
function strategies, and loss-of-function strategies [19,20]. miRNA knockdowns are used for 
monitoring the specific function of selected miRNAs in the organism, where the deficiency of a 
miRNA is reflected in the changed expression of proteins and in the health of the organism. A good 
example of this approach was the first use of a miRNA to inhibit the expression of a specific 
membrane protein in the heart, called the sodium/calcium exchanger (NCX), in order to determine 
the functional significance of the sarcolemmal NCX in cardiac excitation-contraction coupling [21]. A 
specific miRNA, targeted to the NCX in isolated cardiomyocytes, knocked the expression of the NCX 
down by >90% and demonstrated that the NCX was important but not critical for cardiac contraction 
[21]. This miRNA approach can be much more effective than many other molecular strategies for the 
modification of gene and protein expression [22]. 

Gain-of-function strategies represent the injection or transfection of miRNA or synthetic miRNA 
mimics into tissue or cells, causing the overexpression of specific proteins by lentivirus or adeno-
associated virus (AAV) during infection [20]. Alternatively, loss-of-function strategies include: (a) 
Application of anti-miRNAs (oligonucleotides capable of specifically binding and then inhibiting a 
target miRNA, which then leads to the downregulation of that miRNA) [5,23]; (b) application of 
miRNA sponges which contain a binding site for a miRNA family and which block miRNA activity 
[24,25]; and c) miRNA masking by oligonucleotides which hide the binding site of target mRNAs, 
leading to the prevention of degradation or inhibition of protein synthesis by miRNAs [26]. 

miRNAs can also be considered as new diagnostic markers. They have gained this attribute for 
three reasons: (a) Their high stability after isolation (at room temperature and also during multiple 
freeze–thaw cycles, probably due to their connection with AGO2 complexes, lipoproteins and their 
enrichment in circulating vesicles); (b) their presence in so many biological materials (plasma, serum, 
urine, saliva or seminal fluid); and (c) their significantly different expression between normal and 
pathological conditions. microRNA-based biomarkers have the ability to identify metabolic problems 
during disease latency (preclinical), assess the severity of a disease, identify the predisposition to a 
disease (assess risk), address disease etiology, confirm a diagnosis or reduce the incidence of a 
misdiagnosis on the basis of current clinical markers, and, finally, monitor the biological response to 
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To date, the most widely used approaches for investigating the impact of miRNAs in various
biological conditions are systemic and organ-specific knockdowns/transgenic strategies, gain-of-
function strategies, and loss-of-function strategies [19,20]. miRNA knockdowns are used for monitoring
the specific function of selected miRNAs in the organism, where the deficiency of a miRNA is reflected
in the changed expression of proteins and in the health of the organism. A good example of this
approach was the first use of a miRNA to inhibit the expression of a specific membrane protein in the
heart, called the sodium/calcium exchanger (NCX), in order to determine the functional significance of
the sarcolemmal NCX in cardiac excitation-contraction coupling [21]. A specific miRNA, targeted to the
NCX in isolated cardiomyocytes, knocked the expression of the NCX down by >90% and demonstrated
that the NCX was important but not critical for cardiac contraction [21]. This miRNA approach can be
much more effective than many other molecular strategies for the modification of gene and protein
expression [22].

Gain-of-function strategies represent the injection or transfection of miRNA or synthetic
miRNA mimics into tissue or cells, causing the overexpression of specific proteins by lentivirus
or adeno-associated virus (AAV) during infection [20]. Alternatively, loss-of-function strategies include:
(a) Application of anti-miRNAs (oligonucleotides capable of specifically binding and then inhibiting a
target miRNA, which then leads to the downregulation of that miRNA) [5,23]; (b) application of miRNA
sponges which contain a binding site for a miRNA family and which block miRNA activity [24,25];
and c) miRNA masking by oligonucleotides which hide the binding site of target mRNAs, leading to
the prevention of degradation or inhibition of protein synthesis by miRNAs [26].

miRNAs can also be considered as new diagnostic markers. They have gained this attribute for
three reasons: (a) Their high stability after isolation (at room temperature and also during multiple
freeze–thaw cycles, probably due to their connection with AGO2 complexes, lipoproteins and their
enrichment in circulating vesicles); (b) their presence in so many biological materials (plasma, serum,
urine, saliva or seminal fluid); and (c) their significantly different expression between normal and
pathological conditions. microRNA-based biomarkers have the ability to identify metabolic problems
during disease latency (preclinical), assess the severity of a disease, identify the predisposition to
a disease (assess risk), address disease etiology, confirm a diagnosis or reduce the incidence of a
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misdiagnosis on the basis of current clinical markers, and, finally, monitor the biological response to
any experimental or clinical intervention. However, using miRNA as biomarkers of diseases requires a
careful standardization of RNA manipulation methods like RNA isolation, detection and normalization,
in order to obtain valuable, reliable information [6,27,28].

