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Abstract: Isocitrate dehydrogenases (IDH) 1 and 2 are key metabolic enzymes that generate
reduced nicotinamide adenine dinucleotide phosphate (NADPH) to maintain a pool of reduced
glutathione and peroxiredoxin, and produce α-ketoglutarate, a co-factor of numerous enzymes.
IDH1/2 is mutated in ~70–80% of lower-grade gliomas and the majority of secondary glioblastomas.
The mutant IDH1 (R132H), in addition to losing its normal catalytic activity, gains the function of
producing the D-(R)-2-hydroxyglutarate (2-HG). Overproduction of 2-HG in cancer cells interferes
with cellular metabolism and inhibits histone and DNA demethylases, which results in histone and
DNA hypermethylation and the blockade of cellular differentiation. We summarize recent findings
characterizing molecular mechanisms underlying oncogenic alterations associated with mutated
IDH1/2, and their impact on tumor microenvironment and antitumor immunity. Isoform-selective
IDH inhibitors which suppress 2-HG production and induce antitumor responses in cells with IDH1
and IDH2 mutations were developed and validated in preclinical settings. Inhibitors of mutated
IDH1/2 enzymes entered clinical trials and represent a novel drug class for targeted therapy of
gliomas. We describe the development of small-molecule compounds and peptide vaccines targeting
IDH-mutant gliomas and the results of their testing in preclinical and clinical studies. All those
results support the translational potential of strategies targeting gliomas carrying IDH1 mutations.

Keywords: IDH mutations; metabolic disturbances; epigenetics; gliomas; tumor microenvironment;
IHD mutant inhibitors

1. Functions of Isocitrate Dehydrogenases

Since the initial discovery of mutations in the isocitrate dehydrogenase 1 (IDH1) gene by
whole-genome sequencing in a large subset of human gliomas [1], and in acute myelogenous leukemia
(AML) [2], much interest was focused on understanding consequences of mutations in IDH genes and
their roles in tumor progression. Isocitrate dehydrogenases 1 and 2 are key Krebs cycle enzymes that
are nicotinamide adenine dinucleotide phosphate (NADP+)-dependent and catalyze the oxidative
decarboxylation of isocitrate to α-ketoglutarate (α-KG). There are three IDH isoforms, IDH1, IDH2,
and IDH3, encoded by different genes. NADP-dependent IDH1 and IDH2 share considerable sequence
similarity (70%) and an almost identical protein structure [3]. IDH3 has a unique sequence, is a
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NAD-dependent enzyme [4], and plays a central role in energy production. To date, there are no
reports of tumor-associated mutations in the IDH3 gene. IDH1 mainly occurs in the cytoplasm and
peroxisomes, while IDH2 and IDH3 are found in the mitochondrial matrix [5]. IDH1/2 proteins
catalyze the oxidative decarboxylation of isocitrate to α-KG to produce reduced nicotinamide adenine
dinucleotide phosphate (NADPH) from NADP+. IDH1 and IDH2 enzymes maintain an adequate pool
of reduced glutathione (GSH) and peroxiredoxin by providing NADPH. This maintains redox balance,
protecting the cell against oxidative damage from various cellular stressors. NADPH generated by
IDH1 is involved in lipid metabolism [6] and contributes to the cellular defense against reactive
oxygen species (ROS) induced during lipid oxidation [7]. IDH1 and IDH2 participate in protection
from oxidative stress [8] by producing molecules such as NADPH and α-KG which have strong
reductive properties and protect against DNA damage via their interactions with glutathione- and
thioredoxin-producing systems [9]. The reaction driven by IDH1 is the main source of NADPH in
the human brain, producing as much as 65% of the brain’s NADPH [10]. IDH1 and IDH2 are also
involved in glutamine metabolism under hypoxia and electron transport chain alterations [11].

2. Pathophysiology of Isocitrate Dehydrogenase Mutations

High-density oligonucleotide arrays and next-generation sequencing of glioma samples of grades
II and III (according to classification of the World Health Organization, WHO) revealed an unexpected
spectrum of mutations, among which somatic, recurrent mutations in the IDH1 gene were found
in 12% of glioma samples [1]. IDH mutations occur early in pathogenesis of gliomas and persist
throughout progression of a glioma from a neural stem or progenitor cell. All known IDH mutations
are invariably monoallelic. Mutations in IDH1 and IDH2 genes are mostly missense variants leading
to a single amino-acid substitution of arginine residues at codon 132 in exon 4 of the IDH1 gene or
codons 140 or 172 of the IDH2 gene (IDH1-R132, IDH2-R140, or IDH2-R172). IDH1-R132 mutants have
dominant-negative, inhibitory effects on wild-type IDH1 (IDH1-wt) in vitro [12].

