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Abstract: Crotonaldehyde is an extremely toxic α,β-unsaturated aldehyde found in cigarette smoke,
and it causes inflammation and vascular dysfunction. Autophagy has been reported to play a
key role in the pathogenesis of vascular diseases. However, the precise mechanism underlying
the role of acute exposure crotonaldehyde in vascular disease development remains unclear. In
the present study, we aimed to investigate the effect of crotonaldehyde-induced autophagy in
endothelial cells. Acute exposure to crotonaldehyde decreased cell viability and induced autophagy
followed by cell death. In addition, inhibiting the autophagic flux markedly promoted the viability of
endothelial cells exposed to high concentrations of crotonaldehyde. Crotonaldehyde activated
the AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (MAPK)
pathways, and pretreatment with inhibitors specific to these kinases showed autophagy inhibition
and partial improvement in cell viability. These data show that acute exposure to high concentrations
of crotonaldehyde induces autophagy-mediated cell death. These results might be helpful to
elucidate the mechanisms underlying crotonaldehyde toxicity in the vascular system and contribute
to environmental risk assessment.

Keywords: crotonaldehyde; cigarette smoke; oxidative stress; autophagy; endothelial cells; cell death;
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1. Introduction

Cigarette smoke remains an important cause of vascular disease [1]. Exposure to cigarette smoke
causes vascular disease via a series of interdependent processes, including augmented oxidative stress
and endothelial dysfunction and inflammation [2]. Cigarette smoke is also a co-risk factor for diseases,
including diabetes mellitus, hypertension, and haemostasis, further increasing vascular morbidity and
mortality [3,4].

Crotonaldehyde is an α,β-unsaturated aldehyde mainly produced during incomplete combustion
and is found in relatively large amounts in cigarette smoke (cigarettes contain about 1–53 µg
crotonaldehyde/cigarette [5,6]) [7]. Moreover, endogenous lipid peroxidation could result in
crotonaldehyde exposures in humans [8]. Acute toxicity of crotonaldehyde is mainly associated
with irritation of the eyes, skin, and the respiratory tract [9]. Crotonaldehyde is considered to be
an extremely reactive compound and its reactivity corresponds with the mutagenic and cytotoxic
effects, which manifest themselves without its prior metabolic activation [10]. Crotonaldehyde
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induces numerous adverse cellular effects, including inflammatory response and cell death via several
mechanisms [11–15].

Autophagy is a complex intracellular process that facilitates protein degradation, cytoplasmic
organelle turnover, and recycling of cytoplasmic constituents through lysosome-mediated
degradation [16,17]. The incidence of autophagy under physiological conditions, as well as its
induction by several stimuli (e.g., nutrient deprivation, ER stress, and oxidative stress) suggests
crucial roles for this process in cellular homeostasis [18–20]. Recent studies have suggested that
autophagy is involved in several fundamental biological processes, including aging, development,
cell death, and differentiation [21,22]. Several studies report the regulation and functional importance
of autophagy in the pathogenesis of various diseases, including metabolic diseases, kidney diseases,
cancer, and vascular diseases [23–25]. Numerous studies have also demonstrated the association
between endothelial autophagy and vascular risk factors such as cigarette smoke and oxidative
stress [26,27]. Nevertheless, the role of crotonaldehyde in autophagy induction and the underlying
molecular mechanisms in vascular system remain unclear.

In the present study, we investigated the effects of crotonaldehyde, a major component of cigarette
smoke, on induction of autophagy and cell death in human endothelial cells and the underlying
molecular mechanisms.