3. miRNAs and Cardiovascular Diseases

Many studies have detected a significant difference in the expression of miRNAs under different
conditions, including various cardiovascular disorders [29–32]. This has led to the conclusion that
miRNAs could be used as suitable biomarkers for CVD or as potential therapeutic targets. These
changes in miRNAs were observed in both plasma and in cardiac tissue [6,33]. It is now clear that more
than one miRNA can be involved in a single CVD or in different CVDs. The following summarizes
the most recent data on the most important miRNAs identified to date which are involved in the
most frequent CVDs. Changes of miRNAs were detected under disease conditions in patients or in
animal models.

Table 1. Summary of miRNAs dysregulated in different cardiovascular diseases (CVD).

CVD Downregulated miRNAs Upregulated miRNAs References

Hypertrophy miRNA-1, miRNA-133,
miRNA-208, miRNA-21, miRNA-29,

miRNA-18b, miRNA-195, miRNA-199,
miRNA-23, miRNA-22

[6,29,34–36]

Arrhythmias miRNA-499-5p miRNA-1, miRNA-133, miRNA-708-5p,
miRNA-217-5p, miRNA-208 [32,37–39]

Fibrosis
miRNA-133, miRNA-29 family,

miRNA-26a, miRNA-24,
miRNA-590

miRNA-21, miRNA-15 family [6,29,40–44]

Coronary artery
diseases

miRNA-133, miRNA-126-3p,
miRNA-195, miRNA-145,
miRNA-17, miRNA-155,

miRNA93-5p,

miRNA-1, miRNA-21, miRNA-208,
miRNA-33 [31,33,45–49]

Heart failure

miRNA-126, miRNA-133,
miRNA-1, miRNA-107,

miRNA-3175, miRNA-583,
miRNA-29b

miRNA-199b, miRNA-24, miRNA-208,
miRNA-125, miRNA-195, miRNA-214,

miRNA-423-5p, miRNA-320a,
miRNA-22, miRNA92b, miRNA-122,
miRNA-21, miRNA-650, miRNA-662,

miRNA-1228, miRNA-100, miRNA-342

[33,50–53]

3.1. Cardiac Hypertrophy

Generally, cardiac hypertrophy develops as a compensatory mechanism in response to stressful
stimuli. This may or may not ultimately lead to heart failure [6]. During hypertrophy, changes in
miRNA expression were observed, mainly miRNA-1 and -133. These miRNAs are highly expressed in
the heart and, according to Zhao and co-workers [34], their inhibition causes significant cardiac injury.
MiRNA-1 affects cardiomyocyte growth and hypertrophy through inhibition of the calcineurin/NFAT
(Nuclear factor of activated T cells) signaling pathway by regulating the expression of myocyte enhancer
factor-2a (Mef2a) and GATA binding protein 4 (Gata4) [54]. Another possible target of miRNA-1 is
twinfilin-1, an important cytoskeletal regulatory protein. Downregulation of miRNA-1 caused an
upregulation of twinfilin-1 which led to a positive regulation of cardiac cytoskeletal cells [35]. Inhibition
of miRNA-133 was observed in patients and animals with cardiac hypertrophy, probably by regulating
anti-hypertrophic genes like guanosine triphosphate-guanosine diphosphate (GDP-GTP) exchange
protein, or signal transduction kinase cell division control protein 42 (Cdc42) [36]. Other miRNAs
that are associated with cardiac hypertrophy include miRNA-208, -21, -18b, -195, -199, -29, -22 and
-23 [6,29,55].
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3.2. Cardiac Arrhythmias

MicroRNA-1 and -133 are also involved in the pathology of arrhythmias. Increased expression
of these miRNAs was found in arrhythmic hearts [38]. Both miRNA-1 and -133 modulated the
expression of K+ channels (mostly K+/Na+ hyperpolarization-activated cyclic nucleotide-gated ion
channel (HCN)-2 and HCN-4 located in the pacemaker [32,37,38]), but they also altered the expression
of gap junction alpha-1 protein (GJA1) and potassium voltage-gated channel subfamily J member 2
protein (KCNJ2), affecting connexin43 and Kir2.1 expression [32,38,56]. Arrhythmogenic processes are
also affected by miRNA-217-5p, -208, -499-5p, and -708-5p [39,57].