In addition to losing its catalytic activity, mutant IDH1 and IDH2 enzymes gain the function of
catalyzing the reduction of α-ketoglutarate (KG) to its (R)-enantiomer of 2-hydroxyglutarate (2-HG) [13].
The 2-HG compound has properties of an oncometabolite, and its accumulation in the cell contributes
to cancerogenesis [14]. An oncometabolite is typically a small molecule (or enantiomer), which
participates in normal metabolism, but whose accumulation causes metabolic deregulation and,
consequently, predisposes cells for future progression to cancer. This term is assigned to R(−)-2-
hydroxyglutarate ((R)-2HG). The 2-HG compound adopts almost identical location to α-KG at the
catalytic sites of DNA hydroxylases and enzymes containing the Jumonji domain. 2-HG is most potent
against JMJD-containing histone demethylases (JMJD2A, JMJD2C, and FBXL11) with IC50 values of
approximately 100 µM, suggesting that the JMJD-containing histone demethylases, which includes
nearly 30 distinct enzymes in mammalian cells, are probably the main target of 2-HG inhibition.
Accumulation of 2-HG in cancer cells results in the complete inhibition of Jumonji-class histone
demethylases [15,16]. Changes in histone methylation profiles (especially H3K9 methylation) are
associated with IDH mutations and result in inhibition of cell differentiation [17]. Moreover, 2-HG is a
competitive inhibitor of the ten-eleven translocation (TET) family of 5-methlycytosine hydroxylases
responsible for the demethylation of DNA [18,19] (Figure 1).
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Figure 1. Summary of metabolic and epigenetic alterations induced by IDH mutations in cancer cells.
The action mode of inhibitors targeting the mutant isocitrate dehydrogenase (IDH) proteins is indicated.

A high concentration of 2-HG also promotes angiogenesis via inhibition of prolyl-hydroxylases
and stabilization of hypoxia-induced factor (HIF1α), a transcription factor which controls genes
promoting cell adaptation to hypoxia, i.e., vascular endothelial growth factor (VEGF) [12]. High HIF1α
expression was found in 15% of IDH-mutant (IDH-mut) tumors compared to 7.7% of IDH-wt tumors [9].
More detailed studies revealed that IDH mutation status is associated with a distinct angiogenesis
transcriptome signature, decreased expression of HIF1α targets, and impairment of downstream
biological functions such as angio- and vasculogenesis that are critical for tumor growth [20].

IDH mutations cause profound changes in global cellular metabolism. Initial studies of the effect
of IDH mutations on the tricarboxylic acid (TCA) cycle function failed to demonstrate significant
alterations in TCA cycle metabolites [14]. However, a more detailed study by Reitman et al. [21],
who profiled >200 metabolites in IDH1- or IDH2-mut oligodendroglioma cells, detected changes
in levels of amino acids, glutathione metabolites, choline derivatives, and tricarboxylic acid cycle
intermediates. These changes mimicked those identified after treatment of the cells with 2-HG.
N-Acetyl-aspartyl-glutamate (NAAG), a common dipeptide in brain, was 50-fold reduced in IDH1-mut
expressing cells and 8.3-fold reduced in IDH2-mut expressing cells. A similar reduction of NAAG was
detected in IDH-mut glioma tissues [21]. Acetyl coenzyme A (CoA), which is generated from citrate
in the cytoplasm, was shown to regulate the acetylation of cytoplasmic proteins. IDH-mut tumors
exhibit perturbed acetyl-CoA metabolism and reduced cytosolic acetyl-CoA concentrations, which
may result in altered acetylation and activity of many tumorigenic proteins [22]. IDH1-mut cells shared
multiple metabolic changes with 2-HG-treated cells, suggesting that the oncometabolite production is
responsible for the observed metabolic effects [14].

IDH1 activity is also an important factor in metabolic adaptation, which supports an aggressive
growth of primary glioblastomas (GBM) maintained despite difficult metabolic conditions. Primary
GBMs develop de novo and are the most malignant brain tumors. A wild-type IDH1 mRNA (messenger
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RNA) and protein are commonly overexpressed in primary GBMs and increased IDH1-wt activity was
found in 65% of those tumors. Genetic and pharmacological inactivation of IDH1 decreased GBM
cell growth, promoted more differentiated phenotype, increased apoptosis in response to targeted
therapies, and prolonged survival of animals with patient-derived xenografts. This forced IDH
inactivation/inhibition was accompanied by reduced α-KG and NADPH levels, increased ROS
production, enhanced histone methylation, and increased expression of differentiation markers [23].
This suggests that IDH1 upregulation represents a metabolic adaptation of GBM to support growing
demands of macromolecular synthesis in tumor cells.

3. Detection of IDH Mutations Improves Classification of Gliomas and Predicts Better Survival

Gliomas are primary tumors of the central nervous system (CNS) that originate from transformed
neural stem or progenitor glial cells, and they were divided by the World Health Organization (WHO)
into low-grade gliomas (LGG, WHO grades I and II) and high-grade gliomas (HGG, WHO grades
III and IV). LGG are well-differentiated, slow-growing tumors, whereas HGG are less differentiated
or anaplastic and diffusive, strongly infiltrating brain parenchyma and making a surgical resection
difficult. Histological classification is currently assisted by molecular genetic studies that provide
diagnostic, prognostic, and predictive values, and an IDH genotype was recently added as the one of
the key molecular factors to the classification of gliomas. The new 2016 WHO classification scheme
divides diffuse gliomas into LGGs and glioblastomas (GBMs) based on histology. LGGs are further
divided into IDH wild type or mutant, which is further classified into either an oligodendroglioma
that harbors 1p/19q co-deletion or a diffuse astrocytoma that has an intact 1p/19q loci, but is enriched
for ATRX and TP53 mutations [24].

