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Abstract: Nanoparticles have become popular in life sciences in the last few years. They have
been produced in many variants and have recently been used in both biological experiments
and in clinical applications. Due to concerns over nanomaterial risks, there has been a dramatic
increase in investigations focused on safety research. The aim of this paper is to present the
advanced testing of rhodamine-derived superparamagnetic maghemite nanoparticles (SAMN-R),
which are used for their nontoxicity, biocompatibility, biodegradability, and magnetic properties.
Recent results were expanded upon from the basic cytotoxic tests to evaluate cell proliferation and
migration potential. Two cell types were used for the cell proliferation and tracking study: mouse
embryonic fibroblast cells (3T3) and human mesenchymal stem cells (hMSCs). Advanced microscopic
methods allowed for the precise quantification of the function of both cell types. This study has
demonstrated that a dose of nanoparticles lower than 20 µg·cm−2 per area of the dish does not
negatively affect the cells’ morphology, migration, cytoskeletal function, proliferation, potential for
wound healing, and single-cell migration in comparison to standard CellTracker™ Green CMFDA
(5-chloromethylfluorescein diacetate). A higher dose of nanoparticles could be a potential risk for
cytoskeletal folding and detachment of the cells from the solid extracellular matrix.

Keywords: magnetic nanoparticles; mesenchymal stem cells; fibroblast cells; cytotoxicity; wound
healing assay; single-cell migration

1. Introduction

Recently, nanoparticles have attracted the interest of scientists in various areas of biomedical
research because of their unique properties. Nanoparticles of iron oxide, such as Fe3O4 and γ-Fe2O3,

have been reported to be applicable as a material for use in drug delivery systems, magnetic resonance
imaging [1], cancer therapy, and other fields. A potentially promising member of the family of iron
oxides, maghemite (Fe(II)-deficient magnetite), allows the manufacture of nanoparticles that are
biocompatible and non-toxic to living organisms. Maghemite nanoparticles can be introduced to living
cells and their magnetic properties allow remote manipulation with external magnetic fields [2,3];
specific separation of cells from blood or mixed cell culture; inducing hyperthermia for selective
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destruction of cancer cells [4]; and delivery of pharmacoactive compounds or genes, and their selective
activation by external stimuli [5]. Recently, cell labelling by superparamagnetic iron oxygen (SPIO)
nanoparticles has also been used for cell tracking in vitro or in vivo. Multimodal probes based on
SPIO nanoparticles may serve for cell detection and cell tracking via complementary contrast in
light absorption or fluorescence. SPIO nanoparticles have also attracted much consideration for
the possibility of replacing cytosolic or membrane probes, which are used in fluorescent confocal
microscopy and microscopic time-lapse experiments due to their long-term chemical stability
and photostability [6].

Rhodamine-derived superparamagnetic maghemite nanoparticles (SAMN-R) display relatively
high uptake by mammalian cells, very good stability in intracellular spaces, and long-term stability
of their rhodamine fluorescence shell in intracellular space with a specific pH. SAMN-R have been
previously tested on rat, rabbit and human stem cells, and are presented as a robust cell marker,
a long-term stable probe for deposition in lysosomes, a probe that does not affect nuclei, and a probe
with theranostic potential [7,8].

The main aim of this article is to expand on cell labelling experiments and refocus from the
basic tests of acute toxicity and contrast properties to advanced evaluation of their interactions
with mesenchymal stromal cells (MSCs) and fibroblasts, as well as evaluating their influence on the
migration potential of cells. Fibroblasts and MSCs play a key role in regenerative medicine, especially
in the regeneration of the dermis, chondral intercostal muscles, and other tissues for their motility and
migration ability [9–11]. Thus, further investigation of SAMN-R properties will potentially bring new
insight into the possibility of future biomedical applications.

2. Results

2.1. Cell Morphology and Flow Cytometry

SAMN-R have been studied previously [7,8,12]. The stability of SAMN-R and their maghemite
structure was confirmed by Mössbauer spectroscopy in the first days after preparation and also one
year after preparation. The polydisperse index was quantified in all experiments using dynamic light
scattering, its value being 0.22 ± 0.03 in dH2O and 0.47 ± 0.03 in culture medium. Their size varied
from 20 to 50 nm [12]. It was found that nanoparticles are localized in lysosomes surrounding stem
cell nuclei and are not localized in the cell nuclei themselves [8] (see Figure 1).
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optimized for use in various types of cultivation chambers. However, SAMN-R are not uniformly 
distributed in the labelling suspension.  

Figure 1. Human mesenchymal stem cells (hMSCs) treated with rhodamine-derived superparamagnetic
maghemite nanoparticles (SAMN-R). (A) Integrated modulation contrast in wide-field microscopy,
40× magnification; (B) confocal microscopy, 63× magnification. Scale bar 50 µm.



