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Abstract: Quercetin (QE) is an attractive natural compound for cancer prevention due to its beneficial
anti-oxidative and anti-proliferative effects. However, QE is poorly soluble in water and slightly
soluble in oil, which results in its low oral bioavailability and limits its application in the clinic. The aim
of this study was to prepare QE nanocrystals (QE-NCs) with improved solubility and high drug
loading, furthermore, the size-dependent anti-cancer effects of QE-NCs were studied. We prepared
QE-NCs with three different particle sizes by wet milling, then, cell proliferation, migration and
invasion were studied in A549 cells. The QE-NCs had antitumor effects in a dose- and size-dependent
manner. Compared with the large particles, the small particles had a strong inhibitory impact on
cell biological effects (p < 0.05 or p < 0.01). Moreover, Western blot assay indicated that QE-NCs
may inhibit the migration and invasion of A549 cells by inhibiting the STAT3 signaling pathway,
and the particle size may have an effect on this process. In this study, it was proven that NCs could
dramatically enhance the anticancer efficacy of QE at the cellular level. In addition, particle size had a
considerable influence on the dissolution behavior and antitumor effects of NCs.

Keywords: quercetin; nanocrystals; anti-tumor; invasion; signal transducer and activator of
transcription 3 signal pathway

1. Introduction

Quercetin (QE) and related flavonoids are widely distributed in plants and have exhibited
high activity toward anti-oxidative, anti-inflammatory, anti-microbial [1]. Besides, recent studies
have found that QE can restrain the proliferation and metastasis of multiple cancer cell types,
such as prostate cancer [2], breast cancer [3], colon cancer [4], lung cancer [5] and pancreatic cancer
cells [6]. Document results revealed the mechanism may be associated with the regulation of
various signaling pathways. QE could induce apoptosis in human lung adenocarcinoma cell line
A549 through mitochondrial depolarization by down-regulating the interleukine-6/signal transducer
and activator of transcription 3 (IL-6/STAT3) signaling pathway [7], and QE could also inhibit the
proliferation of cancer cells by regulating the phosphoinositide 3-kinase (PI3K), mitogen-activated
protein kinase/extracellular signal-regulated kinase (MEK/ERK) and epidermal growth factor receptor
(EGFR) signaling pathway [8–10]. Moreover, QE has demonstrated advantages in reducing the
multidrug resistance (MDR) of tumor cells. QE could increase intracellular accumulation of doxorubicin
in breast cancer cells through down-regulating the expression of efflux ABC transporters, which can
effectively potentiate the anti-tumor effect of doxorubicin at a lower concentration and attenuate the
toxic side effects of it [11]. The combination of QE and chemotherapy drugs could improve the overall
anti-cancer efficacy.
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However, QE is poorly soluble in water and is slightly solubilized in most pharmaceutically
acceptable solvents, resulting in its low bioavailability [12,13]. It was reported that the bioavailability
of QE was less than 10%, which limited its clinical application [13]. In order to overcome
these disadvantages, some modified dosage forms of QE have been developed, mainly including
nanoparticles [14], microemulsions [15] and other drug carriers [16,17]. Nanoparticles need a large
amount of carrier materials and had a low drug loading. Microemulsions required a large number of
surfactants and had potential side effects. Therefore, there is a need for developing convenient and
appropriate methods to produce the desired QE formulations.

A nanocrystal (NC) suspension is a colloidal system that consists of only pure drug crystals
and minimum surfactants for stabilization [18]. The formulation can present a drug loading as high
as 100% and increase the solubility and dissolution of poorly water-soluble drugs. It requires few
chemical solvents and thus reduces excipient toxicity. There have been several studies to develop
such formulations [19,20]. Sahoo [21] fabricated QE-NCs using high-pressure homogenization with
an average particle size of 483 nm, and the solubility of QE-NCs was about 20-fold that of crude QE.
Sun [22] prepared QE-NCs by a tandem of nano-precipitation (NP) and high-pressure homogenization
(HPH) method with an average particle size of 393.5 nm. The solubility of QE-NCs was about
70-fold that of crude QE. Compared with the control group, the Cmax of QE-NCs increased by 2 times,
and the relative bioavailability was 15 times higher, which significantly increased the solubility and
the oral absorption of QE. However, most of the present researches focused on the preparation and
pharmacokinetics of QE-NCs, and the effect on the anti-tumor activities of QE-NCs has rarely been
investigated. It is worth exploring whether the increase of solubility of QE-NC will affect its biological
effects, and how particle size affects this process.

