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Abstract: Polyamide66 (PA66) hydrolysis affects the mechanical properties of Polyamide66/glass
fiber (PA66/GF) composites. We investigated the effects of monoethylene glycol (MEG) on the degree
of hydrolysis and mechanical properties of four different commercial PA66/glass fiber composites.
Using pyrolysis-gas chromatography/mass spectrometry (py-GC/MS), we identified the byproducts
of PA66 composite hydrolysis: carboxylic acid and alkylamine substances. The degree of hydrolysis
increased as the immersion time in MEG increased. However, the tensile and flexural properties
decreased due to hydrolysis. The tensile strength decreased by 42–45%; however, elongation increased
by 23–63%. When PA66 absorbs MEG at 130 ◦C, the materials molecular chains’ bonding force
decreased, resulting in increased elongation.

Keywords: polyamide66(PA66); glass fiber; monoethylene glycol(MEG); hydrolysis; mechanical
property; pyrolysis-gas chromatography/mass spectrometry (py-GC/MS)

1. Introduction

In developed countries, automobiles’ fuel efficiency and CO2 emissions have witnessed stronger
regulatory terms. To achieve better fuel efficiency, the application of light-weight materials is on the rise
in the automotive industry based on the Corporate Average Fuel Economy (CAFE) regulations [1,2].
Countries around the world are proposing solutions for lowering CO2 emission through improved
energy efficiency levels in automobiles. Among which, lighter weight vehicles are attracting interest
as one of the key solutions in the industry. In this context, plastics are being used more than ever,
based on their characteristics; eco-friendly and better gas mileage. More stringent environmental
regulations have driven active development of new recycling technologies, making plastic materials
more attractive.

Polyamides (PA) represent one of the most recyclable engineering plastic materials used for
light-weight vehicles. PA—an aliphatic polyamide—is a polymer of amide (-CONH-) linked monomers,
which was first developed in 1935 [3]. PA66′s characteristics have made it a subject of ongoing
studies [4–14]. Its main feature is the long-term durability against high temperatures (100–150 ◦C),
thanks to its high level of crystallinity, heat resistance, wear resistance, and mechanical strength.

Other plastic materials with different structures such as Polyacetal (POM), Polycarbonate (PC),
Polyethylene terephthalate (PET), and Polyphenylene oxide (PPO) are also widely used [15–17].

To identify the correct properties, additives like compatibilizers, lubricants, anti-oxidants,
stabilizers, and flame retardants are used [18].

Generally, glass fibers (GF) have been used as fiber-type reinforcing fillers for plastic materials.
However, recent trends indicate that a wider variety of materials are being applied for this purpose,
including aramid fiber (AF), carbon fiber (CF), carbon nano tube (CNT), etc. [19,20]. GF improves
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strength and heat resistance, therefore, plastic materials reinforced with GF are highly resistant to
external impact, and their tensile strength is largely improved [19].

Materials required for engine mount nozzles should have high tensile strength, and those
exposed to glycol and moisture should be hydrolysis resistant. Certain characteristics must be met
for component materials exposed to under-hood heat (150 ◦C), extreme environmental conditions
(temperature = −40 ◦C), impact, corrosion from potassium chloride, fluids, or windshield wiper
fluid, etc.

Enhancing hydrolysis resistance of PA could minimize mechanical strength drop in materials,
allowing its incorporation as a component for high performance vehicles. PA66, which satisfies these
requirements, should be developed. In fact, industrial studies aimed at developing such materials
with hydrolysis resistance are ongoing [15,16,21–27]. Currently, several grades of hydrolysis resistant
PA66/GF composites exist on the market; however, no direct scientific comparison of their hydrolysis
resistance properties has been conducted, and no verification or correlation has been established
between their degree of hydrolysis resistance and mechanical property changes. We have previously
determined PA66/GF composite’s degree of hydrolysis using a pyrolysis-gas chromatography/mass
spectrometry (py-GC/MS) analysis [27].

In this study, we determined the degree of hydrolysis resistance of four different PA66/GF
composites immersed in monoethylene glycol (MEG), and compared its effects on mechanical
property changes.

