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Abstract: Density changes produced by pressure increments during melting of a spherically
confined phase-change material have an impact on the thermal energy absorbed by the heat storage
unit. Several authors have assumed incompressible phases to estimate the volume change of the
phase-change material and the thermal balance at the liquid–solid interface. This assumption
simplifies the problem but neglects the contribution of density changes to the thermal energy absorbed.
In this work, a thermal balance at the interface that depends on the rate of change of the densities
and on the shape of the container is found by imposing total mass conservation. The rigidity of the
container is tuned through the coupling constant of an array of springs surrounding the phase-change
material. This way, the behavior of the system can be probed from the isobaric to the isochoric
regimes. The sensible and latent heat absorbed during the melting process are obtained by solving
the proposed model through numerical and semi-analytical methods. Comparing the predictions
obtained through our model, it is found that even for moderate pressures, the absorbed thermal
energy predicted by other authors can be significantly overestimated.

Keywords: phase-change material; micro-encapsulated; thermal energy absorbed; sensible heat;
latent heat

1. Introduction

Phase-change materials (PCMs) have provided an extensive line of research due to their appealing
applications in areas related to renewable energy systems for the reduction of fossil fuel consumption.
These materials are used to provide thermal comfort in homes and buildings by exploiting the
isothermal nature of first-order phase transitions [1–4]. Thermal isolation is provided by using the
latent heat of PCMs to absorb thermal energy during the day and releasing this energy during the
night hours [5,6]. PCMs may be encapsulated in micro-spheres to enhance thermal transport [7],
and may be mixed with the concrete wall in volumetric fractions that do not compromise the
mechanical resistance of constructions [8,9]. High-temperature phase-change materials (HTPCMs)
constitute another type of application, where PCMs with high fusion temperatures are used to store
thermal energy in concentrating solar power (CSP) plants for thermoelectric energy generation [10].
The micro-encapsulated materials are used as a part of the thermal energy storage (TES) unit,
which feeds the thermoelectric plant through a heat-transfer fluid (HTF) during those hours without
sunlight [11]. Enhancement of thermal conductivities to reduce the charging and discharging times on
HTPCMs has also been addressed by studying composite materials [12–14]. Finally, studies on other
enhancement techniques to reduce the duration of the charging–discharging cycles for domestic heat
recovery applications have been addressed as well [15].
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When thermal performance of buildings is achieved by mixing the micro-encapsulated material
within the concrete matrix, the PCM cannot expand freely during the melting process. PCMs are
expected to expand while melting, since most of these materials have lower densities in their liquid
state than in the solid state [15,16]. Volumetric expansion of HTPCMs is also constrained when
encapsulated in metallic shells, since the elastic modulus of the shell is much higher than the bulk
modulus of the PCM in its liquid and solid states [17]. The melting process of the PCM in all these types
of applications takes place near the isochoric regime (constant volume). Thermo-mechanical models
have been developed for encapsulated HTPCMs in spherical configurations [18–21]. These proposals
constitute a first approach for explaining the behavior of PCMs when encapsulated by different
materials. Other authors [22,23], study the one-dimensional liquid–solid phase transition, by coupling
the PCM to a linear spring and assuming incompressible phases. This assumption neglects the effects
of density variations on the behavior of the phase transition. Other authors avoid the effect of density
changes during the phase transition by introducing an air void [21]. More recently, a proposal for
incorporating density changes during the melting process has been developed for a one-dimensional
plane problem [24]. Large differences between the time evolution of the thermodynamic variables
in [18–20,24] are predicted at high pressures.

In this work, we study the effects of pressure-induced density changes, on the thermal energy
absorbed by a micro-encapsulated HTPCM. As mentioned earlier, these type of PCMs are used
as part of the heat storage units for thermoelectric generation during periods without sunlight.
Therefore, the thermal storage capability of the PCM has a direct impact on the efficiency of CSP plants.
The thermo-mechanical model presented in this paper has been elaborated through the key idea of total
and local mass conservation in a spherically confined PCM. Our proposal leads to an estimation of the
sensible heat, latent heat, and total heat absorbed by the PCM that presents significant differences when
compared to the predictions of other authors [18–20,22,23]. Through mass conservation, an extra term
that depends on the shape of the container and the rate of density changes, will be shown to appear
on the thermal balance at the interface. To the authors knowledge, this term has been overlooked or
neglected by other authors [18–20,22,23]. We will show that depending on the mechanical properties
of the container, this term represents a small perturbation, or it may have a significant contribution to
the thermal energy absorbed by the PCM.

First, to validate the proposed solutions, an isochoric limit will be presented. In this limit,
the container is completely rigid and through mass conservation, exact analytical expressions for
the dynamic and thermodynamic variables will be found. An implicit finite difference method
(FDM) and a refined heat balance integral method (RHBIM) will be developed to solve the proposed
model. The numerical and semi-analytical solutions will be validated through the isochoric limit,
by probing the phase transition from the isobaric (constant pressure) to the isochoric regimes.
The thermo-mechanical models proposed by other authors [18–20,22,23] are well behaved close to the
isobaric regime; however, it will be shown that these models are unable to reproduce the isochoric limit.
Finally, the contributions from density changes to the thermal energy absorbed, will be determined
by comparing the proposed solutions with the predictions from other authors. It will be shown that
sensible heat must be conceived in four stages, where mass conservation plays a key role. For the
chosen PCM, examples will be presented, where the absorbed thermal energy is overestimated by other
authors. The difference in the absorbed thermal energy according to the numerical and semi-analytical
solutions to both models is observed to grow significantly with the rigidity of the container.