According to recent WHO classification glioblastomas are divided into an IDH-wt GBM, which
corresponds to a primary or de novo GBM, and an IDH-mut GBM, which refers to a secondary
or progressive GBM. A mutation in IDH1 is sufficient to induce genome-wide changes in DNA
methylation patterns, including the glioma cytosine phosphate guanine (CpG) island methylator
phenotype (G-CIMP) found in a subset of gliomas, which is associated with diverse transcriptional
changes [17,25]. G-CIMP is characterized by hypermethylation of CpG islands. Among IDH-mut
astrocytomas, methylation profile clustering can further subdivide these tumors into G-CIMP–low
and G-CIMP–high, reflecting low or high DNA methylation with a significant difference in survival.
DNA methylation studies provided an evidence that G-CIMP–high tumors may in fact progress
to those that are G-CIMP–low [26]. DNA methylation patterns in IDH-mut GBMs are distinct
from lower-grade astrocytomas [27]. The identification of clinically relevant subsets of G-CIMP
tumors (G-CIMP–high and G-CIMP–low) provided a further refinement in glioma classification that is
independent of grade and histology. Many studies showed that patients with IDH-mut gliomas have
better survival compared to their IDH-wt counterparts irrespective of histology and grade, making
IDH mutation the most important prognostic factor for survival, followed by age, tumor grade, and
O6-methylguanine-DNA methyltransferase gene (MGMT) status (reviewed in Reference [28]). Clinical
statistics show that a median overall survival (OS) is 31 months for secondary GBM patients with
IDH mutations compared to 15 months for those without the mutations. Patients with IDH-mut
anaplastic astrocytoma have 65 months of median OS compared to 20 months in their IDH-wt
counterparts [29]. The presence of IDH1 mutations in anaplastic oligodendroglioma patients is a very
strong prognostic factor for OS, but has no a predictive significance for outcome to PCV chemotherapy
(adjuvant procarbazine, 1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea, and vincristine) [30]. All reasons
for which glioma patients with IDH1 mutations show better therapeutic responses and longer survival
remain unclear.

Almost 100% of tumors of oligoastrocytic and oligodendrocytic origin harbor IDH1/2 mutations;
up to now, there is no evidence of any mutations in IDH3 in glial tumors [29]. IDH1/2 mutations were
found in a majority of secondary GBMs (derived from lower-grade tumors) [29], but only 2–3% were
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found in primary GBMs [31] or pediatric gliomas [32]. IDH mutations are considered to be the primary
initiating event in WHO grade II/III gliomas and secondary GBMs [33].

Several concepts were conceived to explain how IDH mutations influence patient outcome. It is
believed that decreased MGMT expression, caused by the MGMT gene promoter methylation, has a
major influence on GBMs responsiveness to alkylating agent therapy (i.e., temozolomide, TMZ) [34].
IDH mutations occur more frequently in young patients (younger age of diagnosis) with WHO grade
II/III gliomas, who have generally better prognosis [29,35]. However, the IDH1 mutation does not
directly or always correlate with patient survival. Among adult GBM patients who survived at least
36 months, less than one-quarter of them were associated with the IDH1-mut status [36]. However,
the presence of IDH1 mutation was a weak prognostic factor in GBM patients with a long-term
survival [37]. Also, in the case of low-grade oligodendroglial tumors, the mutation in IDH1 was not a
prognostic factor. While 91% of oligodendrogliomas harbored the IDH1 mutation, the survival times of
patients with IDH1-mut tumors were not different compared to patients with IDH1-wt tumors. Patients
with IDH1-mut diffuse astrocytomas lived significantly longer. This suggests that IDH mutations
could be a prognostic factor for diffuse astrocytoma, but not for oligodendroglioma [38].

Several reports pointed out that prognosis for glioma patients with the IDH1 mutation is associated
with DNA methylation patterns. There is a subtype of glioma characterized by the presence of the
IDH mutation and a low level of DNA methylation (G-CIMP–low) which was associated with a
poor outcome [26]. Additionally, the impact of IDH1 mutations for patient survival may depend on
other factors, such as alterations in 1p/19q, ATRX, PTEN, or MGMT methylation status [39,40]. Ki-67
expression in combination of IDH-mut may also influence patient survival. Patients with IDH1/2-mut
and a low level of Ki-67 expression had a relatively good prognosis, while patients with IDH1/2-mut
and a high level of Ki-67 expression had significantly worse prognosis and shorter times of survival [41].
Outcome of patients with IDH mutation was also associated with the occurrence of copy number
alterations (CNAs). Patients characterized by the presence of one of the CNAs, +7q, +8q, −9p, or −11p,
were associated with worse prognosis and worse overall survival when compared to other patients
with the IDH mutation [42]. Additionally, prognosis and time of survival of patients with the IDH
mutation may be gender-dependent; the presence of the IDH1 mutation was associated with a longer
time of survival in male, but not in female patients [43].

While the presence of IDH mutations commonly correlates with better outcome of glioma patients,
some studies showed the connection between the presence of IDH mutation and seizure risk in glioma
patients. A majority of patients with WHO grade II astrocytoma (but not GBM) suffered pre-operative
seizures related to the presence of IDH mutation [44]. A recent meta-analysis confirmed that the
presence of IDH1 mutation is correlated with the higher number of preoperative seizures in LGG [45].

