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Abstract: Recently, our research group demonstrated that uvaol and ursolic acid increase NO and H2S
production in aortic tissue. Molecular docking studies showed that both compounds bind with high
affinity to endothelial NO synthase (eNOS) and cystathionine gamma-lyase (CSE). The aim of this
study was to identify hits with high binding affinity for the triterpene binding-allosteric sites of eNOS
and CSE and to evaluate their vasodilator effect. Additionally, the mechanism of action of the most
potent compound was explored. A high-throughput virtual screening (HTVS) of 107,373 compounds,
obtained from four ZINC database libraries, was performed employing the crystallographic structures
of eNOS and CSE. Among the nine top-scoring ligands, isoxsuprine showed the most potent
vasodilator effect. Pharmacological evaluation, employing the rat aorta model, indicated that the
vasodilation produced by this compound involved activation of the NO/cGMP and H2S/KATP

signaling pathways and blockade of α1-adrenoceptors and L-type voltage-dependent Ca2+ channels.
Incubation of aorta homogenates in the presence of isoxsuprine caused 2-fold greater levels of H2S,
which supported our preliminary in silico data. This study provides evidence to propose that the
vasodilator effect of isoxsuprine involves various mechanisms, which highlights its potential to treat
a wide variety of cardiovascular diseases.

Keywords: high-throughput virtual screening; isoxsuprine; NO/cGMP and H2S/KATP pathways;
calcium channels; vasodilation

1. Introduction

High blood pressure plays a major role in the occurrence of cardiovascular diseases (CVD), which
represent the main cause of death in the world [1,2]. Usually, hypertension treatment requires the
employment of multiple antihypertensive drugs, many of which have low therapeutic effectiveness
and cause severe adverse effects [1,3–5].

Hypertension has been associated with endothelial dysfunction, which is characterized by a
disruption in the synthesis and/or release of endothelium-derived relaxing factors [6–10], such as
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the gasotransmitters NO and H2S, whose participation in regulating vasodilation is critical [11–15].
In recent years, the interest in finding novel drugs that either donate NO and H2S or induce their
synthesis, or both, has increased [14,16,17].

Earlier in silico studies suggested that naturally occurring triterpenes, such as uvaol and ursolic,
morolic, and betulinic acids, display high affinity for binding pockets found in the substrate access to
the catalytic site of eNOS and might directly activate it [18,19]. We also previously found, using in
silico analysis, that ursolic acid and uvaol bind with high affinity to a site that could act as an allosteric
site on CSE [18]. These findings supported the hypothesis that the proposed triterpene-binding
sites to both enzymes might represent promissory pharmacological targets in the search of new hit
compounds for the development of drugs useful to treat CVD. In this context and considering that
high throughput virtual screening (HTVS) of lead-like libraries represents a valuable hit finding
strategy for pharmaceutical research and development [20–23], the aim of the present study was to
identify new hits that bind with high affinity to the triterpene-binding putative allosteric sites on
eNOS and CSE, through HTVS of commercial natural and synthetic compound libraries. Compounds
that showed the highest affinity for the proposed pharmacological targets were evaluated ex vivo and
participation of the NO/cGMP and H2S/KATP pathways in their vasodilator effect was determined.
Once the compound with the most potent vasodilator effect was identified, its mechanism of action
was investigated in more detail.

2. Results

2.1. Virtual Screening

Figure 1 shows the sequence of the screening process. 107,373 compounds, with unique Smiles
codes, were obtained from the ZINC database. The MOE software [24] was used in order to exclusively
select non-reactive compounds with suitable physico-chemical properties (MW under 500 and less
than 5 hydrogen bond donors and 10 hydrogen bond acceptors). The LigPrep program (Schrödinger
Release 2015-4) was employed to generate 3D structures of the selected compounds, considering their
stereochemistry, protonation states, and tautomeric forms.
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Figure 1. Virtual screening strategy diagram. Once duplicated compounds were removed from the
ZINC database, lead-like compounds were selected and high-throughput virtual screening was done.
Compounds with the highest scores were docked using Glide XP, Autodock, Autodock Vina, and
Dock-UCSF. The consensus hits were identified and subsequently evaluated.

This procedure led to a set of 176,500 lead like structures that were subjected to a docking into
the triterpene allosteric binding sites on eNOS and CSE [18], using the GLIDE High-Throughput
Virtual Screening (HTVS) docking module (Glide, version 6.2, Schrödinger) [25–27]. Virtual screening
was performed with the highest-resolution protein structures available from the Protein Data Bank
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archive, eNOS (PDB: 3NOS) [28] and CSE (PDB: 3COG) [29]. The 2000 top scoring ligands for each
of the targets were subsequently docked within the binding site of interest, employing Glide XP [27],
AutoDock [30], AutoDock Vina [31], and UCSF-Dock [32]. The nine top ranking compounds with best
scores (“consensus hits”; Supplementary materials Table S1) were selected via consensus in all four
programs [33].

2.2. Determination of the Vasodilator Effect of the Consensus Hits and Involvement of the NO/cGMP and the
H2S/KATP Pathways in Their Mechamism of Action

All selected consensus hits induced a significant concentration-dependent relaxation of the
rat aorta and reached a 100% of maximum effect. The most potent compounds were isoxsuprine
(EC50 = 0.046 ± 0.004 µM) and carvedilol (EC50 = 0.069 ± 0.003 µM), which turned out to be
approximately five-fold less potent that sodium nitroprusside (SNP: EC50 = 0.0099 ± 0.001 µM),
used as a positive control.

Nebivolol showed an EC50 = 2.014 ± 0.215 µM, whereas, sitagliptin, fenoterol, midodrin, epicatechin,
pindolol, and propranolol showed EC50 values higher than 18 µM. The concentration-response curves
(CRC) of the vasodilator effect elicited by the consensus hits and the positive controls [SNP,
acetylcholine (ACh), and sodium hydrosulfide (NaHS)] are shown in Figure 2 and their EC50 and
Emax values are summarized in Table 1.
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controls (SNP, ACh, and NaHS). Values are expressed as mean ± SEM (n = 6).