2. Results

2.1. Induction of Cell Death and Autophagy In Endothelial Cells by Crotonaldehyde

When endothelial cells (HUVECs) were exposed to crotonaldehyde for 2 h, cell viability decreased
in a dose-dependent manner, as measured by using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium) assay (Figure 1a). Results of the Live/Dead assay also showed that crotonaldehyde
treatment induced a significant increase in cell death (Figure 1b). Compared to the control cells, cells
treated with ≥50 µM crotonaldehyde showed significant decrease in cell viability.
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Figure 1. Induction of cytotoxicity and autophagy by crotonaldehyde in endothelial cells (HUVECs). 
(a) MTT assay were used to determine viability of HUVECs exposed to different concentrations of 
crotonaldehyde (10, 25, 50, 100, or 150 μM) for 2 h. (b) Representative images showing cell viability 
in HUVECs exposed to different concentrations of crotonaldehyde for 2 h. Viability of cells was 
assayed using the Live/Dead assay kit, live cells exhibit green fluorescence and dead cells exhibit red 
fluorescence. Scale bars: 100 μm. (c) Western blot showing LC3A-II levels in HUVECs exposed to 
different concentrations of crotonaldehyde for 2 h. The results shown are representative of three 
independent experiments. Relative densitometric analysis of LC3A-II/Actin expression is shown. 
Data are expressed as mean ±SD of three independent experiments. *p < 0.05 as compared with the 
control group. 

Conversion of microtubule-associated protein 1 light chain 3 (LC3)-I into the autophagosome-
specific LC3-II is an autophagy marker that which can be detected using Western blotting. Exposure 
to crotonaldehyde resulted in considerable increase in the expression of LC3A-II (Figure 1c). 

2.2. Effect of Crotonaldehyde on Autophagic Flux 

Further, we confirmed that the enhanced LC3-II levels observed were due to augmented 
autophagy rather than an obstruction in any step of autophagy. To verify this, we arrested the LC3-
II-mediated autophagosome degradation using the lysosomal protease inhibitor bafilomycin A1 in 
crotonaldehyde-exposed cells. 

Compared to the cells treated with crotonaldehyde alone, those exposed to crotonaldehyde in 
the presence of bafilomycin A1 showed LC3-II lipidation (Figure 2a). These data indicate that 
crotonaldehyde did not disrupt the autophagic flux but induced autophagy in endothelial cells. 

Figure 1. Induction of cytotoxicity and autophagy by crotonaldehyde in endothelial cells (HUVECs).
(a) MTT assay were used to determine viability of HUVECs exposed to different concentrations of
crotonaldehyde (10, 25, 50, 100, or 150 µM) for 2 h. (b) Representative images showing cell viability
in HUVECs exposed to different concentrations of crotonaldehyde for 2 h. Viability of cells was
assayed using the Live/Dead assay kit, live cells exhibit green fluorescence and dead cells exhibit
red fluorescence. Scale bars: 100 µm. (c) Western blot showing LC3A-II levels in HUVECs exposed
to different concentrations of crotonaldehyde for 2 h. The results shown are representative of three
independent experiments. Relative densitometric analysis of LC3A-II/Actin expression is shown.
Data are expressed as mean ± SD of three independent experiments. * p < 0.05 as compared with the
control group.

Conversion of microtubule-associated protein 1 light chain 3 (LC3)-I into the autophagosome-
specific LC3-II is an autophagy marker that which can be detected using Western blotting. Exposure to
crotonaldehyde resulted in considerable increase in the expression of LC3A-II (Figure 1c).

2.2. Effect of Crotonaldehyde on Autophagic Flux

Further, we confirmed that the enhanced LC3-II levels observed were due to augmented
autophagy rather than an obstruction in any step of autophagy. To verify this, we arrested the
LC3-II-mediated autophagosome degradation using the lysosomal protease inhibitor bafilomycin A1
in crotonaldehyde-exposed cells.