4. Impact of IDH Mutations on Glioma Microenvironment

The microenvironment of gliomas is heterogeneous, and there are numerous cancer and
non-cancerous, stromal cells which dynamically interact with themselves and with an extracellular matrix.
In glioblastoma, this microenvironment includes reactive astrocytes, endothelial cells, and many types
of immune cells, among which a main component (up to 30% of a tumor mass) are glioma-associated
microglia and macrophages. This population is composed of brain-resident microglia, infiltrating,
blood-derived macrophages, and myeloid-derived suppressive cells. Tumor-derived molecules attract
and reprogram infiltrating microglia and macrophages and convert them into the cells that support
invasion and produce local and systemic immunosuppression (for a review, see References [46,47]).

Recent studies provided emerging insights into how IDH mutations affect the glioma
microenvironment. Cytotoxic T lymphocytes (CD8+, cluster of differentiation 8 positive) are crucial
components of the tumor-specific adaptive immunity. Lymphocyte infiltration occurs to some
extent in glioma, and the presence of tumor-infiltrating lymphocytes (TILs) is predictive of clinical
outcome [48,49]. The number of CD8+ TILs was inversely correlated with tumor grade, whereas the
number of CD4+ TILs was positively correlated with tumor grade. FoxP3+ (forkhead box P3) regulatory
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lymphocytes were observed only in GBMs [50]. The extent of local glioma-associated CD8+ T-cell
infiltrate at initial presentation correlates with the long-term survival of GBM patients [51]. The immune
checkpoint molecules such as CTLA-4 (cytotoxic T cell antigen 4), PD-1 (Programmed cell death protein
1), PD-L1/2 (Programmed death-ligand 1/2) and others provide inhibitory signals to T cells [52].
In glioma patients, the accumulation of CD4+/CD8+ T cells and T regulatory cells (Tregs) that express
high levels of CTLA-4 and PD-1, or the high expression of PD-L1 in glioma cells correlates with WHO
high grade and short survival [53,54]. The impact of IDH mutations on immune microenvironment is
under debate. Analyses of clinical samples and gene expression data from The Cancer Genome Atlas
(TCGA) demonstrated reduced expression of cytotoxic T-lymphocyte-associated genes and interferon
(IFN)-γ-inducible chemokines (i.e., CXCL10) in IDH-mutant tumors compared with IDH-wt tumors.
Introduction of mutant IDH1 or treatment with 2-HG reduced levels of a chemokine CXCL (C-X-C
motif) 10, which was associated with decreased expression of a transcription factor STAT1 (signal
transducer and activator of transcription 1), an inducer of inflammation. Forced expression of a mutant
IDH1 also suppressed the accumulation of T cells at tumor sites. Those events were reversed by
IDH-C35, a specific inhibitor of a mutant IDH1 [55].

A single study showed that IDH1 mutation did not associate with increased intratumoral
expression of either PD-1+ TIL or PD-L1 in GBMs [56]. However, a recent study demonstrated
that IDH-wt is associated with the significantly higher TIL infiltration and PD-L1 expression among
all grade II–IV gliomas and within the cohort of GBMs [57]. In LGGs and GBMs of TCGA cohorts,
significantly higher PD-L1 gene expression was found in IDH-wt compared with IDH-mut tumors.
Lower PD-L1 gene expression was associated with the increased promoter methylation in the LGG
cohort of TCGA. IDH-mut gliomas had higher PD-L1 gene promoter methylation levels than IDH-wt
gliomas [57]. PD-L1 expression was significantly associated with a worse clinical outcome in primary
and recurrent IDH-wt GBMs [58]. As IDH1-wt gliomas exhibit increased PD-L1 expression and greater
TIL infiltration, those tumors are considered to be more immunologically active and more susceptible
to immunomodulatory therapy against PD-1/PD-1L than IDH-mut gliomas. Those observations
underlie the importance of evaluating IDH1/2 status in immunomodulatory therapies.

A flow cytometry analysis of immune composition of human gliomas with a different IDH1
status demonstrated that human IDH1-mut gliomas have significantly lower infiltration of CD45+

immune cells, including microglia, macrophages, dendritic cells, B cells, and T cells, compared with
IDH1-wt gliomas. The downregulated genes in IDH1-mut gliomas were associated with immune
system processes, and the major Gene Ontology terms were related to chemotaxis and immune
cell migration [59]. Introduction of IDH1-mut into transgenic mouse gliomas with different genetic
background, expressing platelet-derived growth factor alpha (PDGFα), shp53, or Ink4a/Arf+/+ and
Ink4a/Arf+/−, demonstrated significantly shorter survival compared to mice with IDH1-wt tumors.
Similar to human IDH1-mut gliomas, reductions in CD45+ cells, including microglia, macrophages,
monocytes, and polymorphonuclear leukocytes, were reported in the IDH1-mut murine tumors. Gene
expression in IDH1-mut mouse gliomas was negatively associated with leukocyte and neutrophil
migration [60]. A computational analysis of relative immune cell content and type of immune response
in subtypes of GBMs in the TCGA RNA-sequencing dataset was carried out. All G-CIMP and IDH1-mut
GBMs were characterized by negative immune responses and lower human leukocyte antigen (HLA)
expression [61]. The analyses of complement activation and CD4+, CD8+, or FoxP3+ T-cell infiltration in
sections from 72 gliomas of WHO grade III and IV with or without IDH mutations showed significantly
reduced complement activation and decreased numbers of tumor-infiltrating CD4+ and CD8+ T cells
with comparable FoxP3+/CD4+ ratios. Ex vivo studies demonstrated that 2-HG inhibits complement
activation, decreases cellular C3b(iC3b) opsonization and complement-mediated phagocytosis, and
inhibits T-cell migration, proliferation, and cytokine secretion. This is consistent with reduced host
immune responses in IHD-mut gliomas [62].