2. Experiment

2.1. Material

The materials used in this test are DTRamid composite materials (PA66/GF30, and WG30DTR
HSLR; hereinafter referred as D) from DTR. A comparison was made with materials of the equivalent
commercial grade including Zytel 70G30 HSLR (DuPont; hereinafter referred as Z), KDG 1030 (KOPLA;
hereinafter referred as K), and A3WG6 HRX (BASF; hereinafter referred as A). These materials are
hydrolysis resistance grade GF 30% reinforced PA66 composites. The composition of each material
supplied is summarized in Table 1.

Table 1. The composition of glass fiber 30% filled PA66.

D Z K A

PA66 (wt%) 66.78 (± 0.61) 68.81 (± 0.41) 66.24 (± 0.88) 66.92 (± 0.54)

GF (wt%) 31.52 (± 0.76) 29.25 (± 0.38) 30.35 (± 0.18) 30.78 (± 0.39)

Additive (wt%) 1.71 (± 0.15) 1.95 (± 0.03) 3.41 (± 0.7) 2.30 (± 0.15)

2.2. Sample Preparation

Composite materials were dried at 90 ◦C for 4 h, and maintained moisture levels lower than 0.05%,
before they were loaded onto an injection molding machine. Fifteen specimens (ISO dumbbell-shaped
type) were prepared using an injection molding machine (Hydraulic type, Ø30, Woojin Plaimm Co.,
Ltd., Chungbuk-do, Korea) at 85 ◦C mold temperature, 10 bar back pressure, 70 bar maximum injection
pressure, 55 bar holding pressure, and 25 s of cooling time.

2.3. Immersion in MEG Solution

The test specimens were immersed into a flask-shaped reactor filled with MEG solution (Dex-cool,
monoethylene glycol, ACDelco), at 130 ◦C for 504 h, and 1008 h, consecutively, and mechanical
property changes were measured.
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2.4. Mechanical Properties

Tensile strength: tensile strength, tensile modulus, and percentage elongation were measured
for the specimens cross-head speed at 5 mm/min, using a universal testing machine (Instron 5967) in
accordance with ISO 527-1 and 2 method.

Impact strength: as specified in ISO 179-1, the specimens’ impact strength was measured using an
impact tester (CEAST 9050). The measurement was carried out with unnotched specimens using the
Charpy method. Formula (1) was applied for the calculations.

IS =
EC

T×W
× 103

[
KJ/m2

]
(1)

where: IS: Charpy impact strength (KJ/m2); EC: corrected energy (KJ); T: thickness (m); and W:
width (m).

For tensile and impact strengths, the average values from 5 specimens were used for
each condition.

2.5. Hydrolysis (Molecular Structure Change) Observation

A pyrolysis-gas chromatography/mass spectrometry (py-GC/MS, Frontier Lab PY-3030D) was
used to analyze the degree of hydrolysis and changes in the molecular structure inside PA66 composites
under each condition. The pyrolysis was performed at 700 ◦C for 5 s, and the oven temperature was
held at 40 ◦C for 5 s, and then increased incrementally to 320 ◦C at 10 ◦C/min.

3. Results and Discussion

3.1. Changes in Mechanical Properties After Immersion in MEG

After 1008 h of immersion in MEG, the tensile strength of D, Z, K, and A decreased from 178 MPa,
185 MPa, 171 MPa, and 167 MPa to 100 MPa, 102 MPa, 94 MPa, and 96MPa, respectively. These
data indicated a drop in the tensile strength of the PA66/GF composites exposed to MEG at 130 ◦C.
The rates of decrease in the tensile strength of D, Z, K, and A were shown to be −43.82%, −44.86%,
−45.03%, and −42.51%, respectively. Post-immersion comparison showed that the tensile strengths of
D and Z were higher than those of K and A.

Under the same conditions, the tensile modulus of D, Z, K, and A decreased from 9551 MPa,
9494 MPa, 9078 MPa, and 9039 MPa to 4646 MPa, 5022 MPa, 5099 MPa, and 4561 MPa, respectively.
The decrease rates of the tensile modulus for D, Z, K, and A were −53%, −49%, −55%, and −50%,
respectively. On the other hand, the percentage elongation of D, Z, K, and A increased from 3.1%, 3.5%,
2.9%, and 3.3% to 4.3%, 4.4%, 3.5%, and 5.4%, respectively.