Table 1. EC50 values of the consensus hits and the positive controls.

Compound EC50 (µM) ± SEM Emax (%) ± SEM

Controls

SNP 0.0099 ± 0.001 100.7 ± 0.747
ACh 50.30 ± 5.126 68.46 ± 1.122

NaHS 191.0 ± 9.841 92.17 ± 2.721

Highly Potent Compounds
Isoxsuprine 0.046 ± 0.004 106.1 ± 0.343
Carvedilol 0.069 ± 0.003 106.6 ± 0.115
Nebivolol 2.014 ± 0.215 106.7 ± 0.543

Lowly Potent Compounds
Propranolol 18.120 ± 1.419 103.6 ± 1.663

Pindolol 39.490 ± 2.603 106 ± 0.463
Sitagliptin 252.30 ± 8.058 117.6 ± 0.497
Fenoterol 608.60 ± 43.225 120.3 ± 1.548

Epicatechin 626.40 ± 67.372 101.5 ± 2.400
Midodrine 4698 ± 324.691 219.5 ± 8.219

Data are means ± SE, relaxation is expressed as a percentage of the precontraction induced by 1 µM phenylephrine;
n = 6.
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Inhibition of eNOS with 100 µM NG-nitro-L-arginine methyl ester (L-NAME) significantly shifted
to the right the CRC of the consensus hits, with the consequent increase in their respective EC50 values
(Table 2). Although it had been previously described that NO is involved in the vasorelaxant effect
of carvedilol [34], nebivolol [35], propranolol [36], pindolol [37], and epicatechin [38], this is the first
report, which shows that activation of the NO/cGMP pathway contributes to the vasodilator effect
elicited by midodrine, sitagliptin, fenoterol, and isoxsuprine. On the other hand, the vasodilator effect
of all the consensus hits, with the exception of nebivolol and propranolol, was reduced by 10 mM
DL-propargylglycine (PAG), which was evidenced by the increase in their EC50 values (Table 2). These
results suggested that the vasodilation elicited by the consensus hits involves activation of eNOS
and/or CSE.

Figure 3 shows participation of the NO/cGMP and H2S/KATP pathways in the vasodilator effect
elicited by isoxsuprine, carvedilol, and nebivolol, the three most potent consensus hits (Figure 4). Both
biochemical pathways importantly contribute to isoxsuprine- and carvedilol- induced vasodilation.
However, the vasodilator effect elicited by nebivolol is independent of the H2S/KATP pathway.

Table 2. EC50 values of the “consensus hits” and participation of the NO/cGMP and the H2S/KATP

signaling pathways in their vasodilator effect.

Compound
Control L-NAME PAG

EC50 (µM) ± SEM EC50 (µM) ± SEM EC50 (µM) ± SEM

Most Potent Vasodilators

Isoxsuprine 0.0461 ± 0.004 0.3846 ± 0.040 *** 0.3255 ± 0.026 ***
Carvedilol 0.0695 ± 0.003 0.3643 ± 0.011 *** 0.1500 ± 0.019 **
Nebivolol 2.0135 ± 0.215 11.290 ± 1.501 *** 2.5280 ± 0.229

Less Potent Vasodilators

Propranolol 18.120 ± 1.419 40.430 ± 5.696 ** 27.900 ± 3.651
Pindolol 39.490 ± 2.603 166.1 ± 3.610 *** 89.47 ± 7.940 ***

Sitagliptin 252.30 ± 8.058 864.3 ± 8.692 *** 436.2 ± 12.63 ***
Fenoterol 608.6 ± 43.225 882.1 ± 27.513 *** 1038 ± 22.241 ***

Epicatechin 626.4 ± 67.372 1789 ± 389.469 * 3087 ± 552.718 **
Midodrine 4698 ± 324.691 8618 ± 2060.477 * 10076 ± 1955.342 *

Data are means ± SEM (n = 6). Statistical analysis was made using a one-way ANOVA, followed by Dunnett’s post
hoc test. Values of * p < 0.01, ** p < 0.001, *** p < 0.0001 were considered as significant.
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are means ± SEM (n = 6). Statistical analysis was made using a one-way ANOVA, followed by
Dunnett’s post hoc test (** p < 0.001, *** p < 0.0001).
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Figure 5. Model of pharmacophoric elements with (A) eNOS (3NOS structure) and (B) CSE (3COG 
structure). Hydrogen bond donors are represented in gray; aromatic-type interactions in green; 
hydrophobic interactions in yellow and an interaction as bridge acceptor of hydrogen in purple. 
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2.3. Virtual Pharmacophoric Elements Identification and General Protein-Ligand Interaction Model

Considering that individual identification of the interactions relevant for the binding of the
consensus hits to eNOS and CSE would be limited to that particular compound and thus would
render limited information about the structural requirements for best binding, we conducted a search
of pharmacophoric elements in the best protein-ligand complexes obtained by consensus docking.
Thereafter, we applied Partitioning Around Medoids (PAM) to cluster these elements in order to
identify the main residues and protein-ligand interactions essential for increased affinity for both
enzymes (Figure 5). This statistical analysis, which is not a formal pharmacophore model, will be
useful for future identification of active compounds.
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In the case of eNOS, the main amino acid residues that interact with the consensus hits are located
both on the substrate access channel and within the catalytic site. The tested molecules showed two
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interactions between hydrogen bond donors and heme (HEM) and tetrahydrobiopterin (H4B) cofactors
(represented in gray), as well as hydrophobic interactions with Trp447 and Val104 (in yellow), and
an additional interaction between a hydrogen bond acceptor and Asn338 (in purple). These results
suggest that the consensus hits bind to eNOS at different amino acid residues to which uvaol and
ursolic acid bind, most likely due to their structural differences, since unlike triterpenoids that are
mainly hydrophobic, the consensus hits have more hydrogen bond donors and acceptors.