A direct link between an IDH mutation and T-cell functions was recently demonstrated. It was
shown that tumor cell-derived (R)-2-HG is taken up by T cells, where it induces perturbation of NFAT
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(nuclear factor of activated T cells) transcriptional activity and polyamine biosynthesis, which results
in suppression of T-cell proliferation and activity. IDH1-mut gliomas showed reduced T-cell numbers
and altered calcium signaling. Consistently, antitumor immunity to experimental syngeneic IDH1-mut
gliomas induced by an IDH1-specific vaccine or checkpoint inhibition was significantly improved by
inhibition of the enzymatic function of mutant IDH1 [59].

Blood vessels in glioblastoma are abnormal and display a distinct gene expression signature
compared with vessels in normal brain [63,64]. Those vascular abnormalities are connected to a high
expression of angiogenic factors, including vascular endothelial growth factor (VEGF), transforming
growth factor (TGF) β2, and pleiotrophin (PTN). In addition to inducing epigenetic deregulation,
(R)-2HG can regulate the activity of α-KG-dependent dioxygenases, specifically EGLN (EGL nine
homolog 1) prolyl 4-hydroxylases [65], that are responsible for regulation of HIF1α, which controls
angiogenesis. In IDH-mut gliomas (R)-2HG acts as an activator of EGLN prolyl 4-hydroxylases, leading
to decreased levels of HIF1α and reduced expression of genes implicated in hypoxia, and vasculo- and
angiogenesis-related signaling such as: VEGFA, PDGF (platelet derived growth factor), or ANGPT2
(angiopoietin-2) [65]. Transcriptomic studies showed that IDH-wt LGGs presented a specific angiogenic
gene expression signature, including upregulation of ANGPT2 and SERPINH1 (SERPIN family H),
linked to enhanced endothelial cell migration and matrix remodeling, suggesting that these tumors
are more angiogenic than IDH-mut LGGs. Transcription factor analysis indicated increased TGFβ
and hypoxia signaling in IDH-wt LGGs. As a consequence, IDH-wt LGG vessels are molecularly
distinct from the vasculature of IDH-mut LGGs [66]. All reported data indicated gross differences
in composition and functionality of different cells creating the microenvironment of IDH-wt and
IDH-mut gliomas.

5. Targeting of Mutant IDH1/2 Gliomas with Isoform-Specific Chemical Inhibitors

Many preclinical and clinical data validated IDH1/2 as an important target for antitumor drug
development. A growing number of studies using cellular and animal models indicate that pharmacological
inhibition of mutated IDH1/2 offers therapeutic benefits and there is a rationale for development
of isoform-specific inhibitors (Figure 1). In principle, small molecules are designed to bind within
the active catalytic site of a mutant IDH1/2 and block the conformational change required for the
enzyme to convert α-KG to 2-HG [67]. Consequently, targeted inhibition of mutated IDH1/2 results in
decreased intracellular and serum levels of 2-HG [68,69], followed by reversion of global alterations in
an epigenome. Current targeted inhibitors of IDH1 (AG120, IDH305), IDH2 (AG221), and pan-IDH1/2
(AG881) selectively inhibit the mutant IDH activity and induce cell differentiation in in vitro and
in vivo models. Preliminary results from phase I clinical trials with IDH inhibitors in patients with
advanced hematologic malignancies demonstrated an objective response rate ranging from 31% to 40%
with durable responses (>1 year) [70]. We briefly summarize the properties of IDH1/2 inhibitors below.

