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Abstract: The emergence and spread of antibiotic-resistant pathogens is a major public health
issue, which requires global action of an intersectoral nature. Multidrug-resistant (MDR)
pathogens—especially “ESKAPE” bacteria—can withstand lethal doses of antibiotics with various
chemical structures and mechanisms of action. Pharmaceutical companies are increasingly turning
away from participating in the development of new antibiotics, due to the regulatory environment
and the financial risks. There is an urgent need for innovation in antibiotic research, as classical
discovery platforms (e.g., mining soil Streptomycetes) are no longer viable options. In addition to
discovery platforms, a concept of an ideal antibiotic should be postulated, to act as a blueprint
for future drugs, and to aid researchers, pharmaceutical companies, and relevant stakeholders in
selecting lead compounds. Based on 150 references, the aim of this review is to summarize current
advances regarding the challenges of antibiotic drug discovery and the specific attributes of an ideal
antibacterial drug (a prodrug or generally reactive compound with no specific target, broad-spectrum
antibacterial activity, adequate penetration through the Gram-negative cell wall, activity in biofilms
and in hard-to-treat infections, accumulation in macrophages, availability for oral administration,
and for use in sensitive patient groups).

Keywords: antibiotic; multidrug-resistance; drug discovery; ESKAPE; prodrug; persisters; biofilm;
metronidazole; Mycobacterium

1. Introduction

The discovery and clinical use of antibiotics may be considered to be one the greatest achievements
in the history of medicine [1]. The emergence and spread of antibiotic-resistant pathogens is a
major public health issue, which requires global action of an intersectoral nature, involving patients
and healthcare professionals (prudent use and prescribing [2–5]), researchers and pharmaceutical
companies (development of novel drug candidates, clinical trials [6]) and relevant government
stakeholders (government action, financial support [7]) alike. A wide arsenal of bacterial resistance
mechanisms has been described, aiding pathogens in evading the lethal effects of these drugs, the most
important mechanisms being enzymatic degradation (e.g., β-lactamases, aminoglycoside-degrading
enzymes), target alteration (e.g., penicillin-binding proteins, bacterial topoisomerases), decreased
uptake (porin-deficient mutants) and overexpression of efflux pump proteins (e.g., AcrAB-TolC in
Enterobacteriaceae) [8,9]. Multidrug resistant (MDR) bacteria can withstand potentially lethal doses
of antibiotics with various chemical structures and mechanisms of action [10,11]. The European
Society for Clinical Microbiology and Infectious Diseases (ESCMID) conceived a practical definition
for multidrug resistance, where a pathogen is classified as MDR, if they show resistance against three
or more antibiotic classes in vitro [12,13]. Major public health authorities, such as the World Health
Organization (WHO), the European Center for Disease Prevention and Control (ECDC), and the
Centers for Disease Control and Prevention in the US (CDC) have all published reports on the
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significance and the attributable extra mortality that is associated with MDR pathogens [14–17]. All of
these reports concluded that antibiotic resistance is a global issue that may become the major cause
of mortality by 2050 [14]. From the standpoint of antimicrobial research, the so-called “ESKAPE”
pathogens (E: Enterococcus faecium, S: Staphylococcus aureus or recently Stenotrophomonas maltophilia, K:
Klebsiella pneumoniae or recently C: Clostridioides difficile, A: Acinetobacter baumannii, P: Pseudomonas
aeruginosa, E: Enterobacter spp., or recently Enterobacteriaceae) receive the most attention, when it comes
to identification and screening of novel compounds [18–21]. This acronym (which was originally
coined by the Infectious Diseases Society of America; IDSA) lists MDR bacteria that are of particular
concern for healthcare [22]. In addition, extensively drug-resistant (XDR) and pandrug resistant (PDR)
strains of Gram-negative bacteria (predominantly A. baumannii and K. pneumoniae) leave physicians
with very few options that are left for treating their patients [23,24].