Molecules 2019, 24, 1192 3 of 17

In this study, a 50 µg·mL−1 concentration of SAMN-R was used. Currently, there are many
different types of dishes, well plates, or cultivation chambers, and labelling with SAMN-R has to be
optimized for use in various types of cultivation chambers. However, SAMN-R are not uniformly
distributed in the labelling suspension.

The nanoparticles settle on the surface of cells and culture dishes due to agglomeration and
gravity in the process of labelling. It should be noted that the optimal concentration may be close to
the toxicity limit in samples with a small surface area. Therefore, we used dose per surface area rather
than concentration as a volume in our study.

In our research, we used fibroblast cell types—large size human mesenchymal stem cells (hMSCs)
(about 250 µm) and considerably smaller mouse embryonic fibroblast cells (3T3) (about 90 µm). At the
dose of SAMN-R under 20 µg·cm−2, visible changes in cell shape and membrane integrity were not
observed (Figure 2A,B). When the dose increased to more than 20 µg·cm−2, we noticed a decline in
cell proliferation ability and the appearance of necrotic and detached cells (Figure 2C,D).
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Figure 2. Influence of SAMN-R in different doses to mouse embryonic fibroblast cells (3T3) morphology.
(A) Control; (B) dose of SAMN-R 20 µg·cm−2; (C) dose of SAMN-R 25 µg·cm−2; (D) dose of SAMN-R
35 µg·cm−2. Bright-field microscopy, 10× magnification, scale bar 100 µm.

We found out that even at the lowest tested doses, the SAMN-R emitted enough fluorescence to
be detectable. According to the results of this experiment, it was decided to test the dose of SAMN-R
of 20 µg·cm−2, since it was determined as the limiting value.

Flow cytometry evaluation gives a statistical comparison of cell size and cell granularity before
and after nanoparticle incorporation. Granularity of both cell types was increased after nanoparticle
deposition in intracellular space. However, size and distribution of cluster of differentiation (CD)
molecules on the cell surface were not affected (Figure 3).

2.2. Quantification of Reactive Oxygen Species (ROS) Generation after SAMN-R Labelling

The value of ROS production is measured by CM-H2DCFDA after the exposure of cells to
SAMN-R, which is an aspect that helps to quantify the very early changes in cell physiology.
This method is very sensitive in many cases of cell stress, very often for several hours before the
start of any apoptosis or cell malformation. The CM-H2DCFDA kit determines the rate of production
of hydrogen peroxide (H2O2), hydroxyl radicals (•HO), and superoxides (O2

−) in the cells. The final
graphical overview of ROS value measured on our cells after SAMN-R labelling is shown in Figure 4.
The results show that almost all used labelling concentrations do not have any negative effects on
ROS value.

2.3. Cell Proliferation

A fluorescence probe designed for live cell imaging can be toxic for cells [13,14]. Negative effects
on vital functions could otherwise affect the positive properties and application potential of the dye.
As an initial study, we used a cell growth curve to identify the effect on cell proliferation (Figure 5).

For comparison with SAMN-R, we tested CellTracker™ Green CMFDA (5-chloromethylfluorescein
diacetate) because it is a low toxic reagent. The result of the statistical t-test showed that both dyes do
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not have a significant effect on cell proliferation. This means that SAMN-R can be successfully used in
long-term experiments such as a cell tracking dye similar to CMFDA.Molecules 2018, 23, x 4 of 17 
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Figure 3. Flow cytometry analysis of labelled cells. Site scatter and forward scatter: (A) 3T3 before
labelling; (B) mesenchymal stromal cell (MSC) before labelling; (C) 3T3 after 24 h of labelling; (D)MSC
after 24 h of labelling; (E) quantification of CD90 and CD45 positive 3T3; (F) quantification of CD90,
CD73, and CD45 positive MSC.
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Figure 5. 3T3 cell growth. Each box represents the number of cells in an area of 1 mm2 from 10
experiments. Each box plots the 25th and 75th percentiles. The circle inside the box is the mean,
the band inside the box is the median. Whiskers (the most extreme values not considered as outliers)
and outliers (red squares) are outside the box.