Compared to the cells treated with crotonaldehyde alone, those exposed to crotonaldehyde
in the presence of bafilomycin A1 showed LC3-II lipidation (Figure 2a). These data indicate that
crotonaldehyde did not disrupt the autophagic flux but induced autophagy in endothelial cells.
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Figure 2. Effect of crotonaldehyde on autophagic flux. (a) Western blot showing LC3A-II levels in 
HUVECs exposed to different concentrations of crotonaldehyde with or without pretreatment of 100 
nM bafilomycin A1 (BafA1) for 1 h. Relative densitometric analysis of LC3A-II/Actin expression is 
shown. Data are expressed as mean ±SD of three independent experiments. *p < 0.05 as compared 
with the control group. (b) MTT assays were used to determine viability of HUVECs exposed to 
different concentrations of crotonaldehyde with or without pretreatment of bafilomycin A1 (BafA1). 

Figure 2. Effect of crotonaldehyde on autophagic flux. (a) Western blot showing LC3A-II levels in
HUVECs exposed to different concentrations of crotonaldehyde with or without pretreatment of 100
nM bafilomycin A1 (BafA1) for 1 h. Relative densitometric analysis of LC3A-II/Actin expression is
shown. Data are expressed as mean ± SD of three independent experiments. * p < 0.05 as compared
with the control group. (b) MTT assays were used to determine viability of HUVECs exposed to
different concentrations of crotonaldehyde with or without pretreatment of bafilomycin A1 (BafA1).
Data are expressed as mean ± SD of three independent experiments. * p < 0.05 as compared with
groups treated with corresponding concentrations, without pretreatment of bafilomycin A1.

To determine the role of autophagy in the cytotoxic effect produced by crotonaldehyde in
endothelial cells, the cytotoxicity of crotonaldehyde was investigated by performing a cell viability
assay in the presence of bafilomycin A1. Treatment of cells with crotonaldehyde (150 µM) decreased the
cell viability by approximately 60%, whereas combined crotonaldehyde and bafilomycin A1 treatment
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markedly abolished the cytotoxic effect produced by crotonaldehyde (Figure 2b). This result indicates
that autophagy indeed contributed to crotonaldehyde-induced death in endothelial cells.

To further elucidate the effect of crotonaldehyde on autophagy, we measured the expression
levels of other autophagy markers, including beclin 1 and sequestosome 1 (SQSTM1)/p62, in
crotonaldehyde-treated cells. The expression levels of beclin 1 commonly reflect the level of autophagic
activity [28], and the accumulation of p62 implicates impairment of autophagy [29]. A distinct increase
was observed in the expression levels of beclin 1 with increasing concentrations of crotonaldehyde;
however, p62 expression decreased in the endothelial cells treated with crotonaldehyde, compared with
that in the control group (Figure 3). These results suggest that crotonaldehyde augmented autophagy
in endothelial cells, thus promoting cell death.
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Figure 3. Effects of crotonaldehyde on the expression of autophagic indicators p62 and beclin 1 in
HUVECs. Western blotting results showed that the expression of SQSTM1/p62 (p62) was decreased,
while beclin 1 and LC3A-II expression was markedly increased in HUVECs exposed to different
concentrations of crotonaldehyde. Data shown are representative of three independent experiments.
Relative densitometric analysis of LC3A-II, p62, beclin 1 to actin expression are shown. Data are
expressed as mean ± SD of three independent experiments. * p < 0.05 as compared with the
control group.

