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Abstract: Highly efficient (≈75% quantum yield), aggregation-induced phosphorescence is reported.
The phosphorescence is emitted at room temperature and in the presence of air from crystals of
trinuclear Au(I) complexes, accompanied by an extremely large Stokes shift of 2.2 × 104 cm−1 (450 nm).
The mechanism of the aggregation-induced room-temperature phosphorescence from the Au complex
crystals was investigated in terms of the crystal packing structure and the primary structure of the
molecules. It was found that two kinds of intermolecular interactions occurred in the crystals, and that
these multiple dual-mode intermolecular interactions in the crystals play a crucial role in the in-air
room-temperature phosphorescence of the trinuclear Au(I) complexes.
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1. Introduction

Aggregation-induced emission (AIE) is a fascinating phenomenon wherein molecules display
intense luminescence by aggregation [1–3]. Organic molecules can exhibit efficient luminescence in
dilute solutions, but their luminescence efficiency is decreased by aggregation in condensed phases
by aggregation-caused quenching (ACQ), a well-known phenomenon which is very common among
organic luminescent molecules [3–