AG-120 is a first-in-class, orally administered, reversible, and highly selective small-molecule
inhibitor of mutant IDH1/R132H with half maximal inhibitory concentration (IC50) = 40–50 nM.
AG-120 reduced intracellular levels of 2-HG, inhibited cell proliferation, and released a block of
erythropoietin-induced differentiation in human erythroleukemia TF-1 cells harboring IDH1/R132H
in vitro and in primary human blast cells cultured ex vivo [68]. AG-120 is currently being evaluated
in several clinical trials for the therapy of patients with relapsed or refractory AML, myelodysplastic
syndrome, and advanced solid tumors including glioma, chondrosarcoma, and cholangiocarcinoma
with a mutant IDH1/R132H (Table 1). Early results from patients with relapsed or refractory AML
indicate that monotherapy is well tolerated at doses ranging from 100 to 1200 mg, and a maximum
tolerated dose was not reached. An overall response rate of 36% and a complete response rate of
29.5% were induced [71]. Moreover, dose-escalation clinical trials indicated an overall response rate of
50% [72]. The plasma 2-HG level in patients with IDH1-mutant AML was reduced almost completely
after AG-120 treatment. Preliminary data from a phase I study of patients with IDH1-mut gliomas
demonstrated that AG-120 treatment had no dose-limiting toxicity or serious adverse effects [73].
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AGI-5198 is a small-molecule, highly selective IDH1/R132H inhibitor with a half maximal
inhibitory concentration IC50 = 70 nM and IC50 > 100 µM for wild-type IDH1 and IDH2 isoforms.
It suppressed the production of 2-HG in a dose-dependent manner and significantly inhibited growth of
anaplastic oligodendroglioma cells harboring heterozygous IDH1/R132H mutation without influence
on IDH1-wt patient-derived glioma cells. AGI-5198 also reduced growth of human IDH1/R132H
glioma xenografts in mice and did not impair glioma expressing wild type IDH1, without significant
toxicity. AGI-5198 treatment of mice engrafted with IDH1-mutant glioma removed repressive marks
via significant reduction of H3K9 and H3K27 trimethylation at the promoters of genes associated with
gliogenic (astrocytic and oligodendrocytic) differentiation, increasing the expression of these genes [74].
AGI-5198 also reduced 2-HG levels in human chondrosarcoma cells that harbor IDH1/R132G and
IDH1/R132C mutations in a dose-dependent manner. Moreover, AGI-5198 significantly inhibited
colony formation and migration of chondrosarcoma cells, without influence on IDH1-wt human
normal chondrocytes, and induced an apoptotic cell death and G2/M cell-cycle arrest in human
chondrosarcoma cells in vitro [75]. AGI-5198 is yet to enter clinical trials.

BAY-1436032 is a small-molecule, oral inhibitor of pan-mutant IDH1 with IC50 = 3–16 nM.
It blocks 2-HG production and induces myeloid differentiation manifested by morphological changes
and upregulated expression of CD14 and CD15 markers in patient-derived IDH1-mut AML cells
cultured ex vivo. In mice with implanted AML xenografts, BAY-1436032 decreased the level of
2-HG in serum nearly to the level found in normal tissues, and promoted differentiation of leukemic
blast cells which correlated with the prolonged survival. The pan-mutant IDH1 inhibitor affected
leukemia stem cells’ ability to self-renew with downregulation of stemness-associated genes and
upregulation of those associated with myeloid differentiation. Similarly to other IDH-mutant inhibitors,
BAY-1436032 affected global histone and DNA methylation levels [76]. The inhibitor entered clinical
evaluation for the treatment of patients with advanced solid tumors, including anaplastic glioma,
GBM, and intrahepatic cholangiocarcinoma.

FT-2102 is a small-molecule, oral allosteric inhibitor of mutant IDH1 (IC50 = 10 nM) currently
undergoing a clinical study for the treatment of patients with IDH1-mut AML or higher-risk myelodysplastic
syndrome, who relapsed or are refractory to a prior therapy or were disqualified for standard treatment.
It is used at a dose of 150 mg/daily as monotherapy and in combination with azacitidine [67].

HMS-101 is a small-molecule inhibitor of mutant IDH1 which reduced 2-HG level, affected
proliferation and the ERK (extracellular signal-regulated kinase) signaling pathway, and inhibited
colony formation of IDH1-mut murine cells and primary AML cells cultured ex vivo without affecting
normal bone marrow cells [77]. In a mouse model of leukemia, HMS-101 blocked the production
of 2-HG and inhibited proliferation of IDH1-mut cells. It induced cell differentiation, which was
correlated with the prolonged survival of mice with IDH1-mut AML cells [78]. HMS-101 is yet to be
investigated in patients.

IDH305 is a small-molecule, oral, highly selective, allosteric inhibitor of the mutant IDH1/R132H.
IDH305 inhibited 2-HG production and tumor cell proliferation with an IC50 = 24 nM, and showed
an anticancer activity in IDH1/132H–mut cells in preclinical studies [79]. IDH305 is under clinical
evaluation as a single agent or in combination with standard treatments for the therapy of patients
with progressive II or III gliomas, low-grade gliomas with measurable 2-HG levels, AML, and other
advanced malignancies harboring IDH1/R132H mutations (see summary in Table 1). Early results
from clinical studies demonstrated an encouraging anticancer potential of IDH305 and a favorable
safety profile in patients with AML harboring mutant IDH1/132H [79].

AGI-6780 is a small-molecule, allosteric inhibitor designed to target the IDH2/R140Q with IC50