With a view of that QE-NC formulations need further optimization and the study of QE-NCs
anticancer effects remains incomplete, we prepared QE-NCs with three markedly different particle sizes
by wet milling; then, cell proliferation, adhesion, migration, and invasion were studied in A549 cells.
The main purposes of this study include exploring the anticancer effects of QE-NCs, and investigating
whether the particle size of QE-NCs affects their biological effects.

2. Results

2.1. Preparation and Characterization of QE-NCs

QE-NCs of different sizes were prepared by a wet milling method, and the morphological
features of the QE-NCs were characterized by transmission electron microscopy (TEM). The mean
particle size, polydispersity index (PDI) and zeta potential of the QE-NCs are shown in Table 1.
The mean particle sizes of the three prepared QE-NCs were approximately 200 nm, 500 nm, and 3
µm. The results demonstrate that the QE-NCs showed a narrow size distribution and better physical
stability. TEM images revealed that the three different sizes of NCs were uniformly distributed with a
cone-shaped morphology (Figure 1).

Table 1. Preparation process and characterization of the three quercetin nanocrystals (QE-NCs) with
different particle sizes (n = 3).

Number Milling Speed (rpm) Milling Time (min) Size (nm) PdI Zeta Potential (mV)

1 3000 4 217.28 ± 6.24 0.21 ± 0.09 −28.43 ± 0.85
2 2500 2 501.51 ± 58.35 0.25 ± 0.02 −21.27 ± 0.59
3 1500 4 3146.33 ± 105.14 0.29 ± 0.06 −19.43 ± 1.35
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Figure 1. Characterization of QE-NCs with different sizes from transmission electron microscopy 
(TEM) observation. 

2.2. Effect of QE-NCs on Cell Proliferation 

A549 cells were subjected to the cell counting kit-8 (CCK-8) assay to evaluate the anticancer effect 
of QE-NCs and the effect of different particle sizes on cell proliferation. First, QE-NCs reduced the 
proliferation of A549 cells in a concentration- and time-dependent manner (Figure 2a). The results 
showed that with the increase of drug concentration and prolongation of treatment time, the 
inhibition effects of QE on A549 cells were enhanced, indicating that QE may have latent clinical 
applicative value. Second, the particle size of QE-NCs had a significant effect on the proliferation of 
A549 cells. The results demonstrate that the 200 nm and 500 nm particles showed higher cell 
proliferation resistance than did the 3 μm particles at the six concentrations (0, 7.5, 15, 30, 60, and 120 
μmol/L) studied (Figure 2b), and the smaller the particle size, the more obvious the effect. Third, the 
half maximal inhibitory concentrations (IC50) values at 24, 48, and 72 h are shown in Table 2. After a 
24 h culture period, the IC50 values of 200 nm, 500 nm and 3 μm particles were (47.03 ± 16.64), (62.25 
± 15.65) and (77.06 ± 12.29) μmol/L, respectively. The IC50 value of the 3 μm group was 1.63 times 
higher than that of the 200 nm group, the advantage of the smaller particle size anti-cell proliferation 
effects is obvious. There was no difference in IC50 between the three particle size groups after a 72 h 
culture period. The results revealed that particle size can inhibit the proliferation of A549 cells in 
terms of speed and extent, and the smaller the particle size, the stronger the effect. 
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Figure 1. Characterization of QE-NCs with different sizes from transmission electron microscopy
(TEM) observation.

2.2. Effect of QE-NCs on Cell Proliferation

A549 cells were subjected to the cell counting kit-8 (CCK-8) assay to evaluate the anticancer effect
of QE-NCs and the effect of different particle sizes on cell proliferation. First, QE-NCs reduced the
proliferation of A549 cells in a concentration- and time-dependent manner (Figure 2a). The results
showed that with the increase of drug concentration and prolongation of treatment time, the inhibition
effects of QE on A549 cells were enhanced, indicating that QE may have latent clinical applicative
value. Second, the particle size of QE-NCs had a significant effect on the proliferation of A549
cells. The results demonstrate that the 200 nm and 500 nm particles showed higher cell proliferation
resistance than did the 3 µm particles at the six concentrations (0, 7.5, 15, 30, 60, and 120 µmol/L) studied
(Figure 2b), and the smaller the particle size, the more obvious the effect. Third, the half maximal
inhibitory concentrations (IC50) values at 24, 48, and 72 h are shown in Table 2. After a 24 h culture
period, the IC50 values of 200 nm, 500 nm and 3 µm particles were (47.03 ± 16.64), (62.25 ± 15.65) and
(77.06 ± 12.29) µmol/L, respectively. The IC50 value of the 3 µm group was 1.63 times higher than
that of the 200 nm group, the advantage of the smaller particle size anti-cell proliferation effects is
obvious. There was no difference in IC50 between the three particle size groups after a 72 h culture
period. The results revealed that particle size can inhibit the proliferation of A549 cells in terms of
speed and extent, and the smaller the particle size, the stronger the effect.
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Figure 2. Characterization of cell proliferation.
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(a) Effect of different concentrations of QE-NCs on the proliferation of A549 cells. (b) Effect of different
particle sizes of QE-NCs on the proliferation of A549 cells (n = 6).