2. Results and Discussion

2.1. Description of the Physical System

The system under study consists of an encapsulated PCM in a spherical shell of radius R(t) at
any time t, where liquid and solid phases coexist, so that the liquid–solid interface at any time t is
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located at r = r(t). The boundary of the spherical configuration located at r = R(t) is attached to a set
of springs as shown in Figure 1. The system is subjected to the following boundary conditions

T`(r, t)
∣∣
r=R(t) = TH,

λs
∂ Ts(r,t)

∂ r

∣∣
r=0 = 0,

T`(r, t)
∣∣
r=r(t) = Ts(r, t)

∣∣
x=r(t) = Tf (t),

(1)

where λs is the thermal conductivity of the solid phase and T`(r, t)
(
Ts(r, t)

)
is the temperature

distribution in the liquid(solid) phase at any instant t. The temperature TH at the surface of the
PCM is always above the fusion temperature Tf (t). Then, the chosen boundary conditions will
produce melting of the PCM so that r(t) moves inwards as shown in Figure 1. Within the temperature
range that will be considered, thermal expansion effects can be neglected. This assumption implies
that pressure will be distributed uniformly along the PCM. The stiffness of the spring array shown in
Figure 1 will be tuned through the spring constant ks to study the behavior of the system.

Figure 1. Schematic representation of the time evolution of the melting process. As time evolves,
the radius of the solid phase r(t) moves inwards and the system size R(t) increases.

2.2. Energy-Mass Balance at the Interface and Heat-Transfer Mechanism

In this part of the present section, the energy-mass balance equation (EMB) at the interface and
the proposed model for heat transfer, will be presented for a melting process when the PCM is under
mechanical stress. In [18–20], the solid phase is assumed to be incompressible. Then, the effects of
density changes in the solid, caused by the pressure increment within the PCM can be neglected.
In this work, the assumption of incompressible phases [22,23] will be relaxed by coupling the mass
conservation of the liquid–solid system with the thermal balance at the interface. First, the melted
mass of solid ∆Ms over a small time interval ∆t, can be obtained by realizing that ∆Ms is transformed
into liquid. Additionally, if the total mass of the system is conserved:

∆Ms = M`(t + ∆t)−M`(t), (2)

where M`(t + ∆t) is the mass of liquid at t + ∆t, after the melted solid ∆Ms(t) is added to the initial
mass of liquid M`(t). Therefore, the thermal energy needed to melt the mass of solid ∆Ms within
a small time interval ∆t is given by

L f (t)
dM`(t)

dt = 4 π L f (t) r2(t) σ`, where

σ` = ρ`(t)
(

R2(t)
r2(t)

dR(t)
dt −

dr(t)
dt

)
+ 1

3
dρ`(t)

dt

(
R3(t)
r2(t)
− r(t)

)
.

(3)
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Here M`(t) = 4 π ρ`(t)
(

R3(t)− r3(t)
)
/3 has been used. The right-hand side of the last equation

is equal to the net heat flux at r = r(t). Then, the following EMB equation at the interface is obtained:

L f (t) σ`=λ`
∂ T`(r, t)

∂ r
∣∣
r=r(t) − λs

∂ Ts(r, t)
∂ r

∣∣
r=r(t) , (4)

where λ`(λs) is the thermal conductivity of the liquid(solid) phase.
Imposing mass conservation to the entire PCM, another equation for the densities and dynamical

variables of motion can be obtained as follows

dMPCM(t)
dt = r2(t)

(
σs + σ`

)
= 0, where

σs = ρs(t)
dr(t)

dt + 1
3

dρs(t)
dt r(t).

(5)

Using this expression, Equation (4) can be written in terms of the density of the solid as

L f (t) σs = −λ`
∂ T`(r, t)

∂ r
∣∣
r=r(t) + λs

∂ Ts(r, t)
∂ r

∣∣
r=r(t). (6)

This equation is equivalent to the EMB Equation (4) as long as mass conservation is imposed.
The pressure increment ∆P within the liquid is equal to the increment in pressure within the solid
phase. Using the bulk modulus of each phase [24], a relation between the densities in both media is
given by:

B`

(
ρ`(t + ∆t)− ρ`(t)

ρ`(t + ∆t)

)
= Bs

(
ρs(t + ∆t)− ρs(t)

ρs(t + ∆t)

)
, (7)

where B`(Bs) is the bulk modulus of the liquid(solid) phase. The pressure increment at any time t can
be obtained from the liquid or solid deformation given by the last equation, as follows

∆P = B`

(
ρ`(t)− ρ`(0)

ρ`(t)

)
or ∆P = Bs

(
ρs(t)− ρs(0)

ρs(t)

)
. (8)

The deformation that each medium experiences during the phase transition is coupled to the
elastic properties of the spring array surrounding the spherical configuration, which is assumed to
obey Hooke’s law. Then, the deformation of the liquid phase coupled to the elastic constant of the
springs is given by:

B`

(
ρ`(t + ∆t)− ρ`(t)

ρ`(t + ∆t)

)
= k̃s

R(t + ∆t)− R(t)
R0

, (9)

where k̃s = ks Ns R0 which will be expressed in multiples of B`, and R0 is the initial radius
of the PCM. Ns is the concentration of springs over the surface of the system. Changing this
parameter, will allow the probing of the behavior of the phase transition for different pressure regimes.
Equations (4), (5), (7) and (9) or alternatively, Equations (5), (7) and (9) constitute a set of nonlinear
equations for the dynamical variables r(t) and R(t), and the densities of each phase.

The liquid–solid saturation line is obtained through a second order approximation in ∆P and
∆Tf of the free energy change as described in [18]. In this approximation the fusion temperature is
given by:

∆Tf = −b+
√

b2−4 a c
2 a with

a = 1
2 Tf (0)

(
C` − Cs

)
,

b =
L f (0)
Tf (0)

−
(

α`
ρ`(0)
− αs

ρs(0)

)
∆P,

c = 1
2

(
K`

ρ`(0)
− Ks

ρs(0)

)
∆P2 −

(
1

ρ`(0)
− 1

ρs(0)

)
∆P,

(10)
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where ∆Tf = Tf (t)− Tf (0). K`(Ks) is the compressibility of the liquid(solid) phase, which can be
obtained as the inverse of the bulk modulus; α`(αs) is the liquid(solid) thermal expansion coefficient
and C`(Cs) is the specific heat capacity of the liquid(solid) phase. Then, the latent heat of fusion can be
obtained as follows [18]

L f (t) = L f (0)
Tf (t)
Tf (0)

+ (C` − Cs)∆Tf
Tf (t)
Tf (0)

− Tf (t)∆P
(

α`
ρ`(0)

− αs

ρs(0)

)
. (11)

The heat equation for any phase i = liquid(solid) that is consistent with local mass
conservation [24,25] is given in spherical coordinates as

ρi(t)Ci
∂ Ti(r, t)

∂ t
= λi

1
r2

∂

∂ r

(
r2 ∂ Ti(r, t)

∂ r

)
. (12)

Finally, the heat equation presented in [18–20], and given by:

Ci
∂
(
ρi(t) Ti(r, t)

)
∂ t

= λi
1
r2

∂

∂ r

(
r2 ∂ Ti(r, t)

∂ r

)
, (13)

will be used to describe the heat transfer within each phase according to the theory presented in [18].