Lissi and Chaupart similarly reported that PA66 composites show decreased mechanical properties
after hydrolysis [28,29].

The mechanical properties of various glass fiber filled polyamide66 composites, before and after
immersion in MEG (1008 h) are as shown in Table 2. The tensile strength changes of various glass
fiber-filled polyamide66 composites, with respect to the MEG immersion time increase, at 130 ◦C are
shown in Figure 1.
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Table 2. Mechanical properties of various glass fiber-filled polyamide66 composites, before and after
immersion in monoethylene glycol (MEG) (1008 h) at 130 ◦C.

Tensile
Strength (MPa)

[5 mm/min]

Tensile Modulus
(MPa) [5 mm/min]

Tensile
Elongation (%)

[5 mm/min]

Impact Strength
(kJ/m2)

[unnotched]

D
Before 178 9551 3.1 66.04
After 100 5099 4.3 69.42

% change rate −44 −47 +40 +5

Z
Before 185 9494 3.5 76.62
After 102 4646 4.4 73.97

% change rate −45 −51 +28 −3

K
Before 171 9078 2.9 61.09
After 94 5022 3.5 67.76

% change rate −45 −45 +23 +11

A
Before 167 9039 3.3 77.2
After 96 4561 5.4 88.43

% change rate −43 −50 +63 +15
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Figure 1. Tensile strength changes of various glass fiber-filled polyamide66 composites with respect to
monoethylene glycol (MEG) immersion time increase at 130 ◦C.

Polymer absorption properties proportionally increase with free volume in the composite [30,31],
and hydrogen bonds with polar atoms in PA66 [32,33]. PA66 absorbs moisture as the oxygen (O) and
nitrogen (N) atoms in the chain form hydrogen bonds with the hydroxyl group. Hydrolysis degrades
the properties of PA66/GF composites by breaking the PA66 chains [34–36]. Figure 2 illustrates the PA
hydrolysis reaction mechanism [37]. Under moisture conditions, the –OH group is absorbed onto the
polar functional group (C=O, -NH) of PA66 molecules, through a dipole–dipole interaction leading
to hydrolysis [1,9,23–45]. This caused a decrease in tensile strength, which was consistent with our
test results. The molecular structure of PA66 changes due to recrystallization of the semi-crystalline
PA66 [46–48], during which the glass transition temperature (Tg) is 72 ◦C [18]. The recrystallization
effect is more significant when PA66, exposed to MEG, dries at 100, 150, and 200 ◦C. As the drying
temperature increases, and exposure time increases, the tensile strength also increases [24].
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Figure 2. Hydrolysis of polyamide (adopted from Reference [37]).

Hydroxyl groups behave as plasticizers among the PA chains and on the GF surface, thereby
weakening the dipole–dipole interaction between chains and with GF [10,38–43]. Moisture absorption
increases PA chains’ volume and mobility, thus weakening the entanglement and bonding between the
molecules [37,44,45]. Once moisture is absorbed in GF-filled composites, GF reinforcement is reduced,
i.e., lower tensile strength and higher percentage elongation. This also reduces the stress transfer
capability between the matrix resin and GF interface [49]. These data are in accordance with our test
results, and support the percentage elongation increase that was witnessed.

3.2. Py-GC/MS Observation

Py-GC/MS is widely used for qualitative and quantitative analyses of polymer composites and
for obtaining information on molecular structures [50]. Hydroxyl groups are known to react and
hydrolyze PA66 polar functional group (C=O, -NH) [21,22]. The pyrolysis byproducts of PA66 are
cyclopentanone, hexamethylenediamine, and cyclic monomer [51–55]. The PA66 pyrolysis mechanisms,
demonstrated by MacKerron and Gordon [56], are shown in Figure 3. PA66 chains undergo chain
scission and reorganization to form cyclic monomers [56,57]. We showed that cyclopentanone,
hexamethylenediamine, etc. are byproducts of PA66 pyrolysis [27].
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Figure 3. PA66 degradation mechanism and its byproducts (adopted from Reference [56]).

