Untargeted Metabolomics Study of the In Vitro Anti-Hepatoma Effect of Saikosaponin d in Combination with NRP-1 Knockdown

Yingtong Lv^{1,2}, Xiaoying Hou^{1,2}, Qianqian Zhang^{1,2}, Ruiting Li^{1,2}, Lei Xu^{1,2}, Yadong Chen³, Yuan Tian^{1,2}, Rong Sun⁴, Zunjian Zhang^{1,2,*} and Fengguo Xu^{1,2,*}

- ¹ Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China; <u>lv yingtong@126.com</u> (Y.L.); <u>cpuhxy 2011@163.com</u> (X.H.); <u>zhangqianqian09413@163.com</u> (Q.Z.); <u>15051853218@163.com</u> (R.L.); <u>18356002797@163.com</u> (L.X.); <u>1020041334@cpu.edu.cn</u> (Y.T.)
- ² Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
- ³ Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China; ydchen@cpu.edu.cn
- ⁴ Advanced Medical Research Institute, Shandong University, Jinan 250100, China; <u>sunrong107@163.com</u>
- * Correspondence: zzj@cpu.edu.cn (Z.Z.); fengguoxu@cpu.edu.cn (F.X.); Tel.: +86-25-83271021 (F.X.)

Methods

Sample preparation and instrumental analysis for metabolomic were based on our previous studies [49-51].

1. Sample preparation for metabolomic analysis

After drying the extracts with nitrogen flow, 120μ L methanol was added to redissolve and centrifuge at 4°C, 16000rpm for 10 minutes twice.

For GC-MS analysis, 80μ L supernatant was transferred to brown glass vials followed by addition of 25μ L *O*-methoxyamine hydrochloride (10mg/ml in pyridine). Then the mixture was incubated for 90min at 37° C and evaporated to dry for 2h at 50° C by CentriVap Centrifugal Concentrator(Labconco, Kansas, MO, USA). 120 μ L *N*-methyl-*N*-trifluoroacetamide/ethyl acetate(1:4) was added and incubated for 2h at 37° C then transferred the supernatant for GC-MS analysis.

For LC-MS analysis, 80µL supernatant was analyzed.

2. Instrumental Analysis

Liquid chromatography-mass spectrometry analysis was performed on LC-ion trap time-of flight MS system equipped with an electrospray ionization source (Shimadzu, Kyoto, Japan). Chromatographic separation was achieved on a Phenomenex Kinetex C₁₈ column(100 mm×2.1 mm, 2.6 μ M, Phenomenex, USA). Samples were separated with gradient elution involved in a mobile phase consisting of (A)0.1% formic acid in water and (B)methanol at a flow rate of 0.4mL/min. The elution program was from 95% A to 0% A within 30 minutes and held for 3 minutes. The column oven was 40°C and the injection volume was 5 μ L. Both positive and negative ion mode were acquired by switching the interface voltage between 4.5 and -3.5 kV in a full-scan operation with a scan range of mass to charge ratio 100 to 1000. The flow rate of nebulizing gas(N₂) was 1.5 L/min and pressure of drying gas was 100 kPa. The temperature of heat block and curved desorption line were both 200°C. LCMS solution software (Shimadzu, Kyoto, Japan) was used for mass spectra acquisition and chromatograms processing.

The gas chromatography analysis was performed on the GC-MS QP2010 Ultra

(Shimadzu Co., Kyoto, Japan) equipped with a fused silica capillary column (Rtx-5MS; $30m \times 0.25mm$ i.d., film thickness $0.25\mu m$, Restek, USA). Helium was applied as carrier gas at a flow rate of 1ml/min. Sample injection volume was $1\mu L$ with a split ratio of 20:1. The oven temperature was initially kept at 70°C for 3min then increased at rate of 10°C /min to 320°C and held for 2min. The temperature of injector, interface, and ion source were set at 250°C, 200°C, and 250°C, respectively. Ions were acquired at full scan mode with mass to charge ratio range from 45 to 600. Mass spectra and chromatograms were acquired and processed with GC-MS solution version 2.7 (Shimadzu, Kyoto, Japan).