= 170 nM and IC50 > 100 µM for IDH1/132H. It decreased the level of intracellular and extracellular
2-HG in a dose- and time-dependent manner and induced differentiation of IDH2-mut TF-1 human
erythroleukemia cells in vitro and primary human AML cells cultured ex vivo [80]. AGI-6780 reversed
DNA hypermethylation within several weeks, whereas histone hypermethylation was removed within
several days [81]. AGI-6780 is yet to enter clinical trials.
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AG-221 (enasidenib, CC-90007) is an orally available, reversible, and highly selective inhibitor
of the mutant IDH2/R140Q with IC50 = 12 nM. AG-221 reduced serum levels of 2-HG and induced
myeloid differentiation of AML leukemic blast cells engrafted to immunodeficient mice. AG-221 is
currently being evaluated in several clinical trials for the use in advanced hematologic malignancies
positive for a mutated IDH2 [69]. AG-221 decreased 2-HG level in marrow, plasma, and urine of
xenotransplant mice, and promoted significant survival benefits in a dose-dependent manner [82].
At present, AG-221 is being investigated in clinical trials for the therapy of patients with advanced
IDH2-mut hematologic malignancies. Preliminary clinical data indicate that monotherapy with AG-221
resulted in up to a 98% decrease in 2-HG level in plasma, and the drug was well tolerated [83]. Levels
of 2-HG in patients with IDH2-mut AML were lowered to the level in healthy volunteers [84]. AG-221
treatment promoted differentiation of leukemic cells into mature myeloid cells [72], and induced
an objective overall response rate of 41% and a complete response in 28% patients with AML [72].
An overall response rate in patients with other hematological malignancies was 56% [72]. Moreover,
AG-221 was clinically developed for treatment in combination with standard chemotherapy, and
hypomethylating agents in newly diagnosed AML patients [70]. Recently, the inhibitor entered clinical
trials for the treatment of patients with advanced solid tumors including glioma, chondrosarcoma,
and cholangiocarcinoma with a mutated IDH2 (Table 1).

AG-881 is a small-molecule, orally administered pan-IDH1/2-mutant inhibitor. Preclinical studies
indicated that AG-881 blocks both mutated IDH1 and IDH2 proteins with IC50 = 0.04–22 nM, decreases
the level of 2-HG, and crosses the blood–brain barrier. AG-881 was shown as a full brain-penetrant
and, thus, may possibly represent a more effective agent for the therapy of patients with IDH1/2-mut
gliomas [67]. A pan-IDH1/2 inhibitor is suggested to be a second-generation drug in IDH-mut
cancers [70]. AG-881 is currently being investigated in clinical trials for patients with solid tumors,
including gliomas and advanced hematologic malignancies harboring mutated IDH1 and/or IDH2
that progressed prior to treatment with the use of mutant IDH inhibitors [67,70]. As AG-881 recently
entered the clinical evaluation in patients, no data reports are yet available (Table 1).

Table 1. A summary of clinical trials with isoform-specific isocitrate dehydrogenase inhibitors.

Inhibitor Target Cancer Current Status of
Clinical Trials

Identifier at
ClinicalTrials.Gov Company Reference

AG-120 Mutant
IDH1

Cholangiocarcinoma,
chondrosarcoma, glioma and

advanced solid tumors
Phase I NCT02073994

Agios
Pharmaceuticals

Inc./Celgene
Corporation

[71,73,85]

Advanced hematologic
malignancies: relapsed or
refractory AML, untreated
AML, other hematologic

malignancies

Phase I NCT02074839

Agios
Pharmaceuticals

Inc./Celgene
Corporation

Newly diagnosed AML,
untreated AML, AML arising
from MDS, AML arising from

antecedent hematologic
disorder, AML arising after

exposure to genotoxic injury

Phase I NCT02632708

Agios
Pharmaceuticals

Inc./Celgene
Corporation

Newly diagnosed AML Phase Ib/II NCT02677922

Agios
Pharmaceuticals

Inc./Celgene
Corporation
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Table 1. Cont.

Inhibitor Target Cancer Current Status of
Clinical Trials

Identifier at
ClinicalTrials.Gov Company Reference

AG-221
(Enasidenib)

Mutant
IDH2

Advanced hematologic
malignancies Phase I/II NCT01915498

Agios
Pharmaceuticals

Inc./Celgene
Corporation

[72,82–85]

Advanced solid tumors
including glioma,

angioimmunoblastic T-cell
lymphoma, intrahepatic

cholangiocarcinoma
chondrosarcoma

Phase I/II NCT02273739

Agios
Pharmaceuticals

Inc./Celgene
Corporation

Late-stage AML Phase III NCT02577406

Agios
Pharmaceuticals

Inc./Celgene
Corporation

Newly diagnosed AML,
untreated AML, AML arising
from MDS, AML arising from

AHD, AML arising after
exposure to genotoxic injury

Phase I NCT02632708

Agios
Pharmaceuticals

Inc./Celgene
Corporation

Newly diagnosed AML Phase Ib/II NCT02677922

Agios
Pharmaceuticals

Inc./Celgene
Corporation

AG-881
Mutant

IDH1 and
IDH2

Advanced hematologic
malignancies: AML, MDS Phase I NCT02492737

Agios
Pharmaceuticals

Inc./Celgene
Corporation

[67,70]
Advanced solid tumors:

cholangiocarcinoma
chondrosarcoma, gliomas

Phase I NCT02481154

Agios
Pharmaceuticals

Inc./Celgene
Corporation

AGI-6780 Mutant
IDH2 AML - - Agios

Pharmaceuticals Inc. [80,81]

AGI-5198 Mutant
IDH1

Chondrosarcoma, low-grade
WHO glioma - - Xcess Biosciences Inc. [74,75]

BAY-1436032 Mutant
IDH1

Advanced solid tumors,
including anaplastic glioma,
glioblastoma, intrahepatic

cholangiocarcinoma

Phase I NCT02746081 Bayer [76]