2.4. Cell Migration Study

Currently, researchers use many methods to study cell motility such as wound healing assays,
trans-well cell migration, cell exclusion zone assays, spheroid migration assays, single-cell motility
assays, and others [15]. Wound healing assays, a widely used method for the analysis of cell migration,
are treated with a specific compound [16–18]. This method is technically non-demanding, and it is
possible to observe changes in cell motility in a short time [19]. To understand the effect of changes
in the environment on the mechanical responses of cells, single-cell migration was usually used in
other studies [20,21].
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2.4.1. In Vitro Wound Healing Assay

In each experiment, three groups of 3T3 cells were investigated: control (non-labelled), treated
SAMN-R, and those labelled with CMFDA dye. We studied the effect of these treatments on the ability
of the collective migration of 3T3 cells by wound healing assays. In 10 experiments, we obtained 60
images from each group: 30 with a narrow scratch and 30 with a wide scratch, which were compared
separately (Figure 6).
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Figure 6. Wound healing assay applied to 3T3 cells: control, SAMN-R, and CellTracker™ Green
CMFDA (5-chloromethylfluorescein diacetate) labelled cells. Images were detected at the beginning
and after 24 and 48 h. The white line marks the initial scratch border. Confocal microscopy, 10×
magnification, scale bar 150 µm.

Since the cells migrate as a loosely connected population, the analysis was based on calculating
the clear area sites present at the wound. Quantitative analysis was provided using a custom-made
algorithm in MATLAB software (R2018a 64-bit, MathWorks®, Natick, MA, USA). As can be seen from
the data in Tables 1 and 2, the areas with a narrow scratch were overgrown within approximately 24 h,
and the areas with a wide scratch were overgrown within 48 h. Time-dependent changes in the open
area due to 3T3 cell migration are shown in Figure 7.

Table 1. Size values of the open area of narrow scratch in the wound healing assay experiment.

Item Time Control SAMN-R CMFDA

Min Max Mean Min Max Mean Min Max Mean

Scratch width (µm) 311.54 493.62 408.01 325.04 477.73 416.44 329.51 491.50 427.76

Scratch area (mm2)
0 h 0.36 0.58 0.48 0.38 0.56 0.49 0.38 0.57 0.50

24 h 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.02 0.00
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Table 2. Size values of the open area of wide scratch in the wound healing assay experiment.

Item Time Control SAMN-R CMFDA

Min Max Mean Min Max Mean Min Max Mean

Scratch width (µm) 502.18 689.57 554.24 438.18 711.15 548.73 447.23 621.20 541.37

Scratch area (mm2)
0 h 0.59 0.80 0.65 0.51 0.83 0.64 0.52 0.73 0.63

24 h 0.17 0.53 0.31 0.14 0.57 0.32 0.16 0.56 0.36
48 h 0.00 0.09 0.03 0.00 0.05 0.02 0.00 0.23 0.03
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Figure 7. Time-dependent changes in the size of the open area due to 3T3 cell migration (left) in narrow
scratch and (right) in wide scratch. Each box represents scratch areas in 30 images in each group.
Each box plots the 25th and 75th percentiles. The circle inside the box is the mean, the band inside the
box is the median. Whiskers (the most extreme values not considered as outliers) and outliers (red
squares) are outside the box.

A statistical t-test shows that the effect of SAMN-R and CMFDA dye to collective cell migration is
not statistically significant.

2.4.2. Single-Cell Migration

To investigate single-cell migration, we used a time-lapse microscopy scan to observe hMSCs.
The selected scan field was scanned over six hours at intervals of five minutes. In the primary
experiments (Patient 1), there were scans only in one field of view. The following experiments were
made with a choice of two to four fields (Patients 2–4) with the help of multi-view mode (mark and
find function). The calculated value of velocity and accumulated and Euclidean distance hMSCs are
listed in Tables 3–6.

In our research, the most important parameter during cell migration of single cells is velocity.
Figure 8 presents the complete set of single-cell velocities from four patients. The number of cells in
groups from one patient was the same. Using a statistical t-test, it was shown that the effect of SAMN-R
and CMFDA dye on individual hMSCs’ velocity was not statistically significant. The Rayleigh test
confirms that cell distribution is homogeneous. Cell tracking examples are shown in Figure 9.

Table 3. Migration of hMSCs in Patient 1 from 18 cells of control, CellTracker™ Green CMFDA
(5-chloromethylfluorescein diacetate) labelled, and rhodamine-derived superparamagnetic maghemite
nanoparticles (SAMN-R) treatment groups. The velocity, accumulated, and Euclidean distance values
for a six-hour period are shown.

Control SAMN-R CMFDA

Min Max Mean Min Max Mean Min Max Mean

Accumulated distance (µm) 62.76 271.85 153.99 86.36 241.65 148.85 73.92 200.72 136.70
Euclidean distance (µm) 1..23 217.19 81.90 8.83 123.17 55.36 7.91 97.74 41.92

Velocity (µm/min) 0.17 0.76 0.43 0.24 0.67 0.41 0.21 0.56 0.38
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Table 4. Migration of hMSCs in Patient 2 from 30 cells of control, CMFDA-labelled, and SAMN-R
treatment groups. The velocity, accumulated, and Euclidean distance values for a six-hour period
are shown.