2.3. Involvement of AMPK and p38 MAPK in Crotonaldehyde-Induced Autophagy

AMP-activated protein kinase (AMPK) is involved in diverse functions such as autophagy,
apoptosis, and cell migration [30]. MAPK family members such as extracellular signal-regulated
kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK, have also been reported to be involved
in autophagy [31]. Therefore, we investigated whether crotonaldehyde triggers the activation of
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kinases in association with autophagy. Indeed, crotonaldehyde treatment enhanced the autophagic
activity and activation of AMPK and p38 MAPK (Figure 4). To investigate the role of AMPK
and p38 MAPK in crotonaldehyde-induced autophagy, cells were pretreated with or without the
specific AMPK antagonist Compound C and a p38 MAPK-specific inhibitor SB203580 for 1 h
before treatment with crotonaldehyde. Compound C and SB230580 considerably attenuated the
crotonaldehyde-induced increase in LC3A-II levels (Figure 5a,b). Corresponding with these findings,
the crotonaldehyde-induced increase in cell death was suppressed by Compound C and SB203580
pretreatment, suggesting the involvement of the AMPK and p38 MAPK pathways in the regulation of
autophagy-mediated cell death induced by crotonaldehyde exposure (Figure 5c–e).
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Figure 4. Activation of AMPK and p38 MAPK by crotonaldehyde in HUVECs. Western blot showing
the levels of p-AMPK, AMPK, p-p38, p38, and LC3A-II expression in HUVECs exposed to different
concentrations of crotonaldehyde. Results shown are representative of three independent experiments.
Relative densitometric analysis of LC3A-II/Actin, p-AMPK/AMPK, and p-p38/p38 expression are
shown. Data are expressed as mean ± SD of three independent experiments. * p < 0.05 as compared
with the control group.
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Similar effects of inhibition of p38 MAPK on autophagy and cell death are shown in (b,d). Data are 
expressed as mean ±SD of three independent experiments. *p < 0.05 as compared with the 
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smoking stimulates endothelial dysfunction and promotes vascular disease [36,37]. 
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unsaturated aldehydes (acrolein and crotonaldehyde) capable of protein carbonylation, which leads 
to protein dysfunction, increased oxidative stress, and onset of diseases [39,40]. Crotonaldehyde is an 
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Figure 5. Effects of AMPK and p38 MAPK pathways on crotonaldehyde-induced autophagy and cell
death. (a) Western blot showing the effect of pretreatment of Compound C, specific antagonist of
AMPK, (100 nM, 1 h), on autophagy in HUVECs exposed to 150 µM crotonaldehyde for 2 h. Western
blotting results are representative of three independent experiments. Relative densitometric analysis
of LC3A-II/Actin expression is shown. Data are expressed as mean ± SD of three independent
experiments. * p < 0.05 as compared with the control group. # p < 0.05 as compared with the
corresponding control group. (c) MTT assays were used to determine viability of HUVECs exposed to
150 µM crotonaldehyde for 2 h with or without pretreatment with Compound C (100 nM, 1 h). Similar
effects of inhibition of p38 MAPK on autophagy and cell death are shown in (b,d). Data are expressed
as mean ± SD of three independent experiments. * p < 0.05 as compared with the corresponding
control group. (e) Viability of cells was assayed using the Live/Dead assay kit, live cells exhibit green
fluorescence and dead cells exhibit red fluorescence. Scale bars: 100 µm.

3. Discussion

The World Health Organization (WHO) has predicted that the number of deaths related to
cigarette smoking worldwide, by 2030, will increase to over eight million people per year [32]. For
several decades, cigarette smoking has been a chief risk factor for cancer and pulmonary diseases [33,34].
Cigarette smoking is also considered as one of the key risk factors for the development of vascular
diseases, accounting for 80% elevated risk for coronary artery insufficiency in smokers compared to
that in nonsmokers [35]. Clinical and animal studies have clearly revealed that cigarette smoking
stimulates endothelial dysfunction and promotes vascular disease [36,37].

Cigarette smoke is a multipotent mixture of several constituents associated with diseases of
various organs, and involved in several pathological processes [38]. Cigarette smoke contains
α,β-unsaturated aldehydes (acrolein and crotonaldehyde) capable of protein carbonylation, which
leads to protein dysfunction, increased oxidative stress, and onset of diseases [39,40]. Crotonaldehyde
is an important component of cigarette smoke and a ubiquitously found air pollutant, which has
well established toxic effects and could play a crucial role in the etiology of various diseases [41,42].
However, the pathophysiological mechanisms supporting the relationship between acute exposure
to highly concentrated crotonaldehyde and vascular disease have yet to be elucidated fully. In this



Molecules 2019, 24, 1137 9 of 13

study, we investigated whether crotonaldehyde, a major component of cigarette smoke, modulates
autophagy-mediated endothelial cell death.