In the 21st century, it is becoming obvious that the pace of antibiotic drug discovery cannot
keep up with the continuous and detrimental changes in resistance trends [25]. In the “golden
age” of antibiotic discovery (1960–1980), there were similar developments in bacterial resistance;
however, the emergence of novel antibiotic drugs (most of the antibiotic classes currently available
were established by the end of the 1980s) or structurally-modified active derivatives of old drugs
were potent enough to tip the scales in our favor [26]. This resulted in a shift in interest towards
the treatment of chronic illnesses by pharmaceutical companies and governments, and consequently,
the development of new antibacterial drugs has markedly slowed down [27,28]. However, since the
introduction of fluoroquinolones (which were developed in an attempt to optimize nalidixic acid) in
the 1960s, no broad-spectrum agents have been discovered: linezolid and daptomycin are only
relevant for the treatment of life-threatening Gram-positive infections, while polymixins (cyclic
polypeptides with pronounced toxicity, that were unattractive drugs at the time of their discovery) were
re-introduced to therapy, due to the increasing prevalence of MDR Gram-negative infections [29–33].
Ceftaroline–avibactam (a combination of the anti-MRSA cephalosporin and a novel non-β-lactam
β-lactamase inhibitor) is the first new drug formulation in a long time that may possess clinically
relevant broad-spectrum antibacterial activity [34,35].

Pharmaceutical companies are increasingly turning away from participating in the development of
new antibiotics, with large firms like Novartis, AstraZeneca, Sanofi, Bristol-Myers Squibb, and Allergan
dropping their antimicrobial research programmes. There are several economic considerations that
may explain this phenomenon [36]. The costs of research and development (R&D) and the organization
of clinical trials carries a big financial risk irrespective of the drug candidate, and antibacterial drugs
only offer modest returns in investments compared to other classes of drugs (e.g., antihypertensive
drugs, cholesterol-lowering medications) [37,38]. Novel antimicrobials are typically only used as
last-resort agents in critically ill patients, and the duration of therapy is usually limited. In addition,
the rapid development of resistance against the new drugs additionally reduces their time period of
clinical usefulness [39]. Although there are initiatives and public–private partnerships, such as the
10 × 20 Initiative of the US Food and Drug Administration (FDA; aiming to produce 10 new systemic
antibiotics by the year 2020) and the New Drugs 4 Bad Bugs (ND4BB) programme from the Innovative
Medicine Initiative (IMI) of the European Medicines Agency (EMA), antibiotic development is largely
in the hands of smaller startup biotechnology companies with specific interest in an antibiotic class
or infectious disease [40–42]. If the number of novel antibiotic classes in the last 50 years is any
indication, there is a very low probability for a biologically active compounds to succeed from the
pre-clinical to clinical phase of drug discovery. For this reason, reliable discovery platforms are needed
to continuously produce compounds with antibacterial activity that may be lead compounds for
further studies [43,44]. In Table 1, the currently defined antibiotic discovery platforms are summarized.
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Table 1. Overview of various discovery platforms for antibacterial drugs [38,45,46].

Platform Brief Description of Pros and Cons Compounds in Clinical Practice
(Examples)

Domagk-platform/
In situ

screening-platform

• Screening the efficacy of antimicrobial compounds at the site of
infection (with the use of infection models; e.g., in an in situ
mouse model or in a Caernorhabditis elegans worm model [47,48])

• Detects prodrug compounds that would be missed by
high-throughput screening and validation approaches [49]

• Ethical considerations (related to the use of animal models)

Sulfonamides
(sulfamidochrysoidine)

Waksmann-platform/
Natural

products-platform

• Screening for secondary metabolites in soil microorganisms
(Streptomycetes) with antibacterial activity [50]

• Main discovery platform in the golden era of antibiotic
discovery [51]

• Background of known compounds during screening presents a
major issue [45]

• Experiments are ongoing with the activation of “silent operons” in
microorganisms [52]

• Focusing on uncultured microorganisms (representing 99% of
total microbial diversity) and compound de-replication (using
mass spectrometry and nuclear magnetic resonance (NMR)) are
promising approaches [53]

• Screening for antibacterial compounds from plant and marine
origins represents an untapped resource of potential drugs [54,55]

Penicillin (First antibiotic
discovered)

Streptomycin (First drug active
against tuberculosis (TB))

Daptomycin (MDR Gram-positives)
Fidaxomicin (Clostridioides difficile)

Species-selective
platform

• Screening against a specific bug, resulting in compounds that act
selectively against that pathogen [56]

• Requires a target that is innate and specific to microorganism
• Lower probability of toxicity in the human host
• New compounds will not affect commensals in the gut [57]

Bedaquiline F1F0-ATPase-inhibitor
in Mycobacterium tuberculosis complex

Ethambutol
Arabinosyl-transferase-inhibitor in
Mycobacterium tuberculosis complex