Control SAMN-R CMFDA

Min Max Mean Min Max Mean Min Max Mean

Accumulated distance (µm) 32.82 294.80 104.90 44.64 362.05 118.83 51.73 221.71 114.01
Euclidean distance (µm) 7.24 248.21 69.32 6.87 316.28 80.86 12.22 194.51 82.98

Velocity (µm/min) 0.09 0.82 0.29 0.12 1.01 0.33 0.14 0.62 0.32

Table 5. Migration of hMSCs in Patient 3 from 50 cells of control, CMFDA-labelled, and SAMN-R
treatment groups. The velocity, accumulated, and Euclidean distance values for a six-hour period
are shown.

Control SAMN-R CMFDA

Min Max Mean Min Max Mean Min Max Mean

Accumulated distance (µm) 48.06 288.48 156.00 45.15 270.70 143.62 43.02 282.62 154.66
Euclidean distance (µm) 9.72 190.26 65.91 15.74 226.10 99.33 2.26 193.26 68.11

Velocity (µm/min) 0.13 0.80 0.43 0.13 0.75 0.40 0.12 0.79 0.43

Table 6. Migration of hMSCs in Patient 4 from 50 cells of control, CMFDA-labelled, and SAMN-R
treatment groups. The velocity, accumulated, and Euclidean distance values for a six-hour period
are shown.

Control SAMN-R CMFDA

Min Max Mean Min Max Mean Min Max Mean

Accumulated distance (µm) 33.29 179.74 90.96 30.09 181.34 84.78 37.08 263.26 79.96
Euclidean distance (µm) 9.71 147.88 61.31 8.03 102.06 40.66 3.41 243.35 42.51

Velocity (µm/min) 0.09 0.50 0.25 0.08 0.50 0.24 0.10 0.73 0.22
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3. Discussion

Fibroblasts and mesenchymal stem cells have prominent status in the hierarchy of mammal cells.
Fibroblasts are one of the most populous and important cells of connective tissue, and play the crucial
role in normal pre- and postnatal organ development. They represent key components for wound
healing and the occurrence of tumors. MSCs are relatively more latent cells in normal development;
however, their effective migration, proliferation, and interaction with other cell types are essential
in the critical time after tissue scarring or ischemic events, when wound healing and correction of
abnormal immune reactions begins. Unfortunately, fibroblasts and MSCs could be negatively affected
by modern cell markers, cell labels, or labelling nanoparticles [22,23].

The negative effect of markers and nanoparticles may occur a short time after their application.
Such markers and nanoparticles with acute toxicity cause visible rapid morphological changes and
cells rapidly die. Markers and nanoparticles, that can be seemingly non-toxic, may have a hidden
long-term negative effect that can manifest after several days. Moreover, the effect need not necessarily
lead to apoptosis of the cell, but rather to the abnormal production of certain factors in the cell (e.g.,
reactive oxygen) or to altered metabolism or cell motility.

We have focused on the evaluation of the abovementioned hidden long-term effects after the
application of SAMN-R to cells. Acute toxicity and critical concentration/dose for immediate effective
marking of cells were described in our previous studies [7,8].

In the majority of publications dealing with the toxicity of nanoparticles, the authors take as
a standard measure the absolute concentration of the nanoparticles in a given cultivation medium
presuming colloidal stability of nanoparticle suspension. However, there is a certain agglomeration rate
and sedimentation rate dependent on particles’ concentration even in case of almost ideally colloidal
particle suspensions [24]. With regard to increasing concerns about the health risks of nanoparticles,
we propose to define concentrations of each used solution in µg·mL−1 with a value of a dose in
µg·cm−2 per area of the dish with medium, although an increase of particles’ concentration in the
microenvironment of cells does not exceed 10% (data not shown).

The first set of experiments included cultivation of fibroblasts at the bottom of standard in vitro
dishes treated with SAMN-R. The used SAMN-R treatment solutions were prepared in a gradient
series. Nanoparticles were diluted in a cultivation medium, and a colloid profile of solution was
prepared by 20 min of ultrasound exposure immediately before cell incubation. The used absolute
concentrations were 0, 10, 20, 30, 40, 50, 60, and 70 µg·mL−1, which corresponded to doses of 0, 5, 10,
15, 20, 25, 30, and 35 µg·cm−2 per area of the dish. The effects of different doses of SAMN-R were
evaluated after 24 h of incubation. Cell cultures with a dose of SAMN-R up to 20 µg·cm−2 did not
display a difference in comparison to control cells. These doses of SAMN-R under 20 µg·cm−2 did not
induce visible changes in cell shape and membrane integrity (see Figure 2A,B). With increasing doses
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above 20 µg·cm−2, we noticed a decline of cell proliferation ability and the appearance of necrotic
and detached cells (see Figure 2C,D). Flow cytometry analysis showed that cell morphology and cell
size were not changed for this SAMN-R concentration range. Another cell culture up to 20 µg·cm−2

SAMN-R dose displayed cell detachment or inhibited cell growth. The value 20 µg·cm−2 was also
detected as being critical for 3T3 and MSCs; the ratio of events of cell detachment and inhibition of cell
growth was similar.