Uniprot ID	Uniprot ID Protein name		Database
P02751	Fibronectin	FN1	
P01137	Transforming growth factor beta-1	TGFB1	
P11802	Cell division protein kinase 4	CDK4	
P05412	Transcription factor AP-1	JUN	
P01100	Proto-oncogene c-Fos	FOS	
P01375	Tumor necrosis factor	TNF	TIT
P05231	Interleukin-6	IL6	HII
Q04206	Transcription factor p65	RELA	
P25963	NF-kappa-B inhibitor alpha	NFKBIA	
P01106	P01106 Myc proto-oncogene protein		
P04150	P04150 Glucocorticoid receptor		
P10415	Apoptosis regulator Bcl-2	BCL2	
P38936	Cyclin-dependent kinase inhibitor 1	CDKN1A	TCMID
P04637	Cellular tumor antigen p53	TP53	ICMID

 Table S1. Potential targets of SSd searched by databases

Uniprot ID	Protein name	Gene name	
P25963	NF-kappa-B inhibitor alpha	NFKBIA	Dang et al. 2007[1]
P40763	Signal transducer and activator of transcription 3	STAT3	Liu et al.2014[29]
P05231	Interleukin-6	IL6	Dang et al. 2007[1]
Q04206	Transcription factor p65	RELA	Dang et al. 2007[1],Wong et al.2013[52]
P35354	Prostaglandin G/H synthase 2	PTGS2	Lu et al.2012[35]
P01375	Tumor necrosis factor	TNF	Dang et al. 2007[1],Wong et al.2013[52]
Q16665	Hypoxia-inducible factor 1-alpha	HIF1A	He et al.2014[53]
P42574	Caspase-3	CASP3	Chen et al.2016[8], Chiang et al.2003[34]
P55210	Caspase-7	CASP7	Chiang et al.2003[34]
P55211	Caspase-9	CASP9	Chen et al.2016[8]
P10415	Apoptosis regulator Bcl-2	BCL2	Zhang et al.2016[7],Hsu et al.2000[35]
Q07812	Apoptosis regulator BAX	BAX	Zhang et al.2016[7]
P04150	Glucocorticoid receptor	NR3C1	Li et al.2014[5]
P04637	Cellular tumor antigen p53	TP53	Hsu et al.2004[31],Hsu et al.2000[35]
P01106	Myc proto-oncogene protein	MYC	Hsu et al.2000[35]

Table S2. Targets obtained by literature mining

P28482	Mitogen-activated protein kinase 1	MAPK1	Lin et al.2016[32]
P05412	Transcription factor AP-1	JUN	Lin et al.2016[32]
Q16539	Mitogen-activated protein kinase 14	MAPK14	Lin et al.2016[32]
P01137	Transforming growth factor beta-1	TGFB1	Fan et al.2007[33]

1. Shuang-Suo Dang; Bao-Feng Wang; Yan-an Cheng; Ping Song; Zhen-Guo Liu; Li., Z.-F. Inhibitory effects of saikosaponin-d on CCl4-induced hepatic fbrogenesis in rats. *World Journal of Gastroenterology* **2007**, *13*, 557-563.

5. Li, Z.Y.; Jiang, Y.M.; Liu, Y.M.; Guo, Z.; Shen, S.N.; Liu, X.M.; Pan, R.L. Saikosaponin D acts against corticosterone-induced apoptosis via regulation of mitochondrial GR translocation and a GR-dependent pathway. *Progress in Neuropsychopharmacology & Biological Psychiatry* **2014**, *53*, 80-89.

7. Zhang, F.; Chen, L.; Jin, H.; Shao, J.; Wu, L.; Lu, Y.; Zheng, S. Activation of Fas death receptor pathway and Bid in hepatocytes is involved in saikosaponin D induction of hepatotoxicity. *Environ. Toxicol. Pharmacol.* **2016**, *41*, 8-13.

- 8. Chen, M.F.; Huang, S.J.; Huang, C.C.; Liu, P.S.; Lin, K.I.; Liu, C.W.; Hsieh, W.C.; Shiu, L.Y.; Chen, C.H. Saikosaponin d induces cell death through caspase-3-dependent, caspase-3-independent and mitochondrial pathways in mammalian hepatic stellate cells. *BMC Cancer* **2016**, *16*, 532.
- 28. Lu, X.L.; He, S.X.; Ren, M.D.; Wang, Y.L.; Zhang, Y.X.; Liu, E.Q. Chemopreventive effect of saikosaponin-d on diethylinitrosamine-induced hepatocarcinogenesis: involvement of CCAAT/enhancer binding protein β and cyclooxygenase-2. *Molecular Medicine Reports* **2012**, *5*, 637-644.
- 29. Liu, A.; Tanaka, N.; Sun, L.; Guo, B.; Kim, J.H.; Krausz, K.W.; Fang, Z.; Jiang, C.; Yang, J.; Gonzalez, F.J. Saikosaponin d protects against acetaminophen-induced hepatotoxicity by inhibiting NF-κB and STAT3 signaling. *Chemico-Biological Interactions* **2014**, *223*, 80-86.
- 31. Hsu, Y.L.; Kuo, P.L.; Lin, C.C. The proliferative inhibition and apoptotic mechanism of Saikosaponin D in human non-small cell lung cancer A549 cells. *Life Sci.* 2004, 75, 1231-1242.
- 32. Lin, X.; Wu, S.; Wang, Q.; Shi, Y.; Liu, G.; Zhi, J.; Wang, F. Saikosaponin-D Reduces H 2 O 2 -Induced PC12 Cell Apoptosis by Removing ROS and Blocking MAPK-Dependent Oxidative Damage. *Cellular & Molecular Neurobiology* **2016**, *36*, 1-11
- 33. Fan, J.; Li, X.; Li, P.; Li, N.; Wang, T.; Shen, H.; Siow, Y.; Choy, P.; Gong, Y. Saikosaponin-d attenuates the development of liver fibrosis by preventing hepatocyte injury. *Biochem Cell Biol.*2007, *85*, 189-195
- 34. Chiang, L.C.; Ng LTLiu, L.T.; Shieh, D.E.; Lin, C.C. Cytotoxicity and anti-hepatitis B virus activities of saikosaponins from bupleurum species. *Planta Medica* 2003, *69*, 705-709.
- 35. Hsu, M.J.; Cheng, J.S.; Huang, H.C. Effect of saikosaponin, a triterpene saponin, on apoptosis in lymphocytes: association with c-myc, p53, and bcl-2 mRNA. *Br. J. Pharmacol.* **2000**, *131*, 1285-1293