High-throughput
screening (HTS)
Combinatorial
chemistry (CC)

Rational drug design
(RDD)

• Screening of public/ commercially available libraries of
compounds against bacterial strains and/or defined prokaryotic
targets (ligand–target binding assay, specificity tests) [58]

Oxazolidinones Inhibitors of protein
synthesis by interfering with the

ribosomal 50S subunit

Antimicrobial
peptides (AMPs)

• Use of small-sized, positively charged, amphipathic molecules
synthesized by plants, animals or other bacteria [59]

• They play an important role in innate immunity in humans (e.g.,
defensins) [60]

• Structurally, they may be α-helices, β-sheets or extended coils, all
with different mechanisms of action [61]

• Toxicity in humans in higher concentrations [61]
• Difficulties in formulation [62]

No AMP has been approved yet for
clinical use

Resistance reversing
compounds

• Compounds affecting a defined mechanism of bacterial resistance,
e.g., antibiotic-degrading enzymes, efflux pumps [3]

• Strains that are resistant to specific antibiotics may be sensitized,
maintaining the efficacy of current drug pool [63–65]

• The clinical relevance of efflux pump inhibitors (EPIs) is hard
to determine

Beta-lactamase inhibitors (clavulanic
acid, sulbactam, tazobactam,

avibactam etc.)
No EPI has been approved yet for

clinical use

Virulence modulation

• Compounds targeting expression and/or activity of bacterial
virulence factors (capsule, toxins, fimbriae, biofilm) essential in
their pathogenesis [66,67]

• Various small-molecule compounds (e.g., quorum
sensing-inhibitors) and monoclonal antibodies have been
described [68,69]

• Selective pressure to develop resistance is not present [68]
• The clinical relevance of virulence modulators is hard to determine

No virulence modulator has been
approved yet for clinical use

The Waksman-platform has dominated the field of antibiotic discovery for almost 40 years,
but after overmining soil bacteria, and the continuous re-discovery of already known compounds,
this platform was abandoned by pharmaceutical companies [45,51]. There were high hopes for
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the introduction of high-throughput screening (HTS) methods and rational drug design (RDD) in
antibacterial discovery. HTS includes the isolation of bacterial proteins that are essential for survival,
and during an automated process, many compounds can be screened for their binding affinity.
RDD involves the analysis of the 3D-structure of the target proteins or protein–ligand interactions
and developing compounds to interact with specific protein sites [38,58]. Nevertheless, the use of
these methods did not meet expectations, as there are hardly any drugs in current clinical use that
are the products of this platform, mainly because most of the promising lead compounds identified
through HTS were unable to penetrate the bacterial cell wall (particularly in Gram-negative bacteria)
and actually bind their defined targets [38,58]. Emerging approaches such as the development of
efflux pump inhibitors (EPIs) and virulence-modulating compounds offer new hope in the treatment
of infectious diseases. These novel compounds act through sensitizing drug-resistant strains to
conventional antibiotics (by modulation of the activity of overexpressed transport proteins) or through
eliminating bacterial virulence factors that are crucial for causing disease in humans [64,66,67].
The issue of bacterial cell-wall penetration may also be bypassed by the use of bacteriophage-derived
enzymes [70]. These enzymes, termed endolysins (and their recombinant/engineered alternatives,
called artilysins) are in essence, peptidoglycan–hydrolases that disrupt the bacterial cell wall, leading to
cell death [71,72]. They have an important role in the life cycle of bacteriophages, ensuring the release
of progeny virions from the bacterial host cells [73]. This novel approach is promising, owing to their
high degree of host specificity; in addition, they could be used as monotherapy or in combination with
already existing antibiotics [70,73]. Still, these compounds are currently relevant only in experimental
settings, as none of these have been cleared for clinical use. For further reading on antimicrobial
discovery platforms mentioned above (Table 1.), the reader is encouraged to view the excellent
publications of Kim and Kealey et al. [38,45,46].

In addition to discovery platforms, a concept of an ideal antibiotic should be postulated, to act
as a blueprint for future drugs [74]. The intent of this model is to direct antibacterial discovery
and drug design, and to aid researchers, pharmaceutical companies, and relevant stakeholders in
selecting promising lead compounds, moving forward in the “maze” of this field. Based on the
properties that are set for this theoretical molecule, screening methods may also need to be adjusted
and optimized [55]. The aim of this review is to discuss the current advances regarding the attributes
of an ideal antibacterial drug.