Cells utilize two main migration modes in mammals: single-cell migration and collective
migration. The single-cell migration is characteristic for immune cells or MSCs after some injuries.
Collective migration is particularly important in tissue shaping and wound healing, such as epithelial
regeneration or fibroblast closure of wounds. Both modes can be affected by present nanoparticles,
and several previously published articles warn of some types of nanoparticles which could potentially
induce negative affecting of these processes [25–28].

Our time-lapse microscopical visualization of MSCs’; motility and its statistical summary in
MATLAB give clear conclusions: SAMN-R does not affect typical hMSCs’ ameboid motility, nor does
it affect the average velocity of the cells. The used dose of SAMN-R of 20 µg·cm−2 displayed high
biocompatibility and no effect on cell motility, which is comparable with the CMFDA commercial cell
tracker marker (see Figure 8 and Tables 3–6). Further motility tests performed on fibroblasts also gave
positive results for SAMN-R. Covering of scratches in a fibroblast monolayer labelled by SAMN-R was
not affected compared to non-labelled fibroblast experiments. Migration of SAMN-R labelled cells was
also compared with migration of cells labelled by commercial low toxicity CMFDA cell tracker dye
with similar results.

Our analysis showed that SAMN-R incorporation into the cells is more biocompatible with cell
motility, than is the case with metal nanoparticles [25,28] or commercial nanoparticles used in the food
industry and in oral hygiene products [29].

Our results bring favorable data from SAMN-R tests on 3T3 cells and hMSCs, and from
comparisons with CMFDA. However, other challenges remain for future research. All morphology,
growth-activity and motility tests were made on in vitro 2D planar surfaces, whereas an evaluation
of cell morphology and motility in 3D systems mimicking real tissue is needed in the next step.
Furthermore, detailed monitoring of cytokine and extracellular vesicle production by MSCs and
fibroblasts is required, as these cell functions are also important for effective procedures in regenerative
medicine. For our recent work, we are developing an improved custom-made algorithm in MATLAB
software for fully automatic cell tracking.

4. Materials and Methods

4.1. Synthesis and Characterisation of SAMN-R

Preparation of spherical-shaped SAMN-R ranging from 20 to 50 nm in size, with optimized
zeta potential −22.5 mV, was based on a solid-heating method and covalent immobilization of
rhodamine B isothiocyanate (RITC) on a metal surface. The method included the use of the precursor,
ferric chloride FeCl3·6H2O (Sigma-Aldrich, St. Louis, MO, USA), which was dissolved in 800 mL
of deionized water. The addition of 2 g of NaBH4 borohydride (3.5%, 100 mL) was the next step
in the procedure. The abovementioned steps were performed at 20 ◦C. The black precipitate was
then boiled at 100 ◦C for two hours, cooled to room temperature, separated by an external magnet,
and washed several times with water. In the final step, the intermediate product was thermally treated
at 400 ◦C for two hours. The obtained spherical nanoparticles were dispersed in deionized water
with the help of an ultrasonic bath (30 W). RITC was dissolved in 50 mM tetramethylammonium
perchlorate, the solution was mixed with pure spherical nanoparticles, and the pH was adjusted to
7.0 in the presence of 50 µM RITC. After one hour of incubation, the nanoparticles were separated
using an external magnetic field. A sample of bound RITC was tested by measuring absorbance at
554 nm in the supernatant. Parallel fluorospectrometric analysis was performed to confirm the RITC
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attachment to nanoparticles. Furthermore, the prepared SAMN-R were then diluted by sterile H2O
(Ardeapharma, Sevetin, Czech Republic). Iron concentration was determined by an atomic absorption
spectrometer (Avanta Sigma, GBC Scientific Equipment, Braeside, Australia) in acetylene-air flame.
External calibration in the range of 0.5–10 mg·mL−1 was prepared by dilution of a certified reference
material—a water calibration solution with an iron concentration of 1.000 ± 0.002 g·L−1 (Analytika,
Prague, Czech Republic). The structure of the type of maghemite iron oxide nanoparticles and their
stability were determined on the first day and one year after preparation. They were investigated by
zero-field and in-field Mössbauer spectroscopy and magnetometry using a superconducting quantum
interference device (SQUID, Quantum Design, San Diego, CA, USA). The distribution of nanoparticle
diameter and polydispersity index in water and Dulbecco’s Modified Eagle’s Medium (DMEM,
Sigma-Aldrich, St. Louis, MO, USA) were quantified by a Zetasizer Nano ZS (Malvern Instruments,
Malvern, UK).