Table 2. The IC50 values of QE-NCs of different particle sizes on A549 cells (n = 6).

Sizes
IC50 (µmol/L)

24 h 48 h 72 h

200 nm 47.03 ± 16.64 37.88 ± 6.46 29.99 ± 6.14
500 nm 62.25 ± 15.65 48.79 ± 7.95 28.59 ± 8.04
3 µm 77.06 ± 12.29 50.82 ± 11.32 28.92 ± 6.76

2.3. Effect of QE-NCs on Cell Adhesion

To explore the effect of QE-NCs on the adhesion of A549 cells, a matrix adhesion assay was
conducted to test the adhesion of A549 cells following treatment with QE-NCs for 24 h. As indicated in
Figure 3, the result showed the effect of the concentrations of QE-NCs on cell adhesion. Compared with
15 µmol/L, the adhesion was subjected to greater damage or poorer formation at 30 µmol/L (p < 0.05),
showing a dose-dependent pattern. In addition, at the concentration of 30 µmol/L, the average
adhesion rate of cells when treated with 500 nm QE-NCs decreased to 58.79% of control levels (p < 0.05)
and reduced further to 50.76% of control levels after being treated with 200 nm QE-NCs (p < 0.05).
The adhesion rate of the 3 µm group was decreased, but there was no significant difference compared
with the control group (Table 3). The particle size of QE-NCs has a significant effect on cell adhesion.
These results show that smaller particle sizes and higher concentrations resulted in greater damage or
poorer formation of the microfilaments; the small particles might sterically block the normal localization
of the actin fibers and cause the disruption and remodeling of the actin cytoskeleton [23].
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Figure 3. Effects of different sizes and concentrations of QE-NCs on the adhesion rate of A549 cells
(n = 6). * p < 0.05, ** p < 0.01, compared with the blank control group.

Table 3. The adhesion rate of QE-NCs of different particle sizes on A549 cells (n = 6).

Concentrations
Adhesion Rate (%)

200 nm 500 nm 3 µm Cisplatin

15 µmol/L 56.60 ± 16.44 * 68.53 ± 17.81 * 74.87 ± 26.43 /
30 µmol/L 50.76 ± 12.43 * 58.79 ± 9.39 * 63.58 ± 10.11 /
3 µg/mL / / / 33.99 ± 7.31 **

* p < 0.05, ** p < 0.01, compared with the blank control group.

2.4. Effect of QE-NCs on Cell Migration

To probe the effect of QE-NCs on the metastatic capability of A549 cells, the wound healing assay
was carried out. The wound healing assay involved the application of a wound to a monolayer of cells
and subsequently measuring the closed distance over time as compared to a control [24]. There was
a positive correlation between the speed/degree of scratch healing and the ability of cell migration,
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which mimicked the migration of cells in vivo to some extent [25,26]. It can be seen visually from the
picture of the scratch repair experiment (Figure 4a,b). After 24 h of culture, many cells treated with
3 µm QE-NCs migrated to the center of the scratch field, while few cells treated with 500 nm QE-NCs
and even fewer cells treated with 200 nm QE-NCs did so. Pictures were analyzed using ImageJ 1.46r
analysis software (National Institutes of Health, Bethesda, MD, USA), and data are presented as the
percentage of cell migration compared to the blank control (Figure 4c, Table 4). The results pointed
out that the QE-NCs of three particle sizes had significant differences compared to the control group,
indicating that QE could inhibit the migration of A549 cells. As the increasing of the concentration,
the ability of migration inhibition increased, while the difference between the high-concentration group
of 200 nm QE-NCs and the positive control group was not statistically significant. Besides, the mobility
inhibition rate of A549 cells increased with the decreasing particle size of QE-NCs, the effects of the
200 nm particle size groups were significantly different from the 500 nm and 3 µm particle size groups
(p < 0.01 or p < 0.05).
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2.5. Effect of QE-NCs on Cell Invasion 