2.3. Absorbed Sensible and Latent Heat

Sensible heat is absorbed through four different stages that will be described briefly. Mass
conservation also plays a key role when considering the thermal energy absorbed by the PCM. This
process has been studied for isobaric phase transitions [25]; however, the mechanism by which sensible
heat is absorbed in this case is completely different, since the liquid–solid saturation curve must be
considered in the process. The heat that enters the PCM between t and t + ∆t is absorbed as sensible
heat in the following stages:

(a) The mass of solid that will not experience a phase transition between t and t + ∆t absorbs part of
the heat by changing its temperature from Ts(r, t) to Ts(r, t + ∆t),

(b) The mass of solid ∆Ms absorbs heat before changing to its liquid form by raising its temperature
from Ts(r, t) to the fusion temperature Tf (t),

(c) Once transformed to its liquid form, ∆Ms absorbs sensible heat by changing its temperature
from Tf (t + ∆t) to T`(r, t + ∆t). At this point, the fusion temperature has changed according to
Equation (10), since the inner pressure increases after the phase transition,

(d) The original mass of liquid at time t absorbs heat by increasing its temperature from T`(r, t) to
T`(r, t + ∆t).

For each of the processes described above, the absorbed sensible heat will be obtained through
the internal energy change. During the first stage, the mass of solid that does not experience a phase
transition within the time interval ∆t is equal to Ms(t + ∆t) = Ms(t)− ∆Ms. The internal energy
change experienced by this mass is given by:

∆Ua = 4 π Cs

(
ρs(t + ∆t)

r(t+∆t)∫
0

Ts(r, t + ∆t) r2 dr− ρs(t)
rs∫

0

Ts(r, t) r2 dr
)

, (14)

where rs is the radius at time t of the solid sphere with mass Ms(t + ∆t) and the interface position
r(t + ∆t) is the radius of this same mass of solid at time t + ∆t. Then, applying mass conservation to
Ms(t + ∆t) between t and t + ∆t, the value of rs can be obtained as

rs = r(t + ∆t)
(

ρs(t + ∆t)
ρs(t)

)1/3

. (15)
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During the second stage, the mass of solid ∆Ms is distributed along a spherical shell that occupies
a volume equal to ∆Vs = 4 π

(
r3(t)− r3

s
)
/3, before the phase transition. Therefore, the internal energy

change experienced by this mass of solid is given by

∆Ub = Cs ∆Ms Tf (t)− 4 π Cs ρs(t)

r(t)∫
rs

Ts(r, t) r2 dr. (16)

After the phase transition, the pressure has changed and the fusion temperature has increased to
Tf (t + ∆t). Therefore, the internal energy change experienced by the melted mass ∆Ms is given by:

∆Uc = 4 π C` ρ`(t + ∆t)
r`∫

r(t+∆t)

T`(r, t + ∆t) r2 dr− C` ∆Ms Tf (t + ∆t), (17)

where r` − r(t + ∆t) is the thickness of a spherical shell with mass ∆Ms, in its liquid form. The melted
mass ∆Ms = Ms(t)−Ms(t + ∆t) can be found in terms of ρs(t) and ρs(t + ∆t). Additionally, using
the volume of the liquid shell associated with this mass, the value of r` can be obtained as follows

r` =

(
ρs(t)

ρ`(t + ∆t)
r3(t)−

(
ρs(t + ∆t)
ρ`(t + ∆t)

− 1
)

r3(t + ∆t)

)1/3

. (18)

Finally, the mass of liquid present in the system at time t, experiences the following change of
internal energy

∆Ud = 4 π C`

(
ρ`(t + ∆t)

R(t+∆t)∫
r`

T`(r, t + ∆t) r2 dr− ρ`(t)

R(t)∫
r(t)

T`(r, t) r2 dr
)

. (19)

Adding the contributions from Equations (14), (16), (17) and (19), the absorbed sensible heat is
obtained. The energy absorbed as latent heat within the time interval ∆t is given by

∆Q f = L f (t)∆Ms. (20)

The total heat absorbed by the PCM is obtained by adding the results from Equations (14), (16),
(17), (19) and (20) as follows

∆Q = ∆Ua + ∆Ub + ∆Uc + ∆Ud + ∆Q f . (21)

2.4. Initial Conditions

The results obtained from the numerical and semi-analytical methods applied to the proposed
model, will be presented in two parts. First, we will obtain the pressure, density, and liquid–solid
saturation line for the nitrate salt considered [18], in a wide range of pressures where the approximation
established by Equations (10) and (11) is valid. Initially, the spherical configuration will be almost in its
solid state with a very thin liquid layer surrounding the solid, and the melting process will be studied
until practically all the solid has melted. Next, we will present the results for the sensible heat, latent
heat, and total energy absorbed by the salt, for different values of the spring constant. The absorbed
thermal energy obtained with the proposed model, will be compared with the results predicted by the
thermo-mechanical model presented in [18].