On the other hand, the consensus hits were found to interact with amino acids that belong to
subunits A and B of CSE, which supports our proposal that the ligand binding site is located at the
interface between these two subunits. These residues are positioned within a 12.5 Å radius of the
pyridoxal phosphate of chain A (Figure 5B), which could be considered a large distance to influence
the catalytic site. However, the binding site is placed very close to the substrate access channel to the
catalytic site, which is formed within the A–B interface of this homotetrametic enzyme. Hydrogen
bonding interactions are observed between hydrogen bond donors located in the ligands and Glu59,
His99, and Leu101 of CSE (in gray). An additional aromatic interaction with Phe238 (in green) was
found. These findings suggest that the consensus hits bind to the proposed binding site of triterpenes
found in our previous works on CSE and could play a role as allosteric activators of this enzyme.

2.4. Molecular Dynamics (MD) of Isoxuprine-CSE Interaction

Considering the vasodilator potency of isoxsuprine and the results obtained from molecular
docking, which suggested that this compound displays high binding affinity for CSE, we conducted
a MD simulation of isoxsuprine-CSE interaction (the most potent vasodilator) and fenoterol-CSE
interaction (this compound belongs to the group of less potent vasodilators, Table 2). The plot
of calculated binding energy (CBE) (Figure S1, Supplementary materials) indicated that the
isoxuprine-CSE complex remains in equilibrium for approximately 5 ns, and subsequently this
compound gradually loses its affinity for the enzyme. On the other hand, fenoterol showed a favorable
affinity for CSE at the start of the simulation, to subsequently lose it faster than isoxsuprine does. In the
stability period (1–5 ns), the fenoterol-CSE complex has a mean LIE of 1.83 kcal/mol, which is lower
than the mean LIE of −26.2 kcal/mol calculated for isoxsuprine-CSE in the same period (Figure 6).

Our ex vivo assays clearly demonstrated that the H2S/KATP pathway is involved in
isoxsuprine-induced vasodilation, indicating that although in silico MD simulation showed that
isoxsuprine affinity for CSE decreases during the simulation period, ligand-enzyme interactions
are significant enough to increase enzymatic activity, which eventually contributes to produce an
important vasodilation. Contrastingly, fenoterol, which according to the MD simulation quickly loses
affinity for CSE, displayed a significantly lower vasodilation.

Figure 6 shows isoxsuprine-CSE interactions during MD simulations using GROMACS.
Isoxsuprine-CSE complex lost some of the binding interactions previously visualized through
molecular docking. However, MD simulation data confirmed that isoxsuprine establishes interactions
with A and B chain residues by forming hydrogen bonds between its amino group and a glutamic acid
residue (Glu59) and its phenolic hydroxyl group and an alanine residue (Ala357). These bindings are
located at the interface of A and B subunits of CSE at the previously identified as a triterpene-binding
site [18]. Noteworthy, this site was preliminarily tested by molecular dynamics simulations carried out
with the naturally occurring triterpenes uvaol and oleanolic acid [39], which elicited a medium and
almost nil H2S-dependent vasodilatory activity, respectively. According to those simulations, uvaol
and oleanolic acid form a complex with CSE with a mean LIE of −0.73 and 33.88 kcal/mol, respectively.
These results, together with the ones we obtained in the present study for fenoterol and isoxsuprine,
suggests a possible correlation between the vasodilator effect and the theoretical LIE value, which
predicts the binding affinity of docked compounds with CSE.
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2.5. Increase in H2S Levels Elicited by Isoxsuprine

In order to confirm whether direct stimulation of CSE participated, at least partly,
in isoxsuprine-induced vasodilation, as suggested by our in silico study, H2S levels in aorta
homogenates were measured. We found that incubation of rat aorta rings with isoxsuprine resulted in
approximately two-fold increased levels of this gasotransmitter (Figure 7). As expected, when aortic
rings were simultaneously incubated with isoxsuprine and PAG, a drastic reduction in H2S levels was
observed. These results supported the hypothesis that isoxsuprine might directly activate CSE.
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Figure 7. Total H2S production (measured as sulfides) induced by isoxsuprine in rat aortic homogenates
in the absence or presence of PAG. Statistical analysis was made using a one-way ANOVA, followed by
a Tukey’s test (** p = 0.0001 isoxsuprine vs. control; +++ p < 0.0001 isoxsuprine vs. isoxsuprine + PAG).
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2.6. Participation of Other Endothelial-Derived Relaxing Factors in the Vasodilator Effect of Isoxsuprine

Denudation of aortic rings significantly reduced the vasodilator effect of isoxsuprine
(EC50 = 0.3781 ± 0.019 µM), further supporting involvement of the NO/cGMP and H2S/KATP

pathways in its vasodilator effect. However, considering that eNOS and CSE inhibition did
not completely abolish isoxsuprine-induced vasodilation, the role of other endothelium-derived
vasodilators, such as CO and prostacyclin (PGI2) was investigated. Neither inhibition of heme
oxygenase (HO) with chromium mesoporphyrin IX, nor inhibition of cyclooxygenase (COX) with
indomethacin significantly reduced vasodilatory effect of isoxsuprine (Figure 8A). In contrast, the
vasorelaxant effect of isoxsuprine was significantly reduced by blockade of ATP-dependent potassium
channels (KATP) (EC50 = 1.152 ± 0.0335 µg/mL; p < 0.0001) (Figure 8B), indicating that these channels
are involved in this effect.
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Figure 8. (A) Vasodilatory effect of isoxsuprine in the presence (+E) or absence (-E) of endothelium
or in the presence of the heme oxygenase inhibitor, chromium mesoporphyrin IX (CrMP) (15 µM)
or the cyclooxygenase inhibitor, indomethacin (Indo) (10 µM). Statistical analysis was made using a
one-way ANOVA, followed by Dunnett’s post hoc test (** p < 0.001 vs. control). (B) Vasodilatory effect
of isoxsuprine in the absence (control) or presence of the ATP-dependent potassium channel (KATP)
inhibitor, glibenclamide (Gli) (1 µM). Statistical analysis was made using t-test with Welch´s correction
(*** p < 0.0001).