To further investigate the effect of QE-NCs on the cell migration ability of A549 cells, a Matrigel 
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cells treated with QE-NCs and the blank control group. The results consistent with the cell migration 
assay can be seen intuitively from the figure, namely, the cell invasion inhibitory effects of nano-
particle size were stronger than that of micron particle size. Moreover, a quantitative analysis 
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Figure 4. Effects of different sizes and concentrations of QE-NCs on the mobility rate of A549 cells
(n = 3). (a) Results of the wound healing assay with treated with 15 µmol/L QE-NCs. (b) Results of the
wound healing assay with treated with 30 µmol/L QE-NCs. (c) Statistical analysis results. * p < 0.05,
** p < 0.01, compared with the blank control group.

Table 4. The mobility of QE-NCs of different particle sizes on A549 cells (n = 3).

Concentrations
Migration Rate (%)

200 nm 500 nm 3 µm Cisplatin

15 µmol/L 33.00 ± 5.39 **,## 50.56 ± 2.70 **,## 68.81 ±4.03 * /

30 µmol/L 19.48 ± 3.74 **,## 42.74 ± 8.08 ** 50.51 ± 6.75 ** /
3 µg/mL / / / 15.32 ± 5.30 **

* p < 0.05, ** p < 0.01, compared with the blank control group. ## p < 0.01, compared with the 3 µm particle group.

2.5. Effect of QE-NCs on Cell Invasion

To further investigate the effect of QE-NCs on the cell migration ability of A549 cells, a Matrigel
invasion assay was evaluated using transwell chambers. Figure 5a shows representative pictures for
cells treated with QE-NCs and the blank control group. The results consistent with the cell migration
assay can be seen intuitively from the figure, namely, the cell invasion inhibitory effects of nano-particle
size were stronger than that of micron particle size. Moreover, a quantitative analysis illustrated that
treatment with QE-NCs considerably inhibited the invasion of A549 cells (Table 5). The cell invasion
ability of the three particle size QE-NCs in each concentration group decreased significantly with the
increase of the concentration. The difference was statistically significant compared with the blank
control group (p < 0.01), and the high concentration groups of 200 nm and 500 nm particle size have no
significant difference compared with the positive control cisplatin group. The particle size also has a
significant effect on cell invasion. The relative invasion of A549 cells treated with 200 nm QE-NCs
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was extensively decreased (p < 0.05) compared with that of A549 cells treated with 500 nm QE-NCs,
and yet lower (p < 0.01) than that of cells treated with 3 µm QE-NCs. The results show that particle size
strongly affects the invasion of A549 cells, and they are consistent with those of the cell migration assay.
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(n = 3). (a) Results of the transwell chamber invasion assay. (b) Statistical analysis of the results of the
transwell chamber invasion assay. ** p < 0.01, compared with the blank control group.

Table 5. The invasion of QE-NCs of different particle sizes on A549 cells (n = 3).

Concentrations
Invasion Rate (%)

200 nm 500 nm 3 µm Cisplatin

15 µmol/L 57.17 ± 1.02 **,## 58.54 ± 9.28 **,# 81.91 ± 3.08 ** /

30 µmol/L 39.97 ± 5.34 **,## 41.32 ± 4.34 **,## 70.97 ± 7.29 ** /
3 µg/mL / / / 27.09 ± 1.01 **

** p < 0.01, compared with the blank control group. # p < 0.05, ## p < 0.01, compared with the 3 µm particle group.

2.6. Effect of QE-NCs on STAT3 Expression

Since the neoplastic phenotype of a cell is largely driven by aberrant gene expression patterns,
increasing attention has been focused on transcription factors that regulate critical mediators of
tumorigenesis, such as signal transducer and activator of transcription 3 (STAT3). To further discuss
the exact molecular mechanism of biological effects induced by QE-NCs of different particle sizes,
the expression levels of STAT3 were assessed. Our results from Western blotting showed that after
treatment with QE-NCs for 24 h, STAT3 expression dramatically decreased (Figure 6a), and the smaller
particle size and higher concentration resulted in higher efficiency. As the statistical results showed
(Figure 6b), the expression of the protein in the 200 nm particle size group was significantly lower
than that in the 500 nm and 3 µm group, and the difference was statistically significant (p < 0.05
or p < 0.01). The difference between the high concentration group of 200 nm particle size and the
blank control group was statistically significant (p < 0.05), while the difference was not statistically
significant compared with the positive control group. In summary, QE-NCs may inhibit the migration
and invasion of A549 cells by inhibiting the STAT3 signaling pathway, and the particle size may have
an effect on this process.
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3. Discussion