4.2. Cell Cultures

Two types of cells were used as a testing culture: commercial fibroblast 3T3 and MSCs isolated
from patients during plastic surgery. 3T3 cell lines were obtained from Sigma-Aldrich (St. Louis,
MO, USA) in a cryoconserved form. MSCs were isolated from three samples of adipose tissue
from three patients (male, age 40–50, weight 80–110 kg). Adipose tissue was obtained from healthy
patients undergoing abdominal liposuction (collected waste tissue) after gaining a signature of written
informed consent in accordance with Czech law 372/2011 and the Declaration of Helsinki. The isolation
procedure was conducted via the protocol [30].

The 3T3 cells were cultured in T25 culture dishes (Sigma-Aldrich, St. Louis, MO, USA) at 37 ◦C,
and 5% CO2. High-glucose DMEM containing 10% fetal bovine serum (FBS; Sigma-Aldrich, St. Louis,
MO, USA), 1% penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO, USA), and 1% L-glutamine
(Sigma-Aldrich, St. Louis, MO, USA) was exchanged every two days. Cells were subcultured when
they reached 80 to 100% confluence using Trypsin-EDTA solution (Sigma-Aldrich, St. Louis, MO, USA).

MSCs were cultured in a 24-well plate (Sigma-Aldrich) with low glucose DMEM containing 5%
FBS, 1% penicillin/streptomycin, and 1% L-glutamine. Cell passage was provided when the culture
reached 80 to 100% confluence, and prewarmed Accutase (PAA Laboratories, Dartmouth, MA, USA)
was applied for five minutes under 37 ◦C as the activator of detachment. Cells were separated from
the supernatant by centrifuge for three minutes in a 1.5 mL plastic microtube (450 g).

4.3. Cell Labelling

When cells reached the 70 to 80% confluence level, SAMN-R in a dose of 20 µg·cm−2 was added
to the growth medium. To study the migration of individual cells, nanoparticles were added 28 h
before the start of the experiment. After 24 h, this solution was removed, cells were gently washed
with phosphate buffered saline (PBS; Sigma-Aldrich, St. Louis, MO, USA) and then cultured in a
growth medium without nanoparticles.

CMFDA (Thermo Fisher Scientific, Waltham, MA, USA) was used to monitor cell migration.
The working solution was warmed to 37 ◦C before use. The growth medium was removed and
the cells were gently washed by PBS. Then, the final working concentration, CMFDA of 10 µm in a
serum-free medium, was added for 15 to 20 minutes, controlled by a Zeiss Axio Observer 5 fluorescence
microscope (ZEISS International, Oberkochen, Germany). After this, cells were cultivated in a complete
growth medium during the experiment.

Hoechst 33342 (Sigma-Aldrich, St. Louis, MO, USA) was used for nuclei staining. Dye with 10 µm
working concentration was mixed with a growth medium and added to the sample. After 10 to 15
min, the solution was removed (controlled by a Zeiss Axio Observer 5 fluorescence microscope). Then,
the cells were gently washed by PBS and cultured in the growth medium.
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4.4. Confocal Microscopy

The data were acquired using a Leica TCS SP8 X confocal microscope (Leica Microsystems, Wetzlar,
Germany) equipped with a pulsed white light laser (WLL), photomultiplier tubes (PMT), and a hybrid
detector (HyD). The optimal SAMN-R spectrum was defined by lambda square fluorescence mapping
with an excitation wavelength at 560 nm and detection range at 570 to 620 nm (maximum at 582 nm) [7].

When labelled with CMFDA, the excitation wavelength was set to 492 nm and the detection range
was set between 505 and 545 nm; for the Hoechst 33342 dye, the excitation wavelength was set to
405 nm and the detection range was set between 415 and 475 nm.

Images were acquired with a spatial resolution of 1024 × 1024 pixels with a 100 Hz scan speed.
The images were 1.16 × 1.16 mm in the X- and Y-axes. Following cell migration, 3D time-lapse data
were obtained every five minutes over a period of six hours. Several scan fields were chosen and
conducted one after another during this timeframe (mark and find function). A long-term scan was
provided for use with a microscope incubator (The Stage Top Chamber, OKOLAB, Pozzuoli, Italy)
with temperature and CO2 control.