2.7. Participation of β2-Adrenoceptor Activation and α1-Adrenoceptor Blockade in
Isoxsuprine-Induced Vasodilation

In order to determine participation of β2-adrenoceptors in isoxsuprine-induced vasodilation,
aortic rings were incubated with 1 µM propranolol (a non-selective antagonist of β1 and β2 receptors).
Our results indicated that the vasodilator effect produced by isoxsuprine (EC50 = 0.046 ± 0.004 µM)
doesn´t involve activation of β2-adrenergic receptors, as demonstrated by the fact that the mean
effective concentration of the vasodilation provoked by isoxsuprine was not significantly modified
(p = 0.9615) in the presence of 1 µM propranolol (EC50 = 0.033 ± 0.003 µM). On the other hand,
1 µM isoxsuprine significantly (p < 0.0001) shifted to the right (EC50 = 2.56 ± 0.19 µM) the
concentration-response curve for the vasoconstrictor effect of phenylephrine (EC50 = 0.032 ± 0.003 µM),
a specific α1-adrenoceptor agonist. A similar behavior was observed when the vasoconstriction
provoked by phenylephrine was evaluated in the presence of prazosin (EC50 = 0.9 ± 0.057 µM,
p < 0.0001), a specific inhibitor of α1-adrenoceptors (Figure 9B). In summary, the results derived from
these pharmacological experiments showed evidence suggesting that blockade of α1-adrenoceptors
contributes to isoxsuprine-induced vasodilation, while activation of β2-adrenoceptors does not
participate in the vasodilatory mechanism of this compound.
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a β-receptor antagonist. (B) Vasoconstrictor effect of Phenylephrine (Phe) in the absence (control) or
presence of isoxsuprine (1 µM) or prazosin (0.12 µM), used as a positive control. Data are means ± SEM
(n = 6). Statistical analysis was made using a one-way ANOVA, followed by Dunnett’s post hoc test.
Values of *** p < 0.0001 were considered as significant.

2.8. Involvement of L-Type Voltage-Dependent Calcium Channels in the Vasodilator Effect of Isoxsuprine

To assess participation of L-type voltage-dependent calcium channels (LVCCs) in the vasodilator
effect of isoxsuprine, a CRC of the vasoconstrictor effect of CaCl2 on isolated rat aorta in the presence of
isoxsuprine was constructed (Figure 10). The results showed that this compound is capable of blocking
LVCCs, since it shifted the CRC of CaCl2-induced aortic contractions (EC50 = 0.0004459 ± 0.00003 M)
to the right and significantly increased the EC50 (0.003256 ± 0.0002 M, p < 0.0001). Verapamil, used as
a positive control, behaved in a similar manner (EC50 = 0.002712 ± 0.0003 M, p = 0.0008).
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(positive control). Statistical analysis was made using a one-way ANOVA, followed by Dunnett’s post
hoc test (** p < 0.001 and *** p < 0.0001 vs. control (CaCl2)).

3. Discussion

Our previous studies carried out on ursolic acid and uvaol showed that the vasodilator effect
produced by these two natural triterpenes, is mediated by the NO/cGMP and H2S/KATP pathways,
possibly by binding to putative allosteric control sites located in NOS and CSE, which provokes direct
activation of these enzymes [18]. We therefore proposed that the triterpene binding sites on both
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enzymes might represent allosteric control sites that could be considered valuable pharmacological
targets in the search of new hits for the development of drugs to treat CVD. These hits, very likely
structurally different from competitive activators, could act as positive allosteric modulators capable
of activating these two important enzymes, without competing with orthosteric ligands [40,41]. In a
first approach for detecting new allosteric modulators of eNOS and CSE, we performed a HTVS of
commercially-available lead-like compounds, which led to the identification of nine consensus hits that
displayed high binding affinity scores for both enzymes. The top scoring hits turned out to be two beta
adrenergic agonists (fenoterol and isoxsuprine) [42,43], four beta adrenergic antagonists (carvedilol,
nebivolol, propranolol, and pindolol) [37,44,45], an alpha-1 adrenergic agonist (midodrine) [46],
a dipeptidyl-peptidase IV inhibitor (sitagliptin) [47], and an antioxidant (epicatechin) [48]. As expected,
all nine consensus hits displayed a vasodilator effect on the isolated rat aorta. This is the first report,
which shows that activation of the NO/cGMP pathway contributes to the vasodilator effect elicited by
midodrine, fenoterol, sitagliptin, and isoxsuprine. The results obtained in the present study, support
previous findings, which indicated that the pharmacological effects of fenoterol on tissues other than
blood vessels are associated with a rise in NO levels [49,50]. Our results also agree with earlier studies,
which demonstrated that sitagliptin, orally administered to diabetic rats, significantly increased
NO levels in rat aortas and blood serum [47,51]. The HTVS performed at the triterpene-binding
putative allosteric site on eNOS led to the detection of carvedilol, nebivolol, propranolol, pindolol,
and epicatechin, whose vasodilatory effect mediated by activation of the NO/cGMP pathway has
previously been demonstrated [34–38].

It is worth noting that the vasodilator effect of the consensus hits, excepting nebivolol and
propranolol, involved activation of the H2S/KATP pathway. Our findings provide a heretofore
unknown evidence that the H2S/KATP pathway participates in the vasodilation induced by midodrine,
fenoterol, sitagliptin, isoxsuprine, carvedilol, pindolol, and epicatechin.