QE is an attractive natural compound for potential cancer prevention due to its beneficial
anti-oxidative, anti-proliferative, and anti-mutagenic capacity [27]. Its role in regulating cell signaling
pathway, inhibiting cell metastasis and inducing apoptosis has been demonstrated in vitro and
in animal studies [28–30]. Problems like poor aqueous solubility and low oral bioavailability,
combined with the high dose required for treatment, make QE a defective candidate for therapeutic
purposes [12,13]. Moreover, the rapid gastrointestinal metabolism of QE is also a major obstacle for its
clinical translation [31]. Therefore, the development of modified formulations of QE with high drug
loading, increased bioavailability, prolonged circulation time and decreased toxic effects at high doses
is advocated. NCs have distinctive characteristics compared with other nanoformulations. NCs can
not only present a drug loading as high as 100% but also reduce the toxic side effects caused by the
excipients, resulting in satisfactory therapeutic concentrations at low doses [32]. Limited interactions
between plasma proteins and NCs probably prevent therapeutic molecules from enzymatic metabolism,
further increasing the circulation time and plasma concentrations of anticancer compounds [33,34].
NCs have shown promising results in the dissolution as well as the bioavailability of insoluble drugs.

Most of the previous research has studied the preparation and characterization of QE-NCs, and few
studies systematically evaluated the anti-tumor effect of QE-NCs in vitro [21,35,36]. We prepared
QE-NCs by wet milling. The minimum average particle size is about 200 nm, which is smaller
than most of the previous studies. On this basis, the anti-tumor effect of QE-NCs was investigated
from the molecular to the cellular level. We found that QE-NCs had negative effects on the cell
proliferation, adhesion, migration, and invasion of A549 cells in a dose-dependent manner, indicating
that QE-NCs may be a potential clinical medicine against cancer. The protein expression analysis
suggested that QE-NCs reduced the expression of STAT3. In summary, QE-NCs can significantly
restrain the proliferation, migration, and invasion of A549 cells and its mechanism is probably related
to the inhibition of the STAT3 signaling pathway.

Compared with other nanoformulations, QE-NCs also have some advantages in anti-tumor effects.
Baksi [37] developed QE loaded chitosan nanoparticles (QE-CS-NPs) with an encapsulation efficiency
of 79.78%, and the IC50 values of QE-CS-NPs on A549 cells for 48 h was about 80 µmol/L. Lakshmi [38]
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prepared QE-mediated gold nanoclusters (QE-GNCs) and the IC50 values of QE-GNCs on A549 cells for
24 h were about 300 µmol/L. Tan [16] prepared QE-loaded nanomicelles using the film casting method.
The incorporation efficiency into the nanomicelles was ≥88.9% and the IC50 value of the nanomicelles
on A549 cells for 72 h was about 200 µmol/L. Corresponding to above nanoformulations, the IC50

values at 24, 48, and 72 h of QE-NC with 200 nm particle size were 47, 38 and 30 µmol/L. QE-NCs could
improve the solubility of insoluble drugs, with almost unrestricted entrapment efficiency/drug loading,
which demonstrated a higher anticancer activity and resulted in therapeutic effect at low doses.

Moreover, to further understand the biological effects of NCs and then optimize the formulation,
investigating the complicated molecular aspects of particle size–bio-interactions is meaningful.
In particular, previous research has been focused on particle sizes smaller than 200 nm, while
NCs possess a mean crystal size between 200 and 800 nm [39]. Our results found that QE-NCs had
effects on cell proliferation, adhesion, and migration in a size-dependent manner. The expression of
STAT3 protein reduced as the particle size decreased.