All the results that will be presented in this section correspond to a PCM confined in a spherical
configuration with an initial radius of R(0) = 1.0 mm. The solid phase is centered at the origin
and has an initial radius of r(0) = 0.99 mm. The solid is surrounded by a thin liquid layer of
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R(0) − r(0) = 0.001 mm of thickness. Initially, the inner pressure of the system is P(0) = 1 atm.
The temperature at the surface of the PCM is fixed at TH = 550 K. The net heat flux vanishes at the
origin of the configuration according to Equation (1), and initially the temperature at r = 0 is equal
to TC = 420 K. Large values of the bulk modulus of the solid phase Bs will be assumed, to compare
the predicted results from the proposed model, with the results from the model introduced in [18].
The thermodynamic variables at 1 atm of pressure are given in Table 1. Pressure-induced changes in
the thermal conductivities, specific heat capacities, bulk modulus, and thermal expansion coefficients
are neglected.

Table 1. Thermodynamic data for the nitrite salt KNO3/NaNO3 at 1 atm [18].

State Property Salt

Liquid ρ`(0) (kg/m3) 2096.0
C` (kJ/kg ·K) 1.500
k` (W/m ·K) 0.80

α` (1/K) 3.7× 10−4

B` (Pa) 5.38× 109

Solid ρs(0) (kg/m3) 2192.0
Cs (kJ/kg ·K) 1.430
ks (W/m ·K) 1.0

αs (1/K) 0
Bs (Pa) 5.38× 1015

Liquid–Solid Tf (0) (K) 496.15
L f (0) (kJ/kg) 105.0

2.5. Numerical and Semi-Analytical Results: Isobaric and Isochoric Regimes

The authors in [18] assume an incompressible solid. In this approximation, the proposed thermal
balance at the interface is given by [18]:

L f (t)ρs(t)
dr(t)

dt
= −λ`

∂ T`(r, t)
∂ r

∣∣
r=r(t) + λs

∂ Ts(r, t)
∂ r

∣∣
r=r(t). (22)

which neglects the form factor given by Equation (6). The model presented in [18], estimates the
volume change of the PCM in terms of the volumetric fraction of melted solid as follows:

∆V = VPCM(t)−VPCM(0) = Vs(0)
(

ρs(0)
ρ`(0)

− 1
)

fv, (23)

where fv =
(
Vs(0) − Vs(t)

)
/Vs(0) is the volumetric fraction of melted solid. In this equation, the

changes in the liquid and solid densities are neglected; therefore, it will only be valid when the
transition takes place for k̃s � B`, which is close to the isobaric regime. Then, the thermal balance
at the interface given by Equation (22), total volume expansion described by Equation (23) and
Equations (9)–(11) and (13) represent the thermo-mechanical model proposed in [18–20].

The solutions to the model introduced in [18] and the proposed model in this work, will be
compared for several values of k̃s. Although the model proposed in this work does not need to assume
an incompressible solid, Bs � B` and Bs � k̃s will be assumed, to compare our results with the model
proposed in [18]. For each value of the spring constant, the melting process will be studied until the
mass fraction of melted solid is fs =

(
Ms(0)−Ms(tmax)

)
/Ms(0) = 0.999. The density of the liquid,

the inner pressure, the fusion temperature and latent heat of fusion will be obtained from both models
at full melting fractions and for several values of k̃s. An isochoric limit will be derived to establish
the validity of the solutions to each model. In this limit k̃s � B`, and the volume of the spherical
configuration does not change during the phase transition. At full melting, it is possible to obtain the
density of the liquid for an isochoric transition by using mass conservation. When the total mass is
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conserved, the initial mass of the PCM MPCM(0) is equal to the total mass at full melting MPCM(tmax).
Additionally, when the solid melts at constant volume, R(0) = R(tmax). Then, the maximum possible
value for the density of the liquid ρ∗` = ρ`(tmax) in this limit is given by

ρ∗` = ρ`(0)
(
1 + δr δρ

)
, where δr =

(
r(0)
R(0)

)3

and δρ =

(
ρs(0)
ρ`(0)

− 1
)

. (24)

The inner pressure in this limit is obtained by substituting Equation (24) in Equation (8); therefore,
the isochoric limit for the inner pressure is given by

P∗ = P(0) + B`
δr δρ

1 + δr δρ
(25)

The isochoric values at full melting fractions for the fusion temperature and latent heat of fusion
are obtained by substituting ∆P∗ = P∗ − P(0) in Equations (10) and (11). Figure 2, shows the results
obtained for the liquid density and inner pressure at mass fractions fs = 0.999 of melted solid and
for a wide range of spring constant values k̃s = [0.02 B`, 1000 B`]. This range of k̃s has been chosen to
probe the phase transition from the isobaric to the isochoric regimes and to check the validity of the
proposed model through the isochoric limits given by Equations (24) and (25).

Figure 2. (a) Liquid density and (b) inner pressure at fs = 0.999. Numerical and semi-analytical
solutions to the proposed model are shown in pink and blue symbols. The solutions to the model
described in [18] are shown in green and red symbols. The dashed line corresponds to the asymptotic
values for the density of the liquid ρ∗` and inner pressure P∗.

The results shown in Figure 2 confirm that the model proposed in this work is consistent with the
isochoric limit and is well behaved near this regime. Since Equations (22) and (23) are valid for weak
couplings or small values of k̃s, where density changes can be neglected, the approximation presented
in [18] is observed to be in good agreement with the model proposed in this work. In this regime, the
form factor in Equation (4) and density variations are just a small perturbation to the solution of the
proposed model. However, as illustrated in Figure 2, when the spring constant k̃s is increased and the
phase transition deviates from the isobaric regime, the solutions to the model proposed in [18] start to
diverge from the isochoric limit given by Equations (24) and (25).

In Figure 3, the results for L f and Tf at melted solid fractions of fs = 0.999 are shown.
The temperature of fusion and latent heat of fusion are very important thermodynamic variables when
estimating the total heat absorbed by the PCM during the melting process. Therefore, the solutions
obtained from the proposed model for these thermodynamic variables are also validated through the
isochoric limit found by substitution of ∆P∗ = P∗ − P(0) in Equations (10) and (11). As illustrated in
Figure 3, the numerical and semi-analytical solutions to the model proposed in this work, also show
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a good agreement with the liquid–solid saturation point in this limit. Also as expected, the solutions to
the thermo-mechanical model presented in [18] are well behaved in the isobaric regime but tend to
diverge from the isochoric limit as the spring constant k̃s is increased.