Isoxsuprine, carvedilol, and nebivolol displayed the most potent vasodilator effect. The potency
of isoxsuprine was similar to that of carvedilol, while that of nebivolol turned out to be more than
30-fold lower. This might be attributed to the fact that the H2S/KATP pathway does not participate
in nebivolol-induced vasodilation. Numerous evidences support that H2S enhances vascular NO
signaling, thus favoring vasodilation [52]. Therefore, it is possible to hypothesize that in the case of
isoxsuprine and carvedilol, simultaneous activation of the NO/cGMP and H2S/KATP pathways, which
act in a cooperative way [53], leads to an increased vasodilatory effect.

Nebivolol is widely clinically used, either alone or as an add-on therapy, to treat systemic
hypertension or chronic heart failure [54]. This chiral compound is provided as a racemic mixture
of two enantiomers. The D isomer is a highly selective β1-blocking agent, while the L enantiomer
is capable of inducing vascular relaxation enhancing production of NO [55]. The exact mechanism
by which L-nevibolol activates endothelial NO synthase has not been elucidated. Some studies
provide evidence that this compound increases NO release via endothelial β3-receptors [56]. Other
authors reported that activation of the NO/cGMP pathway by nebivolol involved activation of
β2-adrenoceptors [55,57]. Our ex vivo experiments in the presence of L-NAME further confirmed the
participation of the NO/cGMP pathway in the vasodilator effect of nebivolol.

On the other hand, the results of the in silico analysis also showed that carvedilol binds with high
affinity to both eNOS and CSE. Consistent with this finding, inhibition of both enzymes significantly
decreased the vasodilator effect of this compound. Our results are in agreement with those of
previous studies, which indicated that this compound acts on vascular endothelium, provoking
NO release [58,59] and enhancing NO bioavailability [45]. Carvedilol, a third-generation and
nonselective β-adrenoceptor antagonist, is a licensed drug used for treating patients suffering from
heart failure, hypertension, and myocardial ischaemia [60,61]. This compound interacts with multiple
biological targets, antagonizing β1-adrenergic and NMDA receptors, as well as inhibiting calcium
channels [60,62]. However, to date, no study has been reported indicating that the H2S/KATP pathway
participates in the antihypertensive effect of this compound. It had already been shown that the
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vasodilation produced by carvedilol was inhibited, but not completely blocked by L-NAME [63].
Possibly this L-NAME-insensitive vasorelaxation might be attributed to activation of the H2S/KATP

pathway, as suggested by our results. Moreover, our in silico analysis showed that stimulation of this
pathway could be due to a direct activation of CSE.

On the other hand, of all the consensus hits, isoxsuprine turned out to be the most potent
vasodilator, whose mechanism of action involved, to a similar degree, both the NO/cGMP and the
H2S/KATP pathways (Figure 4). Unlike, nevibolol and carvedilol, which are successfully used for
treating various cardiovascular diseases [54,60,61], isoxsuprine has a restricted therapeutic use and has
not been studied systematically. Therefore, we decided to further investigate the mechanism by which
this compound exerts its vasorelaxant effect. Our in silico study suggested that this compound is able
to bind with high affinity to the triterpene-binding putative allosteric site on CSE. This result was
further confirmed in the pharmacological evaluation, which demonstrated that the vasodilatory effect
of isoxsuprine was significantly blocked by propargylglycine. Moreover, when measuring H2S levels
in rat aorta homogenates, after incubation with isoxsuprine, a two-fold increase in the production of
this gasotransmitter was observed. All these data supports our proposal that isoxsuprine-induced
vasodilation involves activation of the H2S/KATP pathway, very likely through direct interaction
with CSE.

Considering that H2S directly stimulates ATP-dependent potassium channels (KATP) [64,65], we
explored whether these channels were involved in the mechanism of action of isoxsuprine. As expected,
glibenclamide significantly decreased the vasodilator effect of this molecule, further supporting that
the H2S/KATP pathway underlies its effect. It is known that isoxsuprine activates β2-adrenoceptors and
blocks α1-adrenoceptors, triggering relaxation of smooth muscle [66,67]. Due to this effect isoxsuprine
has been employed to treat some pathological conditions, including cerebrovascular insufficiency,
Raynaud’s phenomenon, and suppression of premature labor [68]. Interestingly, our experiments,
employing the rat aorta model, showed that isoxsuprine-induced vasodilation involves blockade of
α1-adrenoceptors, but not activation of β2-adrenoceptors. Similar results were obtained by Belloli
et al. in horse digital artery [67]. In order to explain their findings, those authors hypothesized
that smooth muscle from arteries contains low levels of β2-adrenoceptors and that isoxsuprine acts
as a partial agonist, activating this kind of receptors, only in those tissues where there is a large
number of β2-adrenoceptors, such as in the fowl caecum [67] and in uterus [69]. Morever, the lack
of effect of propranolol pretreatment on the vasodilation elicited by isoxsuprine is consistent with
what was found in other vascular and non-vascular tissues including rat jugular vein [70], gravid
isolated human myometrium [71], and rat vas deferens [72]. However, what we found in the rat aorta,
differ from what Elliot and Soydan (1995) found in isolated equine digital veins, where propranolol
slightly inhibited isoxsuprine’s vasodilatory action [73]. In this scenario, it is plausible to propose
that propranolol, which is a non-selective β-adrenoceptor antagonist, is not able to significantly block
β2-adrenoceptor activity in rat aorta. Considering that some studies have provided evidence that β1-,
β2-, and β3-adrenoceptors are functionally expressed in vascular endothelial cells and are coupled
to activation of the NO/cGMP pathway [37,45], it would be necessary to use specific inhibitors of
β2-adrenoceptors, such as ICI-118551, in order to determine with greater certainty the role that these
type of receptors play in the vasodilatory effect of isoxsuprine.