There are some possible explanations for these results. QE-NCs can affect the cell biological
effects in two ways—first, by influencing protein adsorption around the cells, and second, by being
uptaken directly by cells; the degree of this in both cases largely depend on nanotopography and
particle size [23]. When NCs enter the physiological environment, the surface of NCs may adsorb
proteins to form protein crowns. This kind of NCs-protein complexes can directly affect the various
reactions of NCs, such as cell uptake, signal transduction, biological distribution and toxicity [40–42],
and the smaller the particle size, the more obvious the effect. In addition, the specific surface can be
increased as the size of NCs decreases, resulting in easier adsorption on the surface of tumor cells [42].
This interaction with the cell surface, on the one hand, can affect the normal localization of actin
protein in space, and lead to the destruction and reconstruction of actin cytoskeleton, thus inhibiting
the biological effects such as cell adhesion, migration, invasion [23]; on the other hand, NCs adsorbed
on the cell surface can be ingested by cells through different ways. Particles of different sizes can
enter cells through the following four ways: phagocytosis, macropinocytosis, and clathrin-mediated
or caveolae-mediated endocytosis [43]. Particles with a size of 1 µm or greater are internalized via
macropinocytosis, internalization of particles with a size smaller than 200 nm involves clathrin-coated
pits, and with increasing size, the mechanism that relies on caveolae-mediated internalization becomes
apparent; this becomes the main pathway of entry for particles of 500 nm size [44]. In our study,
the sizes of QE-NCs were approximately 200 nm, 500 nm, and 3 µm. Therefore, the difference in the
cellular internalization pathways of the three QE-NCs due to different sizes may be an important factor
leading to the significant differences in antitumor effects.

Meanwhile, NCs are different from other nano-drug delivery systems in that NCs do not contain
carriers, which NCs themselves interact with the biological system, resulting in a continuous dissolution
process. As a direct result of decreased particle size, the solubility and dissolution rate of poorly
water-soluble drugs can be dramatically enhanced. It is generally assumed that NCs dissolve faster
than their microdimensional counterparts, leading to a high drug concentration gradient inside and
outside the cell. Free drug molecules can diffuse passively through the biomembranes and reduce their
pharmacodynamic action [32]. The exact contribution of each factor needs to be investigated in greater
depth. Further, some studies have shown that the effect of particle size on cell endocytosis is related to
the chemical composition of the particles and the type of cells. Because of the membrane structure of
various cells and the presence of different proteins, different cell types can have an effect on the total
and kinetic processes of the endocytosed particles, resulting in differences in biological effects [45].
More research in this area will be done in the future.

Pure NCs are inclined to aggregation owing to their high surface area and high surface energy.
Stabilizers such as surfactants are introduced in NC preparation to reduce the surface energy and yield
stable NCs [46]. In the preparation of QE-NCs, stabilized NCs were formed by adding Tween 80 as
a stabilizer, illustrating the excellent control of particle size that can be achieved with this method.
Tween 80 adsorbed on the surface of NCs through physical interactions can not only control the
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particle size of QE-NCs but also prevent the agglomeration of QE-NCs. In addition, stabilizers can
further endow NCs with additional functions such as prolonged circulation time [47], active tumor
targeting [48], or anti-MDR [49]. Some studies have found that Tween 80 significantly reduced the
expression of P-gp at non-cytotoxic doses [50]. Therefore, Tween 80 is likely to improve the exposure
of P-gp substrates and enhance the local concentration of the drug in the tumor site, contributing
to the improved therapeutic effect. This also suggests that the prepared QE-NCs have promising
anticancer potential.

The advantages, such as ease to produce, high drug loading and physical stability, make QE-NCs
attractive formulations for cancer resistance. In addition, QE-NCs can be applied to patients with a
variety of administration routes, among which oral administration and intravenous injection are the
most preferred [51]. QE-NCs can also be combined with chemotherapy drugs to enhance anti-tumor
efficacy and reduce side effects [11,52,53]. Furthermore, the reduced toxicity of QE-NCs should be
another advantage in clinical application [54], as some studies reported the toxic effects of QE at
high doses in clinical trials [55]. QE-NCs have a higher anti-tumor activity and can reach effective
therapeutic concentrations at low doses, which reduces the possibility of toxic effects. The QE-NCs
can be further optimized by the addition of cancer cell-specific targeting moieties [1]. It will not only
enhance target specific delivery of QE-NCs but will also reduce their interaction with the healthy cells,
preventing the toxic effects.

It is worth noting that no new NC drugs have been approved since 2009 despite a few being tested
in clinical trials [46]. One clear obstacle in commercializing NCs for delivering anticancer compounds
is finding techniques that can produce stable and uniform NCs at the industrial scale. For this, it is
the need of the hour to concentrate on NC preparation methods and performance. We believe that
breakthroughs in developing novel NC methods and devices will occur in the near future.