Figure 3. (a) Latent heat of fusion and (b) fusion temperature for fs = 0.999. Numerical and
semi-analytical solutions to the proposed model are shown in pink and blue symbols, and the solutions
to the model presented in [18] are shown in green and red symbols. The isochoric limits for T∗f and L∗f
are shown with a dashed line.

Equation (23) is a statement of mass conservation for isobaric transitions, and it can be obtained
from Equation (5), when density variations are neglected. The interpretation of the large differences
between the two models for P ≥ 50 MPa as observed in Figure 2 can be inferred from the principle of
mass conservation. Equation (5) can be expressed in terms of the total volume change experienced by
the PCM during the melting process. Assuming that ρs does not change with pressure increments and
keeping only first-order terms in ∆ρ` = ρ`(t)− ρ`(0), the volume change according to Equation (5) is
given by

∆V = Vs(0)

[(
ρs(0)
ρ`(0)

− 1
)
−
(

ρs(0)
ρ`(0)

∆ρ`
ρ`(0)

)]
fv. (26)

The first term on this equation is exactly the volume expansion used in [18], as expressed
through Equation (23). The second term represents the contribution to ∆V from the change of density
experienced by the liquid phase. On the one hand, it is expected that for negligible density changes,
both models show a good agreement for k̃s � B`, as illustrated in Figure 2. On the other hand,
for moderate and high values of k̃s, the contribution to ∆V from the change of density ∆ρ` is not
negligible. Within this regime, it is expected that the volume change according to Equation (23), leads
to solutions with significant deviations from mass conservation. The mass of the PCM was obtained
for fs = 0.999 and every value of k̃s considered in Figures 2 and 3. According to the model proposed
in [18], additional mass is created at moderate and large values of k̃s as observed in Figure 4. The total
mass values shown in Figure 4 were calculated through the RHBIM by solving the model proposed
in [18] and shown in red squares, and the proposed model in this work, whose solutions are shown in
blue squares. Each symbol corresponds to the total mass of the PCM at melting fractions of fs = 0.999
and for every value of the elastic constant k̃s considered in Figures 2 and 3.
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Figure 4. Total mass of the salt for solid melting fractions of fs = 0.999, according to the solutions from
each model discussed in this work and obtained through the RHBIM.

Finally, the isochoric limit established through Equation (24) has been used to obtain the maximum
pressure increment ∆Pmax where the approximation to the liquid–solid saturation line is valid.
According to Equation (24), if the initial radius of the solid sphere r(0) is equal to R(0) (the PCM is
initially in its solid phase), ρ∗` = ρs(0) in the isochoric limit. This establishes an upper bound for ρ`
at full melting. On the one hand, at moderate values of k̃s = 3.5 B`, the semi-analytical solution to
the model introduced in [18] for ρ` at melted solid fractions of fs = 0.999 is ρ` = 2205.77 kg/m3,
where the corresponding pressure is Pmax = 267.67 MPa. This value is above the established
boundary of ρ∗` = 2192.00 kg/m3. On the other hand, the solution for k̃s = 3.0 B` at fs = 0.999
is ρ` = 2189.75 kg/m3, which lies below ρ∗` = ρs(0). The corresponding pressure at this value of k̃s

is Pmax = 230.27 MPa. This criterion was used to establish a maximum value of k̃s, above which the
thermo-mechanical model introduced in [18] has no applicability.

From the above discussion it follows that for the type of PCM studied in this work, we cannot
consider pressure increments above ∆Pmax = 230.1687 MPa. Additionally, at these pressure increments,
the first-order terms in ∆P that appear in the approximation for the liquid–solid saturation temperature
given by Equation (10) still dominate over the second order terms. Then, we will assume that the
approximation given by Equation (10) is still valid for ∆Pmax = 230.1687 MPa. According to the
numerical and semi-analytical results shown in Figure 2, the proposed model in this work is well
behaved within the pressure regime where the approximation to the liquid–solid saturation line is
valid. Even at high values of k̃s = 1000 B`, the numerical and semi-analytical solutions to our model,
approach asymptotically to the isochoric limit given by Equations (24) and (25).

2.6. Numerical and Semi-Analytical Results: Absorbed Thermal Energy

In this section, the results obtained for the sensible and latent heat absorbed by the PCM will be
presented. The thermal energy absorbed during the melting process ∆Q is obtained through the stages
previously discussed. For large values of k̃s, the pressure increments obtained through the model
presented in [18] lie outside the pressure domain, where the approximation given by Equation (10) is
valid. Therefore, to compare the results of this work, with the model introduced in [18], only weak and
moderate values of the spring constant will be considered.

In Figure 5, the sensible heat, latent heat, and total thermal energy absorbed by the PCM is shown
for small values of k̃s where the transition is within the isobaric regime. The solutions obtained through
the numerical and semi-analytical methods applied to both models are used to estimate the total energy
according to Equations (14), (16), (17) and (19)–(21). The index (o) and (p) corresponds to the model
proposed by other authors and the model proposed in this paper, respectively. The maximum pressure

according to the model used by other authors P(o)
max and the proposed model P(p)

max for fs = 0.999 is also
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shown. In this figure, only the FDM solutions to the thermal energy absorbed by the PCM are shown.
In all cases illustrated in Figure 5, the absorbed energy is obtained as a function of fs, within a range of
melted solid mass fraction, fs = [0, 0.999].

Figure 5. Absorbed energy for: (a) k̃s = 0.02 B` and (b) k̃s = 0.5 B`. Sensible heat (∆U), latent heat
(∆Q f ), and total energy (∆Q) absorbed by the nitrate salt during a melting process are shown for each
value of k̃s. Continuous and dotted lines correspond to the FDM solutions obtained from the model
introduced in [18] and the proposed model, respectively.