Kozlovski et al. showed that coronary vasodilation elicited by both nebivolol and carvedilol does
not involve direct activation of beta-2 adrenoceptors, however, they suggested that their metabolites
do activate this type of receptors [59]. Considering that it has been suggested that activation of
beta-2 adrenoceptors stimulates the NO/cGMP pathway [55,57], it is feasible to hypothesize that
the metabolites of these compounds and isoxsuprine interact with these receptors, consequently
activating both, the NO/cGMP and/or the H2S/KATP pathways. Evidently, this proposal remains to
be confirmed.

We conducted additional experiments to assess if other signaling pathways were involved
in isoxsuprine’s mechanism of action. Inhibition of cyclooxygenase did not significantly reduce
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isoxsuprine-induced vasodilation. This result differs from those previously found for other beta
adrenergic agonists. Inhibition of this enzyme reduced coronary artery dilation caused by terbutaline
in hamsters [74], while it produced an increased brachial artery relaxation induced by isoproterenol in
humans [75]. These differences might be attributed to both a differential distribution of adrenoceptor
subtypes in the various types of arteries, and the use of different experimental species [76]. Inhibition
of hemooxygenase also did not decrease the vasodilator effect elicited by isoxsuprine. As far as we
have knowledge, there are no reports that indicate whether isoxsuprine-induced vasodilation involves
participation of the CO/cGMP pathway. Taken together, these results showed that the PGI2/cAMP
and CO/cGMP pathways do not contribute to the vasodilator effect produced by this compound.

Some studies have compared the tocolytic effect of isoxsuprine and that produced by L-type
voltage-dependent calcium channel (LVCC) blockers, such as nifedipine [77,78]. However, at present
there are not reports about the effect of isoxsuprine on LVCC in rat aorta. We found that, similarly to
what happened with verapamil, isoxsuprine shifted to the right the concentration-response curve of
the vasoconstrictor effect of calcium chloride. This finding evidenced that the vasodilation evoked by
isoxsuprine also involves the blocking of LVCCs. This effect was hitherto unknown. The blockade
of LVCCs reduces the flow of extracellular calcium to the vascular smooth muscle cells, increasing
vasodilation, which finally leads to a decrease in blood pressure [79]. Diminution of blood pressure,
resulting from LVCC blockade by nifedipine or verapamil, is more pronounced in patients with
hypertension than in individuals with normal blood pressure, which indicates that LVCC blockers
may be considered as specific antihypertensive agents [80]. Moreover, it is a well-demonstrated fact
that the combined actions of basal NO release and calcium antagonism results in an inhibition of
vasoconstriction, which is greater than the additive effects of both events [81]. A co-cristallized structure
of LVCC-verapamil complex provided evidence suggesting that verapamil binds within the pore of
the channel [82]. Considering the structural similarity between isoxsuprine and verapamil, which
we determined by the Tanimoto index (0.8) [83], it is likely that isoxsuprine binds to the verapamil
binding site on the L-type voltage-dependent calcium channel. However, evidently it is necessary to
model the multi-domain architecture of LVCC, using sophisticated methods and high-performance
computing [84], in order to gain a better understanding of the effect of isoxsuprine and other small
molecules on these channels.

Since diverse CVDs are associated with endothelial dysfunction related to NO/cGMP and
H2S/KATP pathways impairment, it is important to search new leads for the development of alternative
drugs, which are able to restore NO and H2S levels [53]. The results obtained in the present study
provide evidence indicating that isoxsuprine induces a potent vasodilator effect that involves not
only the activation of the NO/cGMP and H2S/KATP pathways, but also the blockade of calcium
channels and α1-adrenoceptors. These mechanisms, which act synergistically, give this compound the
possibility of producing significant beneficial clinical effects that clearly differ from that of conventional
vasodilators. Our findings allow us to propose isoxsuprine as a very valuable drug that could be
repurposed to treat a wide range of CVDs, such as hypertension, stroke, and heart failure.

4. Materials and Methods

4.1. Virtual Screening

4.1.1. Human eNOS and CSE Enzyme Structures Preparation

The crystallographic structures of eNOS and CSE from H. sapiens were obtained from the Protein
Data Bank, http://www.pdb.org [85–87]. In this work, the highest-resolution protein structures
available of eNOS (PDB: 3NOS) [28] and CSE (PDB: 3COG) [29] were used. Cofactors for the active
enzymes were included in these structures, which were prepared and corrected by the “Protein
Preparation Wizard” (Schrödinger Release 2015-4: Schrödinger Suite 2015-4 Protein Preparation
Wizard; Epik, Impact, Prime, Schrödinger, LLC, New York, NY, USA, 2015) [88]. Protein structures

http://www.pdb.org
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were optimized by adding missing atoms and amino acids, eliminating water molecules, accessory
ions, and ligands, and choosing the best conformation for ambiguous side chains.

4.1.2. Lead-Like Compounds Selection from Database and Preparation

Four libraries obtained from the ZINC database (http://zinc.docking.org/) [89–91] were
used: (1) Natural Products (ZINC-Natural Products: 89,425 compounds), (2) Approved drugs
(ZINC-DrugBank: 1731 compounds), (3) Commercial libraries (ZINC-Maybridge Commercial vendor
library: 14,400 compounds) and (4) Diverse database of the U.S. National Cancer Institute (NCI Diverse:
1817 compounds). The four libraries were combined into a single comprehensive database with a total
of 107,373 compounds, which was processed with MOE [24] to select compounds with a single SMILES
code, thus unique structures were selected. The resulting database was subsequently processed by
the LigPrep program (Schrödinger Release 2015-4: LigPrep, Schrödinger, LL, 2015) and a subset of
lead-like molecules was obtained based on the following three properties: (1) molecular weight (MW),
topological polar surface area (TPSA), and octanol-water partition coefficient (log P); (2) hydrogen
bond acceptors and donors (HBA and HBD, respectively); and (3) molecular topology (number and
size of rings, molecular flexibility, and number of rotatable bonds). The LigPrep program was also used
to assign the protonation states of the compounds (pH = 7.0 ± 2.0) and to generate all tautomeric forms
within this pH range. In the case of chiral molecules, chirality was retained, if specified, otherwise
stereoisomers were generated. The 176,500 resulting structures were included in our lead-like library.