4. Materials and Methods

4.1. Chemicals and Materials

Quercetin (purity > 98%) was purchased from Xi’an Changyue Biological Technology Co. Ltd.
(Xi’an, China). CCK-8 chemical reagent was purchased from Bimake Company (Shanghai, China). BD
MatrigelTM Basement Membrane Matrix was purchased from BD Biosciences (San Jose, CA, USA). A
transwell chamber was purchased from Corning (New York, NY, USA). STAT3 Mouse monoclonal
antibody was received from Bimake Company (Shanghai, China). Dimethyl sulfoxide (DMSO)
was purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). Methanol
and acetonitrile (HPLC grade) are products of Thermo Fisher Scientific (Waltham, MA, USA).
Horseradish-peroxidase-labeled goat anti-mouse IgG, an ECL Chemiluminescence kit, lysis buffer,
and a BCA protein quantitative kit were purchased from Beijing DingGuoChangSheng Biological
Technology Co. Ltd. (Beijing, China). Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine
serum (FBS) were acquired from Gibco Technologies (Carlsbad, CA, USA).

4.2. Preparation and Characterization of QE-NCs

4.2.1. Preparation of QE-NCs with Three Mean Particle Sizes

QE-NCs were prepared by a wet milling method. In brief, QE powder (10%, w/v) was dispersed
in an aqueous surfactant solution containing 1% Tween 80 (w/v) under magnetic stirring. Then,
the mixture was premilled by a scattered emulsification homogenizer-C25 (HENC, Shanghai, China)
at 19,000 rpm for 5 min to obtain coarse drug suspensions. These coarse suspensions were further
ground with zirconium oxide beads (0.3 mm diameter) in an AK71M-2WKF wet grinding machine
(Willy A Bachofen AG, Muttenz, Switzerland). The three types of QE-NCs were prepared by simply
changing the milling time and speed. Milling times and speeds are shown in Table 1.
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4.2.2. Characterization of QE-NCs

The particle size, PDI, and zeta potential of QE-NCs were measured by dynamic light scattering
analysis (DLS) using a Malvern Zetasizer Nano ZS (Zetasizer Nano-ZS90, Malvern Instruments,
Malvern, UK) at 25 ◦C. QE-NCs were diluted with deionized water at a ratio of 1:400 to a suitable
scattering intensity before determination. The morphology of QE-NCs was determined using a
transmission electron microscope (H-7650, Hitachi, Tokyo, Japan). QE-NCs were dropped onto a
copper grid and then stained in phosphotungstic acid for the morphology study.

4.3. Cell Culture

Human lung adenocarcinoma cell line A549 was purchased from an American type culture
collection (ATCC, Manassas, MD, USA). Cells were cultured in dulbecco’s modified eagle medium
(DMEM) supplemented with 10% FBS and 1% penicillin/streptomycin at 37 ◦C in a humidified
atmosphere containing 5% CO2. After achieving adherence for 24 h, cells were treated with or without
QE-NCs at different concentrations. Cells cultured in DMEM alone were used as a negative control.

4.4. CCK-8 Proliferation Assay

The proliferation of A549 cells was examined using the CCK-8 assay kit. A549 cells were seeded
in 96-well plates (Costar, New York, NY, USA) at a density of 3 × 103 cells/well with 100 µL of DMEM
for 12 h. After cell adhesion was achieved, the culture medium was replaced with 0, 7.5, 15, 30, 60,
or 120 µmol/L QE-NCs with three different particle sizes. Then, the cells were incubated for another 24,
48, or 72 h. At specific time points, the plates were washed three times with PBS, and 100 µL of fresh
DMEM without FBS and 10 µL of CCK-8 reagent were added. After 2 h of incubation, the absorbance
of the supernatant at 450 nm was quantified using a microplate reader (Multiskan GO, Thermo Fisher
Scientific, Waltham, MA, USA) to evaluate cell viability. The relative viability of the cells was calculated
using the following formula: Cell proliferation inhibition rate (%) = (1 − As/Ac) × 100%, where As is
the experimental optical density (OD) and Ac is the control OD. At least six wells per condition were
examined in three independent experiments. To explore the involvement and role of QE-NCs, cells
treated with DMEM alone were used as a negative control.

4.5. Cell Adhesion Assay

The effect of QE-NCs on the adhesive properties of A459 cells was determined by the adhesion
assay. Twenty-four-well plates (BD Biosciences, San Jose, CA, USA) were blocked with 10 µg/mL
IV collagen in DMEM. After cell adhesion was achieved, the culture medium was replaced with 0,
15, or 30 µmol/L QE-NCs of three different sizes or 3 µg/mL cisplatin. The cells were incubated for
another 24 h. Cells were seeded at 1 × 105 cells/well with serum-free medium in the coated 24-well
plates. After incubation for 30 min, the cells were washed with PBS, fixed with 4% paraformaldehyde,
stained with 0.1% methyl violet for 10 min, permeabilized with 0.2% Triton X-100, and measured
spectrophotometrically at 550 nm. The adhesion rate was calculated using the following formula:
Cell adhesion rate (%) = As/Ac × 100%. The experiment was repeated six times.