We focused on the role of autophagy in crotonaldehyde-induced cytotoxicity in HUVECs. In
this study, we demonstrated that crotonaldehyde induced acute cytotoxicity in endothelial cells,
and increased the expression of autophagy markers. To confirm autophagy induction, we used
the autophagy inhibitor bafilomycin A1 (a specific vacuolar type H+-ATPase inhibitor), which
limits autophagy by inhibiting the fusion of autophagosomes and lysosomes [43]. Combined
treatment of crotonaldehyde with bafilomycin A1 elevated expression levels of LC3-II, indicating
that crotonaldehyde exposure did not inhibit the autophagic flux. Correspondingly, we found
that pretreatment with bafilomycin A1 significantly improved the viability of endothelial cells at
or above 100 µM of crotonaldehyde. These results support the association of autophagy with
crotonaldehyde-induced cytotoxicity in endothelial cells.

LC3, beclin 1, and p62 are the fundamental autophagy-related proteins involved in an autophagic
flux [44]. The conversion of LC3 from LC3-I to LC3-II is regarded as an important step in
autophagy. Bcl-2–interacting protein, beclin 1 (Atg6), is an important autophagy marker involved
in autophagosome biogenesis, and acts as a chief regulator of autophagy in mammals. Autophagic
response of cells via transcriptional activation of the autophagy regulator beclin 1 has been reported [45].
SQSTM1/p62, which is an adaptor protein with numerous binding motifs, interacts with the
autophagy machinery as a key adaptor of target cargo. We found that crotonaldehyde induced
LC3-II lipidation and increased beclin 1 levels, and decreased SQSTM1/p62 levels, suggesting the
activation of autophagy.

Numerous signaling pathways are known to be involved in autophagy induction. AMPK has
been reported as a critical regulator of autophagy and was shown to stimulate autophagy [46]. MAPK
family members, including JNK, ERK, and p38 have been reported to be involved in autophagy [47].
In this study, we found that activation of AMPK/p38 MAPK contributed to crotonaldehyde-induced
autophagy and cytotoxicity, indicating the involvement of these kinases in crotonaldehyde-induced
autophagic cell death.

Oxidative stress has been reported as an early inducers of autophagy [48]. Previous studies
reported an association between crotonaldehyde and oxidative stress [42,49]. We suggest that
crotonaldehyde-induced autophagy occurs downstream of oxidative stress and mediated oxidative
stress-induced cell death. Therefore, the autophagy-related molecules may be considered as potential
targets to inhibit crotonaldehyde-induced cell damage.

In the present study, we found that crotonaldehyde enhanced autophagic cell death at higher than
100 µM, indicating that acute exposure of highly concentrated crotonaldehyde induced over-stimulated
or uncontrolled autophagy. This result may provide a novel insight to help prevent the acute damage
caused by potential acute or occupational exposure to crotonaldehyde.

In summary, we demonstrated that exposure to crotonaldehyde, a major component of cigarette
smoke, enhances autophagy-mediated cell death in human primary endothelial cells in association
with AMPK/p38 MAPK signaling pathways, and the inhibition of autophagy and related kinases
partly prevented this cytotoxicity. Our findings may provide novel insights into understanding of the
acute vascular damage due to occupational exposure of crotonaldehyde.

4. Materials and Methods

4.1. Materials

Crotonaldehyde, Compound C, and bafilomycin A1 were obtained from Sigma (St. Louis, MO,
USA). SB203580 was purchased from Calbiochem (La Jolla, CA, USA). The following antibodies were
used for the present study: p38, phospho-p38, AMPK, phospho-AMPK (Cell Signaling Technology,
Beverly, MA, USA), SQSTM1/p62 (Santa Cruz Biotechnology, Santa Cruz, CA, USA), beclin1 (BD
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Biosciences, San Jose, CA, USA), and β-actin (AbFrontier, Seoul, Korea). All other chemicals and
reagents used were of analytical grade.