3.3. Cardiac Fibrosis

Cardiac fibrosis represents an important mechanism in the healing process and for adverse cardiac
remodeling typical of many CVDs. Fibrosis is strictly regulated by many signaling pathways and factors
but, under some conditions, excessive fibrosis can occur. The large accumulation of collagens (mostly
collagen type I and type III) and other proteins of the extracellular matrix can lead to impaired cardiac
contractility and the development of arrhythmias [6]. One of the most important miRNAs involved
in the process of fibrosis is miRNA-21. This miRNA regulates survival of fibroblasts and secretion
of growth factors by affecting the ERK-2 MAP (Mitogen activated protein) kinase pathway through
inhibition of sprouty homologue 1 (Spry1) [40]. In the fibrotic mouse, upregulation of miRNA-21
was observed and its inhibition improved the level of fibrosis and heart function [40]. A significant
change in the expression levels of miRNA-133, -15 family, -29 family, -26a, -24, and -590 have also been
associated with cardiac fibrosis [6,29,41–44].

3.4. Coronary Artery Disease

Coronary artery disease (CAD) is one of the most common types of heart disease. The impaired
blood flow in CAD leads to cardiac ischemia that, if severe enough, may cause an infarction. In CAD
patients, an increase in the expression of miRNA-1, -21, or -208 has been detected. Decreases in the
expression levels of miRNA-133, -126-3p, -195, -145, -17, and -155 have also been identified [31,33,45,46,58].
Interestingly, Dong and colleagues [59] have suggested that the highly expressed miRNA-126-3p levels
observed in non-infarcted areas of rat hearts after an infarction may mean that this miRNA can play
a significant role in the myocardial recovery after myocardial infarction [45,59]. Reddy et al. [49]
and Schulte and Zeller [50] demonstrated significant association between increased levels of plasma
miRNA-33 and coronary artery diseases. O´Sullivan et al. [47] reported that miRNA-93-5p is the most
dysregulated miRNA in patients with CAD and may represent the strongest predictor of CAD in their
study [47]. The downregulation of ATP-binding cassette A1 (ABCA1) by miRNA-93-5p has also been
suggested to induce an increase in the circulating levels of cholesterol that may contribute to coronary
atherosclerosis and CAD [60].

3.5. Heart Failure

Any of the pathologies discussed above could lead to the development of heart failure, a condition
wherein the heart is unable to meet its circulatory demands. Many miRNAs are changed in models
of heart failure, including miRNA-199b, -195, -100, -133, -24, and -208 [31,33,51]. MiRNA-199b
(miR-199b) was increased during heart failure and appeared to target the calcineurin/NFAT pathway.
MiRNA-199b targets the nuclear NFAT kinase dual-specificity tyrosine-(Y)-phosphorylation regulated
kinase 1a (Dyrk1a) in a process that constitutes a pathogenic feed-forward mechanism affecting
calcineurin-responsive gene expression. In vivo inhibition of miR-199b caused normalization of
Dyrk1a expression, a reduction of nuclear NFAT activity and inhibition of hypertrophy and fibrosis in
mouse models of heart failure [61]. Changed expressions of miRNAs miR-1, -214, -29b, -342, -7, -107,
-126, -125, -122, -423-5p, -320a, -650, -1228, -662, -583, -3175, -21, -22 and miR-92b have been shown in
other studies of heart failure [33,52,53].
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4. Nutritional Aspects of Cardiovascular Diseases

The risk of CVD is substantially influenced by many factors, including diet. The Mediterranean
diet is a good example of this as it has been associated with broad healthy benefits on human health.
The Mediterranean diet represents a collection of eating habits traditionally followed by people in
different countries bordering the Mediterranean Sea. It is characterized by a high intake of olive oil,
fruit, nuts and seeds, vegetables, cereals, and a moderate intake of fish and red wine. Moderate intake
of dairy products, as well as eggs, and chicken are allowed, whereas red meat is avoided [62].