4.1.3. Virtual Docking

The HTVS Glide program [25–27] (Glide, version 6.2, Schrödinger, LLC, 2014) was used to
find the 2000 structures that showed the highest affinity for each enzyme in the putative allosteric
triterpene-binding site previously described for eNOS and CSE [18]. Then, the 2000 structures were
redocked with four different programs: Glide XP [27], AutoDock [30], AutoDock Vina [31] and
UCSF-Dock [32]. The nine compounds, which displayed the highest docking scores (“consensus hit
compounds”) were selected for pharmacological evaluation (Figure 1).

4.2. Pharmacological Evaluation

4.2.1. Reagents

Standards for the pharmacological and biochemical assays were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Isoxsuprine, carvedilol, propranolol, and pindolol were supplied as a racemic
mixture. Stock solutions of water insoluble compounds were prepared in dimethyl sulfoxide (DMSO),
where the highest concentration of this solvent in the incubation chamber was 0.2% (v/v). Other
compounds and subsequent dilutions were prepared directly in distilled water.

4.2.2. Experimental Animals

All experiments were performed according to the NOM-062-ZOO-1999, “Technical specifications
for the production, care, and use of laboratory animals”. Male Wistar (200–250 g) rats were provided
by the Institute of Neurobiology of the National Autonomous University of Mexico (INB-UNAM),
Campus Juriquilla. Protocol for animal use and handling was evaluated and approved by the Ethics
Committee of the Faculty of Chemistry, Autonomous University of Querétaro (CBQ16/1116-7).

4.2.3. Isolated Rat Aorta Assay and Participation of the NO/cGMP and the H2S/KATP Pathways in the
Vasodilator Effect Elicited by the “Consensus Hits”

The isolated rat aorta assay was carried out according to the method previously reported [18,92,93].
Rats were sacrificed by decapitation using a guillotine (NOM-062-ZOO-1999, section 9.5.3.3). Then,
thoracic aorta was removed and placed in a cold Krebs-Henseleit solution with the following
composition (mM): 126.8 NaCl; 5.9 KCl; 1.2 KH2PO4; 1.2 MgSO4; 5.0 D-glucose; 30 NaHCO3; 2.5 CaCl2

http://zinc.docking.org/
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(pH 7.4), bubbled with carbogen (95% O2 and 5% CO2). Adipose and connective tissues were removed
from the aorta and thereafter, it was cut into 4–5 mm rings. Aortic rings were mounted in 5 mL
incubation chambers with Krebs-Henseleit solution at 37 ◦C and constant bubbling with carbogen.
Tissues were stabilized for 30 min under a tension of 1.5 g at 37 ◦C. During this period, the bathing
medium was changed every 10 min. Once the basal tension was restored at 1.5 g, the aortic segments
were contracted with KCl (100 mM) to sensitize the tissue. When the contraction with KCl was stable,
the bath medium was replaced until the basal tension of 1.5 g was recovered. Subsequently, tissues
were contracted with L-phenylephrine (Phe, 1 µM) and its contractile force was defined as 100%.
Thereafter, the test compounds (0.001 to 1000 µg/mL) were cumulatively added to the chambers,
20 min after the addition of Phe. Sodium nitroprusside (SNP), sodium hydrosulfide (NaHS), and
acetylcholine (ACh) were used as positive controls. The integrity of endothelium was periodically
evaluated in a representative segment of aorta by determining the relaxation induced by ACh (1 µM;
greater than 60%). Changes in aortic tonus caused by the test compounds were detected by Grass FT03
force transducers coupled to a Grass 7D Polygraph and were expressed as percentages of relaxation
based on the contraction generated by adding Phe. Participation of the NO/cGMP and the H2S/KATP

pathways in the vasodilator effect of the consensus hits was assessed by incubating the aortic rings for
20 min in the presence of 100 µM NG-nitro-L-arginine methyl ester (L-NAME, inhibitor of NOS) and
10 mM DL-propargylglycine (PAG, inhibitor of CSE) [18,92,93].

4.2.4. Participation of Endothelium, the CO/cGMP and the PGI2/cAMP Pathways, Potassium
Channels and β2 Adrenoceptors in the Vasodilator Effect of Isoxsuprine

In experiments with endothelium denuded aortic rings, endothelial cells were chemically removed
with 0.2% deoxycholic acid. The absence of endothelium was confirmed by adding ACh (1 µM),
which did not induce more than 5% of relaxation. In order to further investigate the mechanism
of action of isoxsuprine, aortic rings were incubated for 20 min in the presence of the following
compounds: (a) 15 µM chromium mesoporphyrin IX (CrMP, inhibitor of heme oxygenase, HO),
(b) 10 µM indomethacin (Indo, inhibitor of cyclooxygenase, COX), (c) 10 µM glibenclamide (inhibitor
of ATP-dependent potassium channels, KATP) [18,92,93], and (d) 1 µM propranolol (a non-selective
antagonist of β1 and β2 adrenoceptors).

4.2.5. Participation of Blockade of α1-Adrenoceptors and Calcium Channels in the Vasodilator Effect
of Isoxsuprine

To evaluate whether the blockade of α1-adrenoceptors contributes to isoxsuprine-induced
vasodilation, concentration-response curves were obtained by noncumulative administrations of
increasing concentrations of phenylephrine (from 1 × 10−8 to 1 × 10−3 M; 5 min contact), a selective
α1-adrenoceptor agonist as the contracting compound, either alone or 5 min after the administration of
isoxsuprine (1 × 10−6 M) or prazosin (1.2 × 10−7 M), a selective α1-adrenoceptor antagonist. The test
compounds, either isoxsuprine or prazosin, were washed out of the tissue after each concentration of
phenylephrine and then reapplied 5 min before the next concentration of the agonist. Changes in aortic
tonus caused by phenylephrine were expressed as percentages of contraction based on the maximum
contraction generated by adding this agonist [67].