4.2. Cell Culture

Human Umbilical Vein Endothelial Cells (HUVECs), obtained from mixed donors were purchased
from Lonza (Basel, Switzerland). Cells were cultured in Endothelial Growth Medium (EGM™-2
SingleQuots™ Kit: EBM-2 with growth supplements, Lonza). The culture was grown to approximately
80% confluence, maintained using fresh culture medium, and cells were subcultured every 2−3 days.
The cells were used within passages 4−9 during these experiments.

4.3. Viability Assay

The cytotoxicity of crotonaldehyde was determined using a modified 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyl tetrazolium (MTT; Sigma, St. Louis, MO, USA) assay, as previously described [49].
We seeded HUVECs in a 96-well plate at 4 × 103 cells/well and incubated these for 24 h in 37 ◦C with
5% CO2. We treated the cells with crotonaldehyde in various concentrations and incubated the cells
for a further 2 h. After designated durations of crotonaldehyde exposure, we aspirated the cell culture
medium and incubated the cells with 50µL of medium (containing 12 mM MTT) for 2 h at 37 ◦C in 5%
CO2. We then carefully removed the medium and dissolved the reduced formazan crystals in 50µL
DMSO by incubating at 37 ◦C for 30 min in the dark. We calculated cell viability by measuring the
absorbance at 540 nm using a microplate reader (EL 800, Bio-Tek, Winooski, VT, USA) and comparing
them with the control cells. All these experiments were performed in triplicate and were repeated
independently at least three times.

4.4. Live/Dead Assay

The effect of crotonaldehyde on induction of cell death was determined using the Live/Dead assay
(Calcein AM & Ethidium Homodimer-1: cat no. L3224, Thermo Fisher Scientific, Waltham, MA, USA).
This assay was performed as per the instructions of the manufacturer. Briefly, HUVECs were cultured
on 8-well chamber slides at 37 °C in a 5% CO2 incubator, then, the cells were treated with different
concentrations of crotonaldehyde (10, 25, 50, 100, or 150 µM) for 2 h. After designated durations of
crotonaldehyde exposure, the cells were incubated with 100µL of assay reagent containing Calcein
AM (2µM) and Ethidium Homodimer-1 (4µM) for 1 h at 37 °C in 5% CO2 and observed under a
fluorescence microscope. Live cells were stained with a 2µM calcein AM solution, while the dead cells
were stained with a 4µM ethidium homodimer solution according to the manufacturer’s instructions.
The stained cells (staining is used to determine whether cells are alive or dead), were examined using
a fluorescence microscope (Eclipse 50i; Nikon, Tokyo, Japan).

4.5. Western Blot Analysis

After pretreatment with the specific AMPK antagonist Compound C (100 nM, for 1 h) and a p38
MAPK-specific inhibitor SB203580 (10 µM, for 1 h) in 150 µM crotonaldehyde-stimulated HUVECs
for 2 h, cells were washed with phosphate-buffered saline and treated with RIPA buffer containing
1 mM EDTA, 5 µg/mL aprotinin, 2 µg/mL leupeptin, and 1 mM PMSF, followed by centrifugation
at 14,000 × g for 15 min. We loaded 20 µg protein from the whole cell lysate to in each lane of
a polyacrylamide gel, performed SDS-PAGE, and detected the separated proteins using Western
blotting. Horseradish peroxidase-conjugated anti-IgG antibodies (Santa Cruz Biotechnology, Santa
Cruz, CA, USA) were used as secondary antibodies to detect the aforementioned protein bands using
the enhanced chemiluminescence WESTSAVE-UpTM substrate (AbFrontier, Seoul, Korea).
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4.6. Statistical Analysis

Statistical significance was estimated using the Student’s t-test, and the results are expressed as
mean ± SD.
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