The Mediterranean diet is particularly protective against CVD. Grosso et al. [63] reported a
25% lower risk of CVD mortality in people adhering to the Mediterranean diet. A meta-analysis of
seven cohort studies showed that adherence to the Mediterranean diet was associated with a low risk
of coronary heart disease [64]. Keys et al. [65] hypothesized that the Mediterranean diet exhibited
protection against CVD and several other diseases principally because of its low saturated fat content.
However, its protective effects can also be attributed to its rich content of the bioactive components
olive oil, fruits, vegetables and legumes (Figure 2).
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Figure 2. The main bioactive dietary components of the Mediterranean diet and their beneficial effects
on the cardiovascular system.

Olive oil is the main source of vegetable fat in the Mediterranean diet. It is mainly comprised of
the mono-unsaturated fatty acid (MUFA) oleic acid. Olive oil also contains high amounts of bioactive
compounds, including vitamin E, polyphenols (mainly flavonoids) and other minor phytochemicals [66].
Observational studies have suggested that olive oil intake is inversely associated with CVD, in both
the Spanish general population [66] and in a cohort of Italian women [67]. Olive oil bioactive
compounds exhibited a capability to attenuate oxidative stress and improved endothelial function
through their anti-inflammatory, anti-oxidant and anti-thrombotic properties, thereby reducing the
risk and progression of atherosclerosis [68]. The main phenolic compounds present in olive oil are
hydroxytyrosol and oleuropein, which are both potent antioxidants and enzyme modulators [69]. A
study in rats demonstrated that the hypotensive effect of olive oil is associated with its high oleic acid
content [70].

The cardioprotective action of an increased intake of fruit and vegetables in the diet has been
demonstrated in several studies. A meta-analysis of prospective studies revealed inverse associations
between the intake of apples and pears, citrus fruits, green leafy vegetables, cruciferous vegetables and
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CVD and all-cause mortality [2]. A randomized controlled trial showed a statistically significant effect
of fruit and vegetable consumption on both plasma antioxidant concentrations and blood pressure [71].
It is assumed that the healthy effect of vegetables and fruits can be attributed to dietary fibre, vitamins,
phytochemicals and minerals in these food items [1]. The bioactive component of tomatoes, lycopene,
exhibited significant antioxidant, hypolipidemic and anti-atherogenic effects [72]. The consumption of
grapes may reduce the incidence of CVD due to several phytochemicals [73]. The reduced incidence
of CVD after apple consumption is probably a result of the cholesterol-lowering effect of the fibre
and polyphenols (catechin, epicatechin) contained in apples [74]. Citrus flavonoids like naringin
and hesperidin exert antihypertensive, lipid-lowering, antioxidant and anti-inflammatory properties,
which could explain their anti-atherogenic action [75].

Nuts and seeds are a good source of polyunsaturated fatty acids (PUFAs) (mostly linoleic and
alpha-linolenic acid), rich in dietary fibre, minerals (potassium, calcium, magnesium, selenium),
vitamins (folate, vitamin C and E) and other bioactive compounds (coenzyme Q10, phytosterols and
polyphenols) [76]. There is substantial evidence showing that the intake of nuts and seeds provides
protection against CVD. Consumption of peanuts and walnuts was associated with a 13% to 19% lower
risk of total CVD, respectively, and a 15% to 23% lower risk of coronary heart disease, respectively [77].
The primary mechanism by which nuts protect against CVD is through the improvement of lipids and
lipoprotein profile via a lowering of oxidative stress, inflammation and an improvement in endothelial
function [78]. Flaxseed represents one of the richest plant sources of omega-3 fatty acids (alpha-linolenic
acid). Several preclinical and clinical studies have shown beneficial cardioprotective effects of flaxseed
supplementation. These are attributed to antihypertensive, antiatherogenic, cholesterol-lowering and
anti-inflammatory action of flaxseed bioactive components [79].

Fish is recommended as a part of healthy diet because of its cardioprotective effects [80].
Panagiotakos et al. [81] demonstrated that long-term fish intake was associated with a better lipid
profile, lower arterial blood pressure and improved blood glucose levels in elderly people from
Mediterranean islands. Consumption of fatty fish has been suggested to reduce the risk of CVD,
primarily due to their high levels of omega-3 fatty acids [82]. Omega-3 fatty acids (belonging to
PUFAs) may improve cardiac function by their anti-inflammatory, antithrombotic, anti-triglyceridemic,
anti-atherogenic, and anti-arrhythmic effects [83–85]. Vitamin D is highly abundant in different fish
species. It has been found to regulate the expression of pro-inflammatory cytokines and adhesion
molecules, thus represents a valuable component in the prevention of atherosclerosis [86]. Fatty fish
represents a good dietary source of coenzyme Q10 which has been shown to be cardioprotective in
atherosclerosis, hypertension and heart failure [87].