As illustrated in Figure 2, the model presented in [18] estimates larger pressure increments for
moderate values of k̃s, when compared to the proposed model. According to this result, it is expected
that the latent heat of fusion drops faster at these values of k̃s than the thermo-mechanical model
proposed in this work. This behavior is observed in Figure 3. Therefore, the solution to the model
introduced in [18] is expected to underestimate the latent heat absorbed by the nitrate salt for moderate
values of k̃s, when compared to the proposed model. This effect is more evident in Figure 6, and
for k̃s = 3 B`, where the FDM solution to ∆Qo

f according to the model proposed in [18] (plotted as

a continuous red line) lies slightly below the FDM solution to ∆Qp
f obtained from the proposed model

(plotted as a black dotted line). Even though, the relative percent difference (RPD) between the inner
pressures predicted by each model for fs = 0.999 and k̃s = 3 B` is practically 100%, the corresponding
RPD in the latent heat absorbed is 3.36%. Then, for this type of PCM, the difference between in ∆Q f
between both models may not be significant.

Although there is a small difference in the predictions for the latent heat absorbed by the PCM,
large differences are observed in the sensible heat absorbed, as illustrated in Figure 6. Additionally,
large differences in the maximum pressures are observed, since the phase transition for the values of
k̃s considered in this figure is well outside the isobaric regime. The difference in ∆U between both
models is related to mass conservation. In Figure 4, it is shown that the solution to the model proposed
in [18] tends to create mass. This effect is more evident for higher values of k̃s. Then, compared to the
model proposed in this work, more energy is stored as sensible heat according to the model introduced
in [18]. In this case, to produce a given increment in the temperature of the PCM requires more energy,
because there is more mass to store sensible heat. The expected behavior is shown in Figure 6, where
the absorbed sensible heat according to the model proposed in [18] (plotted as a continuous blue line)
overestimates the absorbed sensible heat obtained with the solutions of the model proposed in this
work (plotted with a dotted brown line).



Molecules 2019, 24, 1254 12 of 19

Figure 6. (a) k̃s = 1.00 B` and (b) k̃s = 3.00 B`. Sensible heat (∆U), latent heat (∆Q f ), and total energy
(∆Q) absorbed by the nitrate salt for each value of k̃s shown in this figure.

In Tables 2 and 3, the RPD for ∆Q is shown. The RPD was obtained from the numerical and
semi-analytical solutions for the total energy absorbed, and it is defined as:

RPD =
∆Q(o) − ∆Q(p)

∆Q(p)
× 100%, (27)

where ∆Q(o) corresponds to the thermal energy absorbed according to other authors [18–20], and
∆Q(p) is the corresponding solution for the thermal energy according to the model proposed in this
work. The RPD and the values for the absorbed energy at different melted solid fractions are shown in
Tables 2 and 3. For small values of the spring constant k̃s, the solid melts within the isobaric regime as
illustrated in Figure 5. Within this domain of pressures, we expect to observe small values of the RPD,
as shown in Table 2.

Table 2. Calculated values of ∆Q at different melted solid fractions fs.

k̃s = 0.02 B`

RHBIM FDM

fs ∆Q(o), (J) ∆Q(p) (J) RPD % ∆Q(o) (J) ∆Q(p) (J) RPD %

0.200 0.322851 0.322751 0.031009 0.329669 0.329570 0.030014
0.400 0.750799 0.750426 0.049719 0.749478 0.749107 0.049590
0.600 1.151147 1.150360 0.068445 1.149879 1.149091 0.068530
0.800 1.500673 1.499320 0.090199 1.500158 1.498806 0.090224
0.999 1.952634 1.950478 0.110516 1.931832 1.929690 0.110999

k̃s = 0.50 B`

RHBIM FDM

fs ∆Q(o) (J) ∆Q(p), (J) RPD % ∆Q(o) (J) ∆Q(p) (J) RPD %

0.200 0.328046 0.325425 0.805233 0.335435 0.332826 0.784106
0.400 0.771019 0.760911 1.328459 0.769567 0.759496 1.325984
0.600 1.184663 1.163518 1.817271 1.183411 1.162257 1.820062
0.800 1.544538 1.509094 2.348696 1.544044 1.508598 2.349626
0.999 1.993065 1.944339 2.506055 1.981092 1.927143 2.799454



Molecules 2019, 24, 1254 13 of 19

Table 3 shows the RPD in the energy absorbed, which is illustrated in Figure 6. The RPD between
the two models according to the RHBIM and the FDM is calculated at several melted solid fractions fs.
According to the results illustrated in Figures 2 and 3, significant differences between ∆Q(o) and ∆Q(p)

are expected in this pressure domain.

Table 3. Calculated values of ∆Q for k̃s = B` and k̃s = 3 B`.

k̃s = B`

RHBIM FDM

fs ∆Q(o), (J) ∆Q(p) (J) RPD % ∆Q(o) (J) ∆Q(p) (J) RPD %

0.200 0.333506 0.328038 1.667047 0.341453 0.335974 1.630623
0.400 0.791873 0.770294 2.801517 0.790260 0.768759 2.796869
0.600 1.218525 1.174065 3.786892 1.217289 1.172801 3.793311
0.800 1.588553 1.515688 4.807451 1.588082 1.515206 4.809648
0.999 2.050789 1.943153 5.539260 2.031265 1.923613 5.596347

k̃s = 3.0 B`

RHBIM FDM

fs ∆Q(o) (J) ∆Q(p), (J) RPD % ∆Q(o) (J) ∆Q(p) (J) RPD %

0.200 0.355787 0.336985 5.579661 0.365541 0.346518 5.489847
0.400 0.871734 0.796825 9.400960 0.869372 0.794792 9.383609
0.600 1.340701 1.198014 11.910236 1.339509 1.196714 11.932198
0.800 1.744361 1.525478 14.348484 1.743959 1.525026 14.356043
0.999 2.235443 1.927275 15.989813 2.218157 1.908944 16.198151

3. Numerical and Semi-Analytical Methods

The proposed model described by Equations (4), (5), (7) and (9)–(12) is solved through a second
order FDM and the semi-analytical RHBIM. Also, the thermal balance at the interface and volume
expansion given by Equations (22) and (23), and Equations (9)–(11) and (13) which represent the
model proposed in [18–20] are solved through the numerical and semi-analytical methods. All these
methods were implemented in our own Fortran codes and Maple for mathematical manipulation of
long expressions. Figure 1 was created with the Inkskape drawing software and graphs shown in
Figures 2–6, were produced by using the OriginLab software.