4.5. Cell Morphology and Flow Cytometry

For enhanced cell adhesion, eight-well chambered cover glasses (Cellvis, Mountain View, CA,
USA) were coated with a fibronectin (FN; Sigma-Aldrich, St. Louis, MO, USA) solution of 1 µg·cm−2

surface coverage. Then, cells were seeded in a dose of 4 × 103 cells·cm−2 in each chamber. After three
days, when the cell confluence reached 70 to 80%, the SAMN-R were added to the growth medium in
each chamber with doses from 5 µg·cm−2 to 35 µg·cm−2 in increments of five, except for the control
chamber. After 24 h, the medium with nanoparticles was exchanged to complete growth medium and
then the cell morphology was observed using a confocal microscope.

The effect of SAMN-R labelling on stability of size, granularity, and the expression of specific
cell surface ligands (CD molecules on fibroblasts and on MSCs were evaluated by a flow cytometer
Cytomics FC500 (Beckman-Coulter Inc., Brea, CA, USA). The cell surface CD on fibroblasts was
stained by a monoclonal antibody against CD90 conjugated to phycoerythrin (1:100 dilutions) and an
antibody against CD45 conjugated to allophycocyanin (1:100 dilutions). The cell surface CD on MSCs
was stained by a monoclonal antibody against CD90 conjugated to phycoerythrin (1:100 dilutions),
an antibody against CD45 conjugated to allophycocyanin (1:100 dilutions), and an antibody against
CD73 conjugated to fluorescein isothiocyanate (1:100 dilutions). All commercial antibodies were
obtained from Miltenyi Biotec (Bergisch Gladbach, Germany). Unstained cells and cells incubated
with isotype-matched controls were used to set the border value between fluorescent-positive and
fluorescent-negative populations. CD positivity, cell size, and granularity of control cells and cells after
nanoparticles labelling were compared (comparison of basic dot-plot forward scatter (FSC) versus side
scatter (SSC)). At least 2000 cells in the non-debris gate were selected for evaluation of CD marker
expression and FSC/SSC characteristic in each cell sample (MSCs labelled and unlabelled, 3T3 labelled
and unlabelled), and each type of cell sample was prepared in triplicate from different patients or
different in vitro cultures of cell lines.

4.6. Quantification of ROS Generation after SAMN-R Labelling

Reactive oxygen species (ROS) are an important factor connected with the beginning of cell stress
and the development of pathological cell changes. Potential oxidative stress caused by SAMN-R was
investigated by ROS analysis. hMSCs were seeded into four wells (5000 cells/well in 96-well plate) and
were treated with 0, 10, 50, or 100 µg·mL−1 concentrations of SAMN-R. The 3T3 cells were seeded and
treated in the same way. All cell samples with SAMN-R were incubated for 24 h. Afterwards, a 2 µL
portion of fluorescent ROS probe (general oxidative stress indicator (CM-H2DCFDA, Thermo Fisher
Scientific, Waltham, MA, USA) pre-dissolved in DMSO) was added to each well (final concentration
was 10 µmol·L−1). The plate was placed in a CO2 incubator for 45 min and the fluorescent signal
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was measured using an Infinite PRO M200 microplate reader (Tecan, Mannedorf, Switzerland) with
ex.505 nm / em.529 nm. The intensity of the fluorescence was compared with a control sample
(exposed 0 µg·mL−1 of SAMN-R). All tests for hMSCs and 3T3 cells were repeated three times (three
independent cell samples) and statistical summaries were calculated.

4.7. Cell Growth Curves

For this experiment type, three T25 culture dishes were prepared: a control sample, SAMN-R,
and CMFDA labelling. After the subculture, each cell type was seeded into nine wells in a concentration
of 4 × 103 cells·cm−2 with eight-well chambered FN-coated cover glasses. After 24, 48, and 72 h,
three wells from each type were dyed with Hoechst 33342 and scanned using a confocal microscope.
Each time, 10 acquired images were randomly chosen from one type of cell. The cell count was
determined by counting the nuclei using a custom-made algorithm in MATLAB software (see Figure 10).
The image data were filtered by a Gaussian low pass filter in order to reduce noise. Thus, the nuclei
edges were enhanced due to a high value of standard deviation on the edges. The filtered image was
then thresholded with an experimentally set threshold value, and the binary image of segmented
cell nuclei was obtained. Due to the presence of mutually adherent cells, the nuclei were divided
by a watershed algorithm using the negative parametric image, which was obtained by a distance
transform applied to the binary image of the segmented nuclei. Finally, objects with a smaller area than
the manually selected value were removed. For each remaining object, the centroid was found and the
number of the centroids in the analyzed image was determined. The total number of the centroids
corresponded to the number of cells. The program also enabled a visual evaluation of detected cells to
manually correct possible false positive and/or false negative detections.
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Figure 10. Image processing pipeline for semi-automatic cell counting. From left to right: original
grey-scale image processed by a Gaussian low pass filter; thresholded binary image; resized thresholded
binary image; image with nuclei divided by a watershed algorithm; image with nuclei with
marked centroids; the resulting image of centroids after manual corrections mapped to the original
grey-scale image.