Cereals are widely used in Mediterranean countries as in other parts of the world [88] and
whole grains consumption induce a beneficial effect on CVD morbidity and mortality. Aune et al. [2]
demonstrated significant reductions in the risk for CVD, stroke and coronary heart disease in patients
who consumed an increased amount of whole grains (90 g/day). A meta-analysis evaluating the value
of whole grains showed a benefit in a series of prospective cohort studies, with a 21% reduction in CVD
events and mortality. Eating whole grains decreased total cholesterol and LDL-cholesterol levels [89].
These effects are mainly attributable to the content of dietary fibre. Dietary fibre has a positive effect,
probably due to lowering the amount of serum cholesterol in the blood by increasing the excretion of
bile acids in feces [90]. It may also reduce body weight, which would decrease systolic and diastolic
blood pressure [91].

One of the main characteristics of the traditional Mediterranean diet is the moderate intake of
wine, particularly red wine. Red wine contains high amounts of polyphenolic compounds (quercetin
and catechin) and other compounds which are thought to be beneficial for cardiovascular health. Due
to its abundant content of polyphenols, wine intake is associated with a lowering of CVD risk [92].
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5. The Modulation of miRNAs by Dietary Components in Cardiovascular Diseases

Many nutritional components modulate the expression of diverse miRNAs in different types of
tissues and thereby influence whole body physiology [8,14,93]. These effects of diet on miRNAs may
be very different than the changes in miRNAs shown in disease without dietary influence (Table 1).
The summary of our current knowledge on the cardio-beneficial action of selected dietary compounds
via miRNA modulation is presented in Figure 3. The effect of diet on selected miRNAs expression was
examined under conditions of different CVDs.
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Figure 3. Selected bioactive dietary components and their modulation of miRNAs in the heart contribute
to the prevention of CVD. In the arrows are placed miRNAs for which expression was changed in
the diseased heart after individual nutrient administration. Upward arrows represent upregulation
of miRNAs and downward arrows miRNAs which were downregulated. Changes in the expression
of miRNAs shown in the figure were measured in CVD experimental models after administration of
individual nutrients.

Among cardioprotective nutritional components that can affect the expression of miRNAs are
omega-3 and omega-6 PUFAs [94]. PUFAs were observed to downregulate miRNA-146a in endothelial
cells with lipopolysaccharide-induced inflammation [95]. This miRNA can contribute to the induction
of vascular inflammation [96]. Casas-Agustench et al. [97] observed that consumption of different
kinds of fatty acids in pregnancy modulate the expression of miRNAs in both maternal and offspring
tissues. Omega-3 PUFAs were able to reverse an angiotensin II-induced increase of miRNA-21
expression in mouse cardiac fibroblasts, therefore, they may exert potential beneficial effects in cardiac
fibrosis [98]. miRNA-21 is also connected with CVD and inflammation [27]. Diets with a high content
of PUFAs downregulate miRNA-21, which reduces pro-inflammatory signaling [99]. Downregulation
of miRNA-21 after consumption of PUFAs was also observed in other studies of animal models and
cell cultures [100,101]. Ma et al. [102] concluded that omega-3 PUFAs may have a protective effect on
cardiomyocytes following myocardial infarction through their upregulation of anti-apoptotic miRNAs
(miRNA-133a-5p, miRNA-149-5p, miRNA-208a-3p) and downregulation of pro-apoptotic miRNAs
(miRNA-210-3p). Zheng et al. [94] reported that omega-3 PUFAs regulate miRNA-19b, -146b and -183
in Wistar rats. Administration of omega-3 PUFAs upregulated levels of these miRNAs and suppressed
inflammatory markers compared with non-treated rats. In another study, Ortega et al. [103] observed
an alteration in the levels of 11 miRNAs when 30 healthy people consumed 30 g of nuts/day (a food
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rich in PUFAs) for 8 weeks. The authors measured a downregulation of miRNA-328, -330, -221, and
125a and upregulation of miRNA-192, -486, -19b, -106a, -130b, -18a, and 769 after nut consumption.