The initial temperature profile considered is a second order polynomial in r that satisfies the
boundary conditions given by Equation (1), and the following initial conditions

Ts(0, 0) = TC, T`(R(0), 0) = TH,
∂ Ts(r, 0)

∂ r

∣∣∣∣∣
r=0

= 0 and
∂ T`(r, 0)

∂ r

∣∣∣∣∣
r=R(0)

= 0. (28)

The initial temperature distribution in the liquid and solid phase is given by the following second
order polynomials

Ts(r, 0) = as(0)
(
r− r(0)

)
+ bs(0)

(
r− r(0)

)2
+ Tf (0), with 0 ≤ r ≤ r(0) and

T`(r, 0) = a`(0)
(
r− r(0)

)
+ b`(0)

(
r− r(0)

)2
+ Tf (0), with r(0) ≤ r ≤ R(0).

(29)

Here, the coefficients at phase i = `(s) liquid(solid), ai and bi can be determined by applying
the boundary conditions and initial conditions given by Equations (1) and (28), respectively. The
fusion temperature Tf (0), corresponds to the value of the liquid–solid saturation temperature at 1 atm
of pressure.
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After performing the time discretization in both methods, Equations (4), (5), (7) and (9) constitute
a set of nonlinear equations for the dynamical variables of motion r(t) and R(t), and the densities of
each phase. The time discretized EMB equation at the interface is then, given by:

nL f

[
nρ`

( nR2

nr2

n+1R− nR
∆t

−
n+1r− nr

∆t

)
+

1
3

n+1ρ` − nρ`
∆t

( nR2

nr2
nR− nr

)]
= q̇

(nr
)
, (30)

where nr
(n+1r

)
, nR

(n+1R
)

and nρ`
(n+1ρ`

)
are the interface position, radius of the sphere, and liquid

density at the nth(nth + 1) time level. Also, in Equation (30), the net heat flux per unit area at the
interface has been defined as

q̇
(nr
)
= λ`

∂ T`(r, t)
∂ r

∣∣
r=r(t) − λs

∂ Ts(r, t)
∂ r

∣∣
r=r(t). (31)

The heat flux q̇
(nr
)

is obtained by using a fourth order approximation in ∆r to the spatial
derivative when using the FDM [26]. The semi-analytical approach is to estimate q̇

(nr
)
, through

continuous temperature distributions [26]. The equation for mass conservation (5) is discretized
as follows:

dMPCM(t)
dt = nr2

[
nρs

n+1r−nr
∆t + 1

3
n+1ρs−nρs

∆t
nr + nρ`

(
nR2

nr2
n+1R−nR

∆t − n+1r−nr
∆t

)

+ 1
3

n+1ρ`−nρ`
∆t

(
nR2

nr2
nR− nr

)]
= 0,

(32)

where nρs
(n+1ρs

)
is the density of the solid phase at the nth(nth + 1) time level. Finally, the

deformation of each phase (7), and the coupling between the liquid and spring array deformation (9)
are discretized as:

B`

( n+1ρ` − nρ`
n+1ρ`

)
= Bs

( n+1ρs − nρs
n+1ρs

)
, (33)

and

B`

( n+1ρ` − nρ`
n+1ρ`

)
= k̃s

n+1R− nR
R0

. (34)

The same discretization is used to solve the model introduced in [18]. In this case, the dynamic
variables and the density of the liquid are uncoupled, since density changes are neglected in the
thermal balance at the interface and in the estimation of ∆V. Then, the interface position can be solved
directly from Equation (22) as follows

n+1r = nr +
q̇
(nr
)

nL f ρs
. (35)

From the volume change given by Equation (23), the radius of the PCM is given by:

n+1R =

[
nR3 +

(
ρs

ρ`(0)
− 1
)(nr3 − n+1r3)]1/3

, (36)

where the interface position at the nth + 1 time level can be substituted from Equation (35). Equation (33)
is not necessary, given that in this approximation the solid is assumed to be incompressible. Finally,
the density of the liquid phase can be solved from Equation (34).
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The solutions for nr, nR, nρ` and nρs are used to obtain the pressure increment n∆P = nP− Patm at
the nth time level. Finally, the estimated pressure increment according to each model is used to obtain
the fusion temperature nTf and the latent heat of fusion nL f from Equations (10) and (11), respectively.

3.1. FDM

The difference between the numerical and semi-analytical methods used in this work, lies in the
way in which the temperature field is estimated. The spatial derivatives that appear in Equations (12)
and (13) are approximated up to second order terms in ∆r. An implicit finite difference scheme is
used [26], with a backward difference definition for the time derivatives that appear in Equations (12)
and (13). The liquid(solid) phase domain is discretized by using a mesh with a constant number of
nodes M1 + 1(M2 + 1). Additionally, the mesh is moved according to the dynamics of the interface
and the system size [26]. A central definition for the first and second order spatial derivatives is used,
so a system of M1(M2) equations for the temperature n+1,mT`(n+1,mTs) at each node is obtained [27].
The mesh size for the FDM used in this work was chosen with 161(161) nodes in the liquid(solid)
phase. For a solid sphere with an initial radius of r(0) = 0.99 mm and a liquid shell with a thickness of
0.001 mm, the initial spatial step ∆r in the solid(liquid) is 0∆rs = 6.19µm (0∆r` = 0.0063µm). The time
step used in the simulations was ∆t = 0.5µs.

3.2. RHBIM

The RHBIM used in this work has been fully described elsewhere [24,25,28,29] for one-dimensional
problems in rectangular coordinates. However, a brief description of the methodology used in this
work will be given. The solid sphere and liquid shell are divided in M and N regions, respectively.
Continuous and smooth functions for the temperature distributions are proposed in each phase.
The accuracy of the method depends on the type of temperature profile proposed, which classically is
a quadratic polynomial [28,30]. However, depending on the nature of the boundary conditions and
the geometry of the system, other profiles have been used [28,30]. In this work, parabolic profiles have
been proposed within each region of the solid and liquid phase, as follows

mTs(r, t) = mas(t)
(
r− mrs(t)

)
+ mbs(t)

(
r− mrs(t)

)2
+ mT(t), with 1 ≤ m ≤ M and

nT`(r, t) = na`(t)
(
r− nr`(t)

)
+ nb`(t)

(
r− nr`(t)

)2
+ nT(t), with 1 ≤ n ≤ N.