2. The Ideal Antibiotic (Prodrug) Model

The ideal antibiotic should have broad-spectrum bactericidal activity (although the clinical
relevance in the difference between bacteriostatic and bactericidal drugs has been questioned
by multiple studies [75–77]), against bacteria with Gram-positive and Gram-negative cell walls,
Mycoplasma/Ureaplasma ssp. (bacteria with no cell wall [78]) and L-form (cell wall-deficient [79–81])
bacteria. Persisters (defined as metabolically inactive bacterial cells that neither grow or die
when exposed to bactericidal concentrations of antibiotics) present another important challenge
to antimicrobial therapy that has yet to be approached from the standpoint of drug discovery [82].
These dormant cells usually represent a very minor fraction of the population in the exponential
growth phase; however, they may represent up to 1% of cells in the stationary phase, during long-term
antibiotic therapy and in a biofilm [83]. Therefore, they have been associated with therapeutic failure,
recurrence, and chronic infections, as they may continue to replicate after the antibiotic therapy has
been discontinued [84]. The production of biofilms is considered a survival strategy to adapt to a
hostile living environment. Infections associated with biofilms are an increasingly important issue,
especially due to the prevalence of nosocomial infections and the use of indwelling catheters and
prostheses [85,86]. The production of biofilms in cystic fibrosis patients is an additional concern,
because antibiotics cannot successfully penetrate to affect the planktonic phase of growth in these cells,
contributing to the morbidity and mortality of the disease [87]. Some antibiotics (such as rifampin) can
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penetrate and break up this extracellular polymeric matrix produced by bacteria, which is why they
are usually used in combination with other drugs to enhance their efficacy [85,88,89].

The penetration barrier of Gram-negative cell wall is an important obstacle for antimicrobial
development [90]. The outer membrane (OM) of Gram-negatives restricts amphipathic drugs from
crossing through, while the inner membrane (IM) restricts hydrophilic substances from entering the
cell. This essentially creates a very potent barrier, which allows for the penetration of only a select
number of antimicrobials [91]. Therefore, penetration rules may also be established, similarly to rules
of oral bioavailability (e.g., the Rule of Five, see below). Based on the library of compounds with good
penetration through the Gram-negative cell wall, common physico-chemical characteristics could
be identified [92]. Small, hydrophobic compounds (such as aminoglycosides and chloramphenicol)
can diffuse through the lipid component of the OM, while β-lactam antibiotics predominantly move
through porin channels to reach their targets in the periplasmic space [93,94]. The latter carries a risk of
resistance development, because porin mutants (prevalent in Pseudomonas aeruginosa) usually lose their
susceptibilities to these drugs [95,96]. The over-expression of efflux pumps (which is a concern in MDR
Gram-negative bacteria) is also a significant mechanism of resistance [97,98]. These transport proteins,
due to their wide substrate specificity, can extrude various noxious agents (toxins, bile salts, antiseptics
and antibiotics), although their preference towards amphipathic drugs have been described [64,99].
The use of EPIs present as adjuvants is an attractive strategy; still, a compound that is not affected by
these pumps would be the most advantageous.

This ideal molecule should be highly reactive, forming an irreversible, covalent bond on multiple,
unrelated targets, leading to bacterial cell death [38]. This is important for two reasons: firstly, covalent
binding guarantees that the molecule will accumulate inside the bacterial cell and will not be extruded
by energy-(ATP-dependent cassette-transporters) or H+/Na+-gradient-dependent efflux transporters
(e.g., major facilitator superfamily transporters); secondly, reacting with multiple targets ensures that
drug resistance may not develop through single-step mutations (e.g., quinolone resistance) and target
modification (e.g., macrolide-lincosamide-streptogramin [MLS] resistance) [64,100]. An emerging
concept is that the molecule should function as a prodrug (or be formulated as such), which has little
or no effect on mammalian cells, but that will kill all bacterial cells, including persisters. To attain this,
the prodrug molecule should be activated by an enzyme that is specific to and abundant in pathogenic
bacteria, resulting in an end-product that is extremely reactive. This is the reason for why the concept
of an ideal antibacterial drug is also called the prodrug model [38].