4.8. Analysis of Wound Healing Assay

The cells were cultured in FN-coated culture dishes (TPP Techno Plastic Products AG, Trasadingen,
Switzerland) with a growth area of 9.2 cm2. The cells (except the cells in the control sample) were
targeted with SAMN-R 24 h before the beginning of the experiment. At the beginning of the experiment,
the cells had to reach 100% confluence. At first, a scratch with a p200 pipette tip was made, then the
cells were gently washed with 1 mL of PBS and the solution was replaced with 3 mL of growth medium.
SAMN-R-targeted and controlled cell scratches had approximately the same width. Markings were
made on the outer bottom of the dish by a marker to obtain the same field of view during the image
acquisition. The first images of the scratch were acquired by confocal microscope both in fluorescent
and bright-field mode. The dishes were placed into the incubator at 37 ◦C for 24 h and images were
acquired every 24 h with the same setup. Finally, the images acquired for each sample were analyzed
quantitatively by a custom algorithm using MATLAB software (see Figure 11). The data acquired
in the form of grey-scale fluorescence images were binarized by plain thresholding with a manually
determined threshold (individually for each image). The scratch area was taken as a background
(contained no cells) and the area of cells was taken as the foreground. Thus, a segmented image was
treated by morphological filters, specifically by the morphological closing and filling of holes. Finally,
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the coordinates of the scratch border, the width of scratch in several segments, and the total scratch
area were determined. This pipeline was applied for each scratch image in each time sample, and the
computed parameters were statistically evaluated.
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4.9. Analysis of Single-Cell Migration

To monitor the single hMSCs’ migration, cells were seeded onto three glass-bottom dishes (Cellvis)
at a density of 1.5 × 103 cells·cm−2. After 24 h, the experiment with a control sample was started
and took six hours. At this time, one of the remaining samples was stained with CMFDA dye and
the second was treated with SAMN-R. When the experiment with the control sample was finished,
an experiment with a CMFDA-stained sample was conducted. A third sample was tested after 24 h of
nanoparticle treatment.

In [31], we introduced our developed algorithm, created in MATLAB, for the automatic detection
of CMFDA fluorescent dye-labelled cells. This method has some limitations: cells should be marked
with a fluorescent dye in order to be properly detected at a low surface density. This algorithm is
not suitable for non-labelled cells due to low cell detection success, so we could not use it to control
samples in our experiments. For these reasons, we decided to use the manual tracking plugin by
ImageJ (1.52i, National Institutes of Health, Bethesda, MD, USA) with Fiji win64 package [32,33].
Tables with cell distribution data were exported and analyzed by a custom algorithm using MATLAB
software. The main parameters were accumulated distance, Euclidean distance, and velocity.

4.10. Statistical Analysis

Statistical analyses were performed to identify the effect of SANM-R and CMFDA labelling on
cell proliferation and motility. Using the F-test, we confirmed that the data were normally distributed.
Then, the paired sample t-test was used to test the difference between two groups: the comparison of
non-labelled cells (control group) was conducted with SAMN-R-labelled cells and CMFDA-labelled
cells separately. Both statistical tests were based on the determinant of the p-value—if p > 0.05,
then the distinction was considered as not statistically significant. Directional statistics were provided
by the Rayleigh test of uniformity—if p > 0.05, then the distribution of cells was considered to be
homogeneous. In our case, the statistical analyses were performed using MATLAB software.

5. Conclusions

Fibroblasts and MSCs play key roles in the process of wound healing, as their motility and
proliferation highly correlate with the speed of the regeneration of dermal scars, muscle scars, diabetic
scars, infarcted scars, and other necrotic or ischemic pathology in vivo. Any probe used for staining
or transfection with these two types of migratory cells should be evaluated from the perspective of
biocompatibility and cytotoxicity.

Advanced microscopic methods and MATLAB image processing statistical tools allow the precise
quantification of both key cell functions: motility and morphology. Our results demonstrate that
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the labelling process with SAMN-R with a dose lower than 20 µg·cm−2 does not negatively affect
cell morphology, migration, cytoskeletal function, proliferation, reactive oxygen synthesis, potential
for wound healing, or single-cell migration. A higher dose of SAMN-R could be a potential risk for
cytoskeletal folding and could lead to detachment of the cells from the solid extracellular matrix.
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