(37)

Here the time dependent coefficients mas(t) and na`(t) within each region of the solid and liquid
phases, and the temperature values mT(t) and nT(t) for each of the solid and liquid regions, can
be expressed in terms of the coefficients mbs(t) and nb`(t). This can be done through the boundary
conditions given by Equation (1) and by imposing continuity and smoothness at each boundary
between adjacent regions, mrs(t) and nr`(t) [29]. These boundaries are coupled to the dynamical
behavior of the interface and radius of the PCM [24,25]; therefore, the time dependence of the
boundaries between adjacent regions is given by:

mrs(t) = r(t)
m
M

(38)

for the solid sphere, and
mr`(t) = r(t) +

n
N
(

R(t)− r(t)
)
, (39)

for the liquid shell.
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The temperature distributions given by Equation (37) are used to average Equations (12) and (13)
over the spatial variable, as described in [25]. After the averaging process, a system of M(N) ordinary
differential equations (ODEs) in time is found for the time dependent coefficients, mbs(t)(nb`(t)).
The resulting system of ODEs is discretized by using a forward difference approximation for the
time derivative. Finally, each coefficient can be found for the next time level by solving the resulting
system of algebraic equations. In this work, Equations (12) and (13) were averaged over 3 regions in
each phase, resulting in 3 ODEs for mbs(t) and 3 ODEs for nb`(t). The nonlinear system of equations
described at the beginning of this section, and the linear system of equations for the time dependent
coefficients mbs(t) and nb`(t), were solved by using a time step of ∆t = 0.5µs until the system reached
melted solid fractions of fs = 0.999.

4. Conclusions

Several results can be outlined from this work. From the theoretical and physical points of view,
mass conservation constitutes the central idea for estimating the contribution of density changes to
the absorbed energy. Total mass conservation leads to an EMB equation at the interface, which for
a spherical configuration is found to have an extra term that depends on the geometry of the system
and rate of density changes. This extra term represents a small perturbation, when the melting process
takes place near the isobaric regime. Within this pressure domain, the proposed solutions in this work,
show a good agreement with the solutions from other authors. At high pressures, the contributions
from density changes in the EMB at the interface and mass conservation equation are significant.
Large differences between the proposed solutions to the densities and liquid–solid saturation line,
and the predictions from other authors are observed in this pressure domain. Isochoric limits for the
density, pressure, and liquid–solid saturation point, were obtained by assuming that total mass is also
conserved in this regime. The solutions obtained through the proposed model are observed to be well
behaved near the isochoric regime, and found to approach asymptotically to the predicted limit.

The most important finding in this work, corresponds to the effects of density changes in the
thermal energy absorbed by the phase-change material. The sensible heat absorbed during the melting
process was conceived through total and local mass conservation. According to the numerical and
semi-analytical solutions to the model proposed in this work, the energy absorbed by the nitrate salt
can be significantly overestimated by the solutions from other authors. On the one hand, the sensible
and latent heat absorbed near the isobaric regime, show a good agreement between both models.
On the other hand, at large pressures, where the approximation used for the liquid–solid saturation
line is still valid, significant differences in the absorbed energy were observed. Within this pressure
domain, and according to the numerical and semi-analytical solutions, an approximate difference of
16% between the predictions from both models, can be expected. This difference in the estimation of
the heat storage capacity of TES units has a direct impact on the design and efficient use of renewable
energy in CSP plants and domestic house heating applications.

Finally, experimental validation of these results is still missing. However, by using materials with
low thermal expansion coefficients or keeping a small temperature range, the solutions to the proposed
model are expected to be well behaved at high pressures when compared to experimental results.
We have still to elaborate a model which is capable of taking into account thermal expansion effects on
encapsulated PCMs. These effects may also have an impact on the thermal energy absorbed by the
system. However, the EMB equation at the interface will be completely different when including these
effects. Additionally, the role of mass conservation for obtaining the liquid and solid deformation
during the melting process when the densities depend on the temperature profile is still not clear.
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Abbreviations

The following abbreviations and symbols are used in this manuscript:

PCM phase change material
HTPCM high-temperature phase-change material
TES thermal energy storage
CSP concentrating solar power plant
HTF heat-transfer fluid
EMB energy-mass balance
FDM finite difference method
RHBIM refined heat balance integral method
RPD relative percent difference
λ` W/m K Thermal conductivity of the liquid
λs W/m K Thermal conductivity of the solid
α` 1/K Thermal expansion coefficient of the liquid
αs 1/K Thermal expansion coefficient of the solid
C` kJ/kg K Specific heat capacity of the liquid
Cs kJ/kg K Specific heat capacity of the solid
B` Pa Bulk modulus of the liquid
Bs Pa Bulk modulus of the solid
K` 1/Pa Compressibility of the liquid
Ks 1/Pa Compressibility of the solid
ρ`(t) kg/m3 Time dependent liquid density
ρs(t) kg/m3 Time dependent solid density
ρ∗` kg/m3 Density of the liquid in the isochoric limit
P∗ MPa Inner pressure in the isochoric limit
T∗f K Fusion temperature in the isochoric limit

L∗f kJ/kg Latent heat of fusion in the isochoric limit

Tf (t) K Time dependent fusion temperature
L f (t) kJ/kg Time dependent latent heat of fusion
R(t) m Time dependent PCM radius
r(t) m Time dependent radius of the solid phase
TH K Temperature at the surface of the PCM
k̃s Pa Elastic constant of the spring
∆U J Internal energy change
∆V m3 Total volume change
∆Q f J Energy absorbed as latent heat
∆Q J Thermal energy absorbed
MPCM mg Total mass of the PCM
∆Ms mg Mass of melted solid
tmax s Duration of the melting process
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