In addition to the interactions of the molecule with the target microorganisms during therapy,
these compounds must meet a set of pre-determined set of physico-chemical characteristics that a
lead compounds should possess in order to become a drug candidate [101]. Based on data from
the United States, more than 80% of drugs in current use are orally administered; therefore this
route should be primarily targeted [102,103]. This is especially true for the treatment of infectious
diseases, where intravenous (IV) administration should only be used, if it is justified by the medical
condition of the patient. By definition, antibiotics with >90% bioavailability (doxycycline, minocycline,
clindamycin, metronidazole, trimethoprim-sulfamethoxazole, linezolid, tedizolid, and rifampin)
are candidates for IV-to-PO interchange (exceptions are ciprofloxacin (~70% bioavailability) and
azithromycin (~40% bioavailability), as they still manage to achieve the therapeutic levels taken
orally) [104]. Such IV-to-PO switches (i.e., sequential antibiotic therapy) are further encouraged in the
era of antimicrobial stewardship. In order to attain good oral bioavailability, Lipinsky’s Rule of Five
(RO5) is generally used as a preliminary indicator of drug-likeness during pre-clinical studies [105].
These rules (a. ≤ 5 hydrogen bond donors, b. ≤ 5 hydrogen bond acceptors, c. molecular mass <500 Da,
d. octanol-water partition coefficient (clogP) < 5) assumed that the most commercially successful, orally
administered molecules are relatively small and moderately lipophilic [106,107]. However, this may
create a very narrow window of compounds that are eligible to penetrate Gram-negatives and that are
orally bioavailable. In addition, screening based on these rules may exclude potential leads, because
they do not consider the differential properties required to penetrate prokaryotes [88]. To further ease
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the formulation of oral drugs, the compound should be a Class I molecule in the Biopharmaceutical
Classification System (BCS) [108].

Tissue penetration of the molecule should be adequate to attain therapeutic concentrations
in all parts of the body, including peripheral areas, and in infected sites that are hard-to-reach
and that have specific physico-chemical characteristics (e.g., abscesses, central nervous system,
bone tissue) [109,110]. Additionally, the accumulation of antimicrobial drugs in macrophages and
non-professional phagocytes (i.e., in the phagolysosome of these cells) are also relevant in the
elimination of obligate (Chlamydia spp., Rickettsia spp., Coxiella spp., Mycobacterium tuberculosis and
leprae) and facultative (Listeria monocytogenes, Legionella pneumophila, Brucella abortus, Bartonella
henselae, Francisella tularensis, Salmonella enterica, and other Mycobacterium species) intracellular
bacteria [111–113]. A few antibiotic groups (e.g., macrolides) are known for their effective intracellular
accumulation, and some new agents that are receiving marketing authorization (such as delafloxacin)
also possess this attribute [114–117].

Compared to other drugs, antibiotics are effective in concentrations that are two to four
magnitudes higher than other molecules affecting distinct molecular targets in the human body [104].
This carries a risk of inherent toxicity, excluding most of the potential compounds from being potential
leads. Therefore, it is imperative that the abovementioned prodrug form of the antibiotic should
have no affinity to bind to eukaryotic targets before entering the bacterial cell [45]. Another emerging
aspect of antimicrobial pharmacotherapy is the treatment of infections during pregnancy, lactation,
and in childhood. Therapy in these patient groups in practically limited to β-lactam antibiotics,
due to the teratogenic and adverse events described in other antibacterial drugs [118–120]. Therefore,
an additional aim should be to produce drugs that are available for use in these vulnerable patient
groups. Some regulatory agencies provide additional periods for patent exclusivity (pediatric
exclusivity), to incentivize drug development in pediatric indications [121]. Drug–drug interactions
are significant hindering factors in the efficacy of drugs, predominantly due to their inducing or
inhibiting effect on various cytochrome P450 enzymes (predominantly the CYP3A4, CYP2C9 and
CYP2D6 isoenzymes), affecting therapeutic response by modulating the degradation of other medicinal
drugs [122,123]. An ideal antibiotic should be metabolized without affecting liver enzymes and it
should be eliminated from the body unaltered (e.g., in the urine).