Chromatograms of the PA66 pyrolysis byproducts before and after the immersion were compared
using py-GC/MS. The results showed that as immersion time increased, PA66 byproducts increased as
well, these included cyclopentanone (retention time (r.t.) 5m, 1©), 2-N-Hexylaziridine (r.t. 8.6m, 2©),
1-Decanol (r.t. 9.5m, 3©), 1,6-Hexanediamine (r.t. 11.6m, 4©), 3-None-1-ol(r.t. 13.4m, 5©), Adiponitrile
(r.t. 13.5m, 5©), 1-Methyl-3-formlindole (r.t. 17.8m, 6©), 2-Azacyclotridecanone (r.t. 21.5~31.3m, 7©),
and Hexadecanenitrile (r.t. 30.7m, 8©). The decomposition products of PA66 composites are shown in
Table 3.



Molecules 2019, 24, 755 6 of 11

Table 3. The decomposition products of PA66 composites.

Region Retention Time (min) Product Chemical Structure

1© 5.5 Cyclopentanone
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The above result showed that scission of the PA66 chains to low molecules resulted from the
hydrolysis reaction between MEG and PA66 chains. In other words, as the hydroxyl groups of
MEG reacted with the polar functional groups (C=O, -NH) of PA66, carboxylic acid and alkylamine
substances increased. Figure 4 shows py-GC/MS pyrograms of composites (a) D, (b) Z, (c) K, and (d)
A with respect to the immersion time.

The 1,6-Hexanediamine ions (m/z = 30) were selected for quantitative analysis as they had the
highest strength in the captured mass spectrum, and showed the highest selectivity. The analysis
results of the 1,6-Hexanediamine ions using the GC/MS-selected ion monitoring (SIM) mode are
shown in Figure 5. As immersion time increased (0 to 1,008 h), more 1,6-Hexanediamine ions were
detected from D, Z, K, and A. This provides proof that hydroxyl groups of moisture (MEG) react with
PA66 chains via hydrolysis, which in turn decomposed to 1,6-Hexanediamine.
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(a) D, (b) Z, (c) K, and (d) A with respect to immersion time.
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Figure 5. Pyrolysis-gas chromatography/mass spectrometry-selected ion monitoring (py-GC/MS-SIM)
peak area corresponding to 1,6-hexanediamine in PA66/GF composites with respect to immersion time.

Overall, the retention time and chemical structures of PA66 composite materials pyrolysis
byproducts are listed in Table 3. MacKerron and Gordon [56] reported byproducts of the PA66
pyrolysis products, which were consistent with our observations as shown in Figure 5.

Regarding D and Z, we observed increase of hydrolysis byproducts from all regions ( 1©, 2©, 3©, 4©,
5©, 6©, 7©, and 8©) as shown in chromatographs; however, K and A did not show significant changes

except for region 4© (1,6-Hexanediamine). It is not clear why they did not show significant changes at
this stage.

The correlation of SIM peak area analysis with hydrolysis resistance and tensile strength will be
discussed in the next issue following the accumulation of more data.

4. Conclusions

This study has made a comparative analysis of hydrolysis resistance for various PA66/GF
composites (D, Z, K, and A) by increasing immersion time in MEG at 130 ◦C.

Py-GC/MS analysis results showed that PA66/GF composites reacted with MEG hydroxyl groups
and decomposed into low molecular structures via hydrolysis. The results also showed that increased
immersion time (upto 1008 h), led to more decomposed low structure molecules, and their tensile
strength proportionally decreased.

Hydrolysis of PA66 affected the mechanical property changes of PA66/GF composites. After
immersion, the tensile strength of D, Z, K, and A dropped to 100MPa, 102MPa, 94MPa, and 96MPa,
respectively. D and Z maintained higher tensile strength compared to K and A. The tensile strength
drop rates were measured to be around −42–−45% (i.e., −43.82% (D), −44.86% (Z), −45.03% (K), and
−42.51% (A)). Percentage elongation increased to ~30–60% (i.e., 40% (D), 28% (Z), 23% (K), and 63%
(A)).

Overall, the hydroxyl groups in MEG activated hydrolysis of the PA66 chain reaction, decreased
its tensile strength, weakened the entanglement between PA66 chains and between PA66 and GF
surfaces, thereby increasing the percentage elongation.
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