FT-2102 Mutant
IDH1 AML, high-risk MDS Phase I/Ib NCT02719574 Forma Therapeutics

Inc. [67]

HMS-101 Mutant
IDH1 AML - - Ascenion GmnH [78]

IDH305 Mutant
IDH1

II or III WHO glioma Phase II NCT02977689

Novartis AG
Pharmaceuticals

[79]

Low-grade glioma Phase II NCT02987010

AML and advanced solid
tumors including

cholangiocarcinoma and
glioma

Phase I NCT02381886

AML Phase I NCT02826642

6. Development of IDH1-R132H Targeting Peptide Vaccines

It was demonstrated that an IDH1-R132H protein contains an immunogenic epitope suitable
for development of a mutant protein-specific vaccine. A fraction of IDH1-mut glioma patients have
isoform-specific antibodies and displayed an IFN-γ T-cell response against a mutant IDH1 (mutIDH1)
protein. Peptides encompassing the altered region were presented on major histocompatibility
complexes (MHC) class II and induced specific CD4+ T-helper-1 (TH1) responses against an altered
IDH1. Screening of peptide libraries around the altered region of the IDH1-R132H was performed to
identify peptides that would induce an interferon-γ (IFN-γ) responses in T cells. A peptide vaccine
consisting of a 20-mer peptide was derived from the IDH1-R132H. Peptide vaccination of humanized
mice (transgenic for human MHCI and II molecules) with IDH1-R132H tumors resulted in induction of
specific antitumor immune responses and restriction of growth of syngeneic IDH1-R132H-expressing
tumors. T-cell depletion abrogated the reduction in IDH1-mut tumor growth after IDH1 peptide
vaccination [86]. A similar good efficacy of mutIDH1 vaccine was demonstrated in a murine GL261
model, in which immunization of mice bearing mutIDH1/R132H GL261 gliomas was carried out.
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Mice with mIDH1-GL261, but not parental GL261 gliomas, survived longer than controls when treated
with mutIDH1 peptides; 25% of them were cured. Vaccination with peptides resulted in higher
counts of peripheral CD8+ T cells, higher levels of IFN-γ, and the presence of anti-mIDH1 antibodies.
Intratumoral upregulation of IFN-γ, Granzyme-B, and Perforin-1, together with downregulation
of TGFβ2 and IL (interleukin)-10 suggested rising antitumor immunity [87]. It was followed by
a clinical trial (NOA-16) of the IDH1 peptide vaccine targeting the IDH1-R132H to evaluate the
safety and tolerability, as well as immune responses to the vaccine in patients having IDH1-R132H
malignant gliomas (https://clinicaltrials.gov/ct2/show/NCT02454634). First reported results showed
that NOA-16 demonstrated safety and immunogenicity of a mutant IDH1-R132H peptide vaccine in
patients with newly diagnosed IDH1-R132H malignant astrocytomas [88]. These encouraging results
provided a strong evidence that a mutation-specific IDH1-R132H vaccine may represent a viable novel
therapeutic strategy for IDH1-R132H-mutant tumors [89].

7. Conclusions

Several studies provided strong evidence for the oncogenic potential of IDH1/2 mutations,
leading to the production of an oncometabolite 2-HG, which alters epigenetic regulation, cancer
cell differentiation, and cell metabolism. Depending on associated genomic aberrations and a cellular
context, the oncogenic potential of IDH1/2 mutations ranges from an initiating event, which promotes
transformation, to a secondary oncogenic event conferring selective advantage to cancer cells. In vitro
and in vivo preclinical studies demonstrated that inhibition of mutated IDH1/2 enzymes reduces
intracellular 2-HG levels, reverses epigenetic deregulation, and releases the differentiation block
in cancer cells. These findings provided a rationale for initiation of preclinical and a few clinical
trials evaluating novel, isoform-specific, mutated IDH1/2 inhibitors in cancers with such genomic
alteration. Novel inhibitors of mutant IDH1 (AG120, IDH305), IDH2 (AG221), and pan-IDH1/2
(AG881) were developed that selectively inhibit mutant IDH proteins and induce cell differentiation
in in vitro and in vivo models. Preliminary results from phase I clinical trials with those inhibitors
demonstrated a response rate ranging from 31% to 40% with durable responses (>1 year) in patients
with advanced hematologic malignancies and a positive activity in solid tumors with IDH mutations,
such as cholangiocarcinomas and low-grade gliomas. The mutated IDH1-R132H vaccines were
developed and proven to be effective in launching antitumor immunity in preclinical models, which
led to initiation of a clinical trial in glioma patients.

Current clinical trials evaluating potential inhibitors in cancers with mutant IDH1/2 are aimed at
confirming their safety and tolerability profiles, and clinical activity as a single agent or in combination
with standard treatment strategies. AG-120 and AG-221 obtained fast track and orphan drug
designations from the United States Food and Drug Administration (FDA). Preliminary results from
ongoing clinical trials indicate that pharmacological, small-molecule inhibitors of mutant IDH1/2 have
promising activity and efficacy in patients with relapsed and/or refractory cancer disease, as discussed
in an elegant recent review [90]. Generally, the treatment was relatively well tolerated and no maximal
tolerated doses were reached and those inhibitors showed less toxic adverse effects than standard
chemotherapeutic drugs [90].
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