In order to determine if isoxsuprine-induced vasodilation involved the blockade of L-type
voltage-gated calcium channels, the rat aortic segments were stabilized in the Krebs-Henseleit
solution, and afterwards calcium was removed, replacing the bathing medium with calcium-free
solution containing EDTA (0.1 mM). Next, the solution was replaced with 60 mM KCl in calcium-free
Krebs-Henseleit solution. Then cumulative concentration-response curves for CaCl2 (1 µM to 3 mM)
were constructed in the absence (control) or presence of isoxsuprine (0.03 µg/mL) or verapamil (1 µM,
positive control) [94].
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4.2.6. Measurement of H2S Levels in Rat Aorta Homogenates

Aortic segments were frozen in liquid nitrogen and homogenized in PBS pH 7.4 with a protease
inhibitor (Sigmafast protease inhibitor cocktail tablets, EDTA free). Next, aorta homogenate (100 µL)
and all components of the incubation mixture [pyridoxal-5’-phosphate (2 mM final concentration),
L-cysteine (10 mM final concentration) and either isoxsuprine (0.026 ± 0.003 µg/ml final concentration)
or isoxsuprine plus PAG (10 mM final concentration)] were poured to 2 mL vials fitted with septum
stoppers and plastic center wells. Center wells were filled with 0.5 mL of 1% (w/v) zinc acetate pH 10
and a folded 2 cm × 2.5 cm rectangle of Whatman no. 1 filter paper for trapping evolved H2S. Each
vial was flushed with N2 for 20 s and then sealed. This mixture was left to react for 60 min at 37 ◦C. The
reaction was ended by adding 50% trichloroacetic acid and incubated for 60 min at 37 ◦C. Afterwards,
50 µL of 20 mM N,N-diethyl-p-phenylenediamine sulphate in 1.2 M HCl were added, followed by
addition of 50 µL of 30 mM iron trichloride in 1.2 M HCl. After 20 min, absorbance was measured at
670 nm and H2S concentration was calculated against a calibration curve of standard NaHS solution
(0–100 µM) [95].

4.2.7. Statistical Analysis

Six evaluations were carried out for each concentration of the tested compounds. The results
are expressed as the mean ± standard error of the mean (SEM). Experimental data were fitted to
a sigmoidal equation, plotted and analyzed to calculate EC50 and Emax values (GraphPad Prism
7.02, San Diego, CA, USA). These results were subjected to one-way ANOVA analysis, followed by
Dunnett’s post hoc test, using the statistical program GraphPad Prism 7.02. Values of * p < 0.01,
** p < 0.001, *** p < 0.0001 were considered to be significant. In Figure 7, statistical analysis was made
using a one-way ANOVA, followed by a Tukey’s test. In Figure 8B, statistical analysis was made using
t-test with Welch´s correction.

4.3. Virtual Pharmacophoric Elements Identification and General Protein-Ligand Interaction Model

The software Pharmer (2015, Pittsburg, PA, USA) [96] was used to identify the key pharmacophoric
elements of the consensus hits on their protein-ligand complexes: hydrogen bond donors and acceptors,
aromatic systems, hydrophobic groups, and ionic groups in the three-dimensional conformations of
the ligands. These characteristics were clustered according to their nature, position, and size using a
partition around medoids statistical method [97], implemented in the cluster package [98], available in
the statistical software R (3.5.2, Vienna, Austria) [99].

4.4. Molecular Dynamics (MD) of Isoxuprine-CSE Interaction

Once the CSE-isoxuprine structure was obtained, this complex was subjected to molecular
dynamics simulation with GROMACS 5.1.4 [100], using the AMBER99SB force field [101] and adjusting
the parameters necessary for the ligand with ACPYPE [102]. The protonation state was defined at
physiological pH, so that the ligand had a positive charge. Electrostatic and Lennard-Jones interactions
had a cut-off of 1 nm. Simulation was carried out in periodic conditions by using rectangular boxes
of maximum length of the system plus 1 nm. The complex was subjected to a minimization of
energy followed by a period of equilibrium of free and restricted position, to finally carry out an
isothermal-isobaric (300 K, 1 atm) computer simulation of 10 ns, employing a temperature coupling
and velocity rescaling with a stochastic term [103] and a Parrinello-Rahman barostat [104]. Binding
free energy was calculated by means of the LIE method [105] as a notion of affinity of the ligand for
the enzyme.

5. Conclusions

In conclusion, in this work we present for the first time evidences indicating that the vasodilation
induced by isoxsuprine comprises different mechanisms that include activation of the NO/cGMP and
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the H2S/KATP pathways and blockade of α1-adrenoceptors and L-type voltage gated calcium channels.
All these mechanisms act in a synergistic manner to produce a potent vasodilator effect. This study
presents valuable elements for the repositioning of isoxsuprine as a promising molecule that could be
used in the therapeutics of various cardiovascular pathologies. Finally, our results provide support
for the usefulness of the triterpene-binding putative allosteric sites on eNOS and CSE as valuable
pharmacological targets in the search of hit compounds for the development of drugs useful to treat
cardiovascular diseases.

Supplementary Materials: The Supplementary Materials are available online. Figure S1: CSE-isoxsuprine and
CSE-fenoterol binding free energies results (LIE Method) obtained from Molecular Dynamics Simulation with
GROMACS, using AMBER force field and adjusting the parameters required for the ligand with ACPYPE. Table S1:
Docking scores by program and percentile consensus of the “consensus hit compounds”.
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