3. Prodrug Antibiotics in Clinical Use

The question arises as to whether the ideal antibiotic can only be a theoretical concept or is it
realistic to identify and design such molecules. Surprisingly, there are a few drugs in current clinical
use that have similar characteristics to this model, namely ethionamide, isoniazid, pyrazinamide and the
metronidazole-like drugs (Figure 1.). Metronidazole is a broad-spectrum, bactericidal antibiotic, which is
available in both oral and intravenous formulation [104]. In addition, it is relevant in other fields
of infectious diseases, owing to its potent antiprotozoal activity (against Giardia lamblia, Trichomonas
vaginalis, Entamoeba sp.). This drug belongs to the 5-nitroimidazole group drugs, together with
its derivatives, tinidazole, ornidazole, ronidazole and secnidazole. Moreover, these compounds can be
considered as the primary lead compounds for nitazoxanide (and its active metabolite tizoxanide),
which are broad-spectrum antiparasitic agents [124]. Metronidazole is an important drug for the
treatment of Helicobacter pylori, and it represents the gold standard in drug therapy for anaerobic
infections [125–128]. Apart from some Gram-positive anaerobes (Mobiluncus curtisii and the genera
Actinomyces, Bifidobacterium, Lactobacillus and Propionibacterium) having intrinsic non-susceptibility,
the resistance to this drug is <1% worldwide [129–131]. Metronidazoles act as a prodrug, and it
must be reduced by specific enzymes (namely nitro-reductases and redox-active enzymes, such as
pyruvate:ferredoxin/pyruvate:flavodoxin oxidoreductase and hydrogenase), during which an electron
is transferred to the nitro group of the drug [132]. The resulting nitroso-residues are non-specific, highly
reactive, and have a short half-life, damaging the bacterial cell membrane, DNA (inducing strand
breakage and destabilization of the helix structure), and proteins. Unfortunately, these enzymes are
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only expressed in pathogens that live under microaerophilic and/or anaerobic conditions. In addition,
chemical reoxidation may also occur if molecular oxygen is present, converting the compound back
to its inactive form [130]. Metronidazole is available in both oral and intravenous formulations;
its bioavailability is almost 100%, and it has excellent tissue distribution.
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(A): metronidazole; (B) ethionamide (ETH); (C) isoniazid (INH); D: pyrazinamide (PYR).

Ethionamide (ETH), isoniazid (INH), and pyrazinamide (PYR) are all drugs that are relevant
for the treatment of the Mycobacterium tuberculosis complex. Generally, INH and PYR are part
of the first-line treatment regimen for TB, together with rifampicin and ethambutol, while ETH
(and its therapeutic alternative prothionamide) is usually considered as a second-line drug, useful
in drug-resistant TB [133,134]. All three drugs are bactericidal, and they can penetrate well into
macrophages, which is an important aspect of treating the disease, as mycobacteria use macrophages
to hide from the immune system [104,134]. They also turn into active derivatives after interaction with
a Mycobacterium-specific enzyme: ETH requires activation by EthA (a flavin mono-oxygenase) and
INH is activated by KatG (a catalase-peroxidase), while PYR is converted to its active form by the
PZase/nicotinamidase, encoded by the pncA gene [135–139]. In the case of INH and ETH, following
enzymatic activation, these metabolites form an adduct with nicotinamide adenine dinucleotide
(NAD+), resulting in ethionamide-S-oxide-NAD and isonicotinic-acyl-NAD adducts; these metabolites
are responsible for the antitubercular activity of the parent compounds [136–139]. In the case of PYR,
activity against persisters has also been described, a property that is attributed to its active form,
pyrazinoic acid (POA), which retains activity in cells with low metabolic activity [135]. Nevertheless,
specific targets for all three drugs (namely, trans-2-enoyl-acyl carrier proteins (ACPs) for INH,
ribosomal protein S1 (RpsA), and/or membrane destabilization for PYR and arabinozyl-transferase
for ETH) have been identified, while the ideal antibiotic should hit multiple targets in a non-selective
fashion [136–139]. This points to the notion that these drugs may not be as reactive as metronidazole.