4.6. Wound Healing Assay

Wound healing assay was employed to assess cell migration. Cells were seeded in 6-well plates
and cultured until they reached confluence. A wound was created by manually scraping the cell
monolayer with a sterile 20 µL pipette tip. Cells were washed twice with PBS to remove the floating
cells and then incubated in DMEM supplemented with 3% FBS. Then, QE-NCs with different particle
sizes at 0, 15, or 30 µmol/L or 3 µg/mL cisplatin was added. Cell migration was observed at pre-selected
time points (0 and 24 h). Images were acquired using a Nikon DS-5M Camera System mounted on a
phase-contrast Leitz microscope (100×). The migration rate was calculated using the following formula:
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Cell migration rate (%) = Ss/Sc × 100%, where Ss is the experimental area and Sc is the control area.
The experiment was repeated three times.

4.7. Matrigel Invasion Assay

Cell invasion abilities were explored using transwell chambers. The upper chamber of the transwell
was pre-coated with Matrigel 1:9 (v/v) overnight at 37 ◦C. The various formulations mentioned in
the migration assay were added to A549 cells, and cells were incubated for 24 h at 37 ◦C in 5% CO2.
After digestion of the pre-cultured A549 cells and the control cells, cell suspensions were prepared
in pure DMEM at 5 × 105/mL. To each chamber, 200 µL of cell suspension was added to obtain
approximately 1 × 105 cells in each well. DMEM containing 10% FBS was added to the lower chamber
to stimulate cell migration. Following incubation at 37 ◦C in 5% CO2 for another 24 h, non-migrated
cells on the upper surface were gently removed by a cotton swab. Cells that migrated to the lower
compartment of the chamber were fixed in 4% paraformaldehyde and stained with 0.1% methyl violet
for 10 min. Then the fixed and stained cells were eluted with 33% acetic acid solution, and the eluent
measured spectrophotometrically at 570 nm. At least three chambers were counted for each experiment.

4.8. Western Blot Analysis

The A549 cells were seeded at a density of 1 × 106 cells/dish in 10 cm cell culture dishes. After cell
adhesion was achieved, the cells were divided randomly into three groups: the negative control
group was cultured with DMEM alone; 3 µg/mL cisplatin was used as the positive control group;
the culture medium was replaced with 0, or 30 µmol/L QE-NCs with three different particle sizes in
the experimental groups. The concentration of 15 µmol/L was added to 200 nm particle size groups,
investigating the effect of concentration. After culturing for another 24 h, cells were collected and
lysed with lysis buffer. Cell lysates were centrifuged (10 min at 10,000× g, 4 ◦C) and the supernatants
were measured using a BCA protein quantitation assay. Next, 30 µg of protein was separated with
10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), transferred to 0.22 µm
PVDF membranes, and blocked with 5% bovine serum albumin (BSA) in PBST. Each membrane was
incubated with a specific primary antibody STAT3 (1:800) and β-actin at 4 ◦C overnight. Membranes
were washed with PBST and incubated with the appropriate secondary antibody (1:1000) for 2 h at room
temperature. Visualization was carried out with the ECL Western blotting detection kit according to the
recommendations for use. Pictures were analyzed using ImageJ 1.46r analysis software. Each sample
had three parallel wells.

4.9. Statistical Analysis

All quantitative results are presented as the mean ± standard deviation. Statistical analysis was
performed with PRISM 5.0 (GraphPad Prism, San Diego, CA, USA). Comparisons between control and
treated groups were conducted using one-way analysis of variance (ANOVA) with Student’s t-test
(two-tailed). p < 0.05 was considered statistically significant.

5. Conclusions

In this study, QE-NCs were successfully developed to deal with the drawbacks of QE, and the
biological effects of QE-NCs of different particle sizes were systematically presented from the cellular
to the molecular level. It was obvious that QE-NCs had a negative impact on the proliferation,
migration, and invasion of A549 cells. The particle size of QE-NCs had a remarkable influence on
biological efficacy, such that QE-NCs with a smaller particle size improved the anti-tumor effect of QE.
In conclusion, NCs provide a potentially favorable and feasible choice for QE in anti-cancer research,
and it is critical to optimize the particle size of QE-NCs to make them appropriate and stable for
therapeutic purposes.
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