Vitamins are essential micronutrients that have an important role in the prevention of
CVD. Some recent studies suggest that vitamins may function through the regulation of miRNA
expression [104–106]. Karkeni et al. [107] declared that vitamin D downregulates the expression of
miRNA-146a and -155 in murine adipocytes through inhibiting NF-kB (Nuclear factor kappa-light
chain-enhancer of activated B cells), ultimately leading to the suppression of inflammation. Deficiency
of vitamin D is also connected with many pathological disorders such as hypertension [108], metabolic
syndrome [109] and coronary artery disease [110]. Liu et al. [111] found that increased miRNA-21
affects vitamin D production through the inhibition of genes encoding enzyme 25(OH)D3-1α-hydrolase,
which is important for the conversion of vitamin D from its inactive form to the active form. Sheane
et al. [112] found a positive association between miRNA-21 expression and vitamin D deficiency in
coronary artery disease. Studies with the effect of vitamin E (tocopherol) performed by Rimbach et
al. [113] or by Gaedicke et al. [114] revealed upregulation of miRNA-122a and -125b in hepatic cells
under vitamin E deficiency. Based on these results, the authors suggested that the consumption of
vitamin E could be beneficial for human health because these miRNAs are mostly effective in lipid
metabolism and inflammatory processes. Cohen et al. [115] demonstrated that vitamin E alleviates
cardiac hypertrophy and fibrosis in mice via downregulation of miRNA-21 and -499 and upregulation
of miRNA-210.

Lycopene is a carotenoid, found in red-colored fruits and vegetables. A beneficial effect against
fibrosis was observed in the rat after administration of a tomato and its constituent lycopene after
a myocardial infarction (MI). In this study, groups with tomato and lycopene supplementation
experienced decreased interstitial fibrosis and improved diastolic dysfunction 3 months after an MI.
They also observed a downregulated expression of 8 miRNAs after administration of lycopene –
miRNA-29, -194, -503, -20a, -30a, -192, -30e, and 126. Based on these results, the authors suggested that
the ingestion of lycopene could have a beneficial effect against MI through the modification of miRNA
expression [116].

Alehagen et al. [117] reported that administration of selenium and coenzyme Q10 had an effect on
many miRNAs. In this study, 443 healthy patients were administered selenium and coenzyme Q10
tablets for 4 years. The study found at least 70 miRNAs with significant differences in their expression
compared to the placebo patients. Among them, the greatest difference in expression were miRNA-29b,
miRNA-30, or miRNA-19, which have all been associated with CVD or cancer [117]. The effect of
selenium on miRNA expression was also observed by Xing and colleagues [118] using a rat model of
selenium deficiency. Selenium deficiency is a causative factor in heart failure. The authors identified
five miRNAs which were extracted from the heart (miR-374, -16, -199a-5p, -195, and -30e*) that were
upregulated >5-fold in the deficiency group, compared to the selenium-supplemented group. Other
miRNAs (miR-3571, -675, and -450a*) were downregulated. The authors suggested that these miRNAs
may regulate cardiac function.

Another nutrient with a beneficial effect on human health which may act through a modulation
of miRNAs is dietary fiber. The study of Hu et al. [119] reported an association between butyrate,
which is a metabolite of dietary fiber, and the expression of several miRNAs in human colon cancer
cells (HCT-116). They observed decreasing expressions of 6 miRNAs in the presence of butyrate,
including miRNA-17 and -93, miRNAs also widely expressed in the heart and changed in coronary
artery disease [31,48,61].

Recent studies have suggested that gene expression could also be modulated by miRNAs present
in the consumed food [8]. The most studied sources of miRNAs obtained from the diet are plant
foods and cow milk. However, due to the existence of RNases and an unhospitable environment in
the gastrointestinal tract, miRNAs which are received from dietary sources must be protected from
degradation by internalization in exosomes or exosome-like structures [120]. Similar findings have
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been discussed by other authors [120,121] with the aim to use these formulations for pharmacological
purposes against different diseases in humans.

6. Conclusions

Epidemiological studies indicate that nutrition influences the health status of humans. Prevention
or even reversal of chronic diseases including CVD through diet is of high interest. Studies have
revealed that individual bioactive nutrients are responsible for the cardioprotective effects of some
dietary plans (e.g., the Mediterranean diet). However, the direct mechanisms of action are still not
fully understood. Bioactive dietary components like PUFAs, vitamins, and minerals can be effective in
CVD prevention and treatment due to their ability to change miRNAs expression, thereby modulating
important pathways involved in lipid metabolism, endothelial function, hypertrophy and/or fibrosis.
The capacity of food nutrients to modulate miRNAs involved in heart function and development
(mainly miRNA-1, -21, -133 and -155) gives further rationale for the need for additional research
to determine if these interactions between food and miRNAs can serve as viable targets for novel
therapeutic approaches to CVD.
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