It seems no surprise that all the above-mentioned drugs (Figure 1) are listed in the Essential
Medicines List of the WHO, indicating their importance and the need for universal access [140]. This is
further highlighted by the fact that INH and PYR represent half of the current first-line drugs for
TB [141]. It is worth mentioning that all of the compounds corresponding to the prodrug rules are
relatively small molecules (with molecular weights ranging between 123–171 g/mol); they have been
discovered before the advent of HTS technologies and rational drug design, and no such compounds
have been described since. This is especially odd, as the number of new compounds (i.e., the chemical
space) is many magnitudes larger than half a century ago [45]. Through optimizing our discovery
and screening platforms, the possibilities of finding compounds that—in classical pharmacological
terms—have no specific targets is very limited (as most pre-clinical screening assays usually measure
binding affinity). Redox-active compounds and drugs acting primarily on the cell membrane are groups
of molecules that would definitely go unnoticed in these experiments. Based on the current screening
criteria, the first sulfonamide drug (Prontosil) would have been excluded, as the active compound
sulfanilamide becomes available only after in vivo metabolism [49]. Similarly, metronidazole (as it is a
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generally reactive compound with no specific target) and the polymyxins (possessing a detergent-like
mechanism of action) would be considered undesirable leads. Nonetheless, the importance of these
drugs should not be underestimated. In fact, some studies reported that all antibiotics may act via
a unified mechanism of action, through the generation of reactive oxygen species (ROS) and direct
cellular damage; however, there have been conflicting reports in this field of research [142–146].

4. Concluding Remarks

The growing number of antibiotic-resistant pathogens is increasingly threatening the efficacy of
healthcare institutions worldwide. Antibiotic discovery needs to be re-energized, to rival the threat
of the post-antibiotic era [25]. The attributes of the ideal antibiotic—summarized in Table 2—may be
divided into pathogen-specific and drug-specific properties; however, this classification is somewhat
arbitrary, as there is notable interplay between fulfilling both groups of characteristics. Furthermore,
some important aspects of drug development and medicinal chemistry (yields of potential synthetic
pathways, economic considerations of production, stability of the compound in various formulations)
were not discussed in this review.

Table 2. Summary of the properties of the ideal antibiotic.

Drug-Specific Pathogen-Specific

Available for oral administration

Broad-spectrum bactericidal activity (including
Gram-positive and Gram-negative bacteria,

Mycoplasma/Ureaplasma ssp. and intracellular
pathogens)

Acts as a prodrug Antibacterial activity against persisters and
pathogens in biofilms

Class I in the Biopharmaceutical Classification System Activity at very low (nanomolar) concentrations

Accumulation in macrophages Useful in hard-to-reach infected sites, e.g., abscesses,
central nervous system (CNS), bone tissue

No teratogenic effects (safe in pregnancy, lactation
and childhood) Acts on multiple, unrelated, essential bacterial targets

No drug–drug interactions Forms irreversible covalent bonds inside bacterial
cells (ruling out drug efflux)

The drug is excreted from the body unchanged

Realistically, producing a molecule that possesses all the listed properties above is very unlikely;
therefore, the usefulness of this model is to aim towards specific features from the list, based on
the pathogen, site of infection, administration route, and the targeted patient population during
drug development. As a matter of fact, the best possible scenario would be to modify and/or
functionalize existing antibiotics to attain more of the mentioned properties. Although there are
some alternative approaches in development for combating infectious diseases (e.g., antibodies,
probiotics, vaccine development, phage therapy, small-molecule adjuvants affecting immune cells),
it is unreasonable to believe that they will replace antibiotics anytime soon [147]. Therefore, the main
foci of our scientific advancements should be to preserve the drugs that we currently have (through
the development of rapid and sensitive diagnostic tools to ensure their prudent use, and antibiotic
stewardship practices [148–150]), in addition to facilitating the development of new antibacterial drugs.
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Abbreviations

ACP acyl carrier protein
AMP antimicrobial peptide
BCS Biopharmaceutical Classification System
CC combinatorial chemistry
CDC Centers for Disease Control and Prevention
CNS central nervous system
ECDC European Center for Disease Prevention and Control
EMA European Medicines Agency
EPI: efflux pump inhibitor
ETH ethionamide
FDA Food and Drug Administration
HTS high-throughput screening
IDSA Infectious Diseases Society of America
IM inner membrane
IMI Innovative Medicines Initiative
INH isoniazid
IV intravenous therapy
MDR multidrug resistant
MRSA methicillin-resistant Staphylococcus aureus
NAD nicotinamide adenine dinucleotide
ND4BB New Drugs 4 Bad Bugs
OM outer membrane
PO oral therapy
POA pyrazinoic acid
PYR pyrazinamide
PDR pandrug resistant
RDD rational drug design
ROS reactive oxygen species
R&D research and development
RO5 Lipinsky’s Rule of Five
TB tuberculosis
XDR extensively drug resistant
WHO World Health Organization
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