- 52. Wong, V.K.W.; Molly Miao, Z.; Hua, Z.; Lam, K.Y.C.; Po Ling, C.; Law, C.K.M.; Yue, P.Y.K.; Liang, L. Saikosaponin-d Enhances the Anticancer Potencyof TNF-*α* via Overcoming Its Undesirable Response of Activating NF-Kappa B Signalling in Cancer Cells. *Evidence-Based Complementray and Alternative Medicine* **2013** 745295
- 53. He, S.; Lu, G.; Hou, H.; Zhao, Z.; Zhu, Z.; Lu, X.; Chen, J.;Wang, Z. Saikosaponin-d suppresses the expression of cyclooxygenase-2 through the phospho-signal transducer and activator of transcription 3/hypoxia-inducible factor-1*α* pathway in hepatocellular carcinoma cells. *Molecular Medicine Reports* **2014**, *10*, 2556.

Protein targets	active compounds
Electroneutral potassium-chloride cotransporter KCC2	2
Regulator of G-protein signaling 4 isoform 2	2
Thyrotropin-releasing hormone receptor	2
D(2) dopamine receptor isoform long	2
D(1A) dopamine receptor	2
Eukaryotic translation initiation factor 4 gamma 1 isoform 4	1
Chain A, Crystal Structure Of The B1b2 Domains From Human Neuropilin-1	1
Mitogen-activated protein kinase 1	1
Corticotropin-releasing hormone receptor 2	1
Nuclear factor NF-kappa-B p105 subunit isoform 1	1
Chain A, Human Ape1 Endonuclease With Bound Abasic Dna And Mn2+ Ion	1
Prothrombin	1
Corticotropin releasing factor-binding protein sapiens	1
Myc proto-oncogene protein	1

Table S3. Targets and its active compounds predicted by SSd and its structural analogues in Pubchem

Number	Uniprot ID	Target name	Gene name
1	P02751	Fibronectin	FN1
2	P01137	Transforming growth factor beta-1	TGFB1
3	P11802	Cell division protein kinase 4	CDK4
4	P05412	Transcription factor AP-1	JUN
5	P01100	Proto-oncogene c-Fos	FOS
6	P01375	Tumor necrosis factor	TNF
7	P05231	Interleukin-6	IL6
8	Q04206	Transcription factor p65	RELA
9	P25963	NF-kappa-B inhibitor alpha	NFKBIA
10	P01106	Myc proto-oncogene protein	MYC
11	P04150	Glucocorticoid receptor	NR3C1
12	P10415	Apoptosis regulator Bcl-2	BCL2
13	P38936	Cyclin-dependent kinase inhibitor 1	CDKN1A
14	P04637	Cellular tumor antigen p53	TP53

Table S4. All the predicted targets of SSd

15	P40763	Signal transducer and activator of transcription 3	STAT3
16	P35354	Prostaglandin G/H synthase 2	PTGS2
17	Q16665	Hypoxia-inducible factor 1-alpha	HIF1A
18	P42574	Caspase-3	CASP3
19	P55210	Caspase-7	CASP7
20	P55211	Caspase-9	CASP9
21	Q07812	Apoptosis regulator BAX	BAX
22	Q16539	Mitogen-activated protein kinase 14	MAPK14
23	Q9H2X9	Electroneutral potassium-chloride cotransporter KCC2	SLC12A5
24	P49798	Regulator of G-protein signaling 4	RGS4
25	P34981	Thyrotropin-releasing hormone receptor	TRHR
26	P14416	D(2) dopamine receptor	DRD2
27	P21728	D(1A) dopamine receptor	DRD1
28	Q04637	Eukaryotic translation initiation factor 4	EIF4G1
29	O14786	Neuropilin-1	NRP1
30	P28482	Mitogen-activated protein kinase 1	MAPK1
31	Q13324	Corticotropin-releasing hormone receptor 2	CRHR2

32	P19838	Nuclear factor NF-kappa-B p105	NFKB1
33	P27695	Ape1 Endonuclease	APEX1
34	P00734	Prothrombin	F2
35	P24387	Corticotropin releasing factor-binding protein	CRHBP

 Table S5. Statistical parameters of the models

Model	R ² X	R ² Y	Q ²
PCA	0.751		0.508
OPLS-DA	0.71	0.963	0.71

No	Compound Name
1	Pantothenate
2	L-Acetylcarnitine
3	LysoPE(18:1)
4	LysoPE(18:2)

Table S6. Differential metabolites relevant to both NRP-1 knockdown and SSd treated

Table S7. Differential metabolites related to NRP-1 knockdown

Number	Compound Name	tr/min	Ion(m/z)	Fold change
1	L-Acetylcarnitine	0.893	204.1212	1.28
2	Propionylcarnitine	1.119	218.1361	1.62
3	Pantothenate	2.39	220.1165	1.25
4	LysoPE(18:2)	19.734	500.2739	-1.42
5	LysoPE(18:1)	21.024	480.3084	-1.63
6	meso-Erythritol	13.179	222.5757	1.31

Number	Compound name	t _ℝ /min	Ion(m/z)	Fold change
1	L-Acetylcarnitine	0.893	204.1212	1.45
2	3-Dehvdrocarnitine	1.213	182.0799	1.41
3	Pantothenate	2.39	220.1165	1.28
4	Hexadecenovl carnitine	17.72	398.325	-7.25
5	LvsoPE(18:2)	18.697	500.2758	-3.32
6	LvsoPC(16:1)	19.262	516.3049	2.39
7	LysoPE(18:1)	19.52	502.2917	-3.84
8	LvsoPE(20:4)	19.969	502.2927	5.55
9	LvsoPE(18:0)	20.25	504.3022	-13.44
10	LysoPE(16:0)	20.293	454.292	-21.26
11	LvsoPC(16:0)	20.718	496.3399	1.40
12	LvsoPC(18:1)	21.198	522.3547	1.41
13	LvsoPC(15:0)	22.432	482.3295	-7.27
14	LvsoPC(18:0)	22.57	524.3712	-10.58
15	PE(15:0/22:5)	28.402	752.5182	17.49
16	PE(15:0/20:3)	28.928	728.5201	4.58
17	PC(18:4/18:1)	29.072	780.5507	-11.10
18	PE(15:0/22:1)	29.406	782.5605	3.07
19	PE(15:0/18:3)	29.658	698.4854	6.76
20	PC(14:0/P-18:0)	29.951	718.5685	11.16
21	PE(20:3/15:0)	30.271	726.5171	1.87
22	PC(16:1/P-18:1)	30.372	742.568	2.00
23	PE(24:1/15:0)	30.762	788.6153	1.31
24	PC(22:4/16:0)	30.775	810.5964	1.60
25	PC(P-18:1/20:3)	30.818	794.6028	14.20
26	PC(20:1/20:4)	30.952	836.6137	3.72
27	PC(18:0/P-18:0)	31,235	796 6173	1.52
<i></i> /	1 - (10.0/1 10.0)	01.200	770.0170	1.04

 Table S8. Differential metabolites related to SSd treated

28	Dodecanoic acid	14.809	140.9265	2.06
29	Galactose	19.435	166.3328	1.66
30	1-Monooleoylglycerol	25.277	212.1432	1.44

Figure S1. The intersections of targets amount from three sources

(d)

Figure S2. The pictures of cell migration assay after NRP-1 knockdown and/or SSd treated. (a) 0h after blank cell culture medium was treated on NC cells; (b) 24h after blank cell culture medium was treated on NC cells; (c) 0h after SSd was treated on NC cells; (d) 24h after SSd was treated on NC cells; (e) 0h after blank cell culture medium was treated on siNRP-1 cells; (f) 24h after blank cell culture medium was treated on siNRP-1 cells; (g) 0h after SSd was treated on siNRP-1 cells; (h) 24h after SSd was treated on siNRP-1 cells; (h) 24h after SSd was treated on siNRP-1 cells; (h) 24h after SSd was treated on siNRP-1 cells; (h) 24h after SSd was treated on siNRP-1 cells; (h) 24h after SSd was treated on siNRP-1 cells; (h) 24h after SSd was treated on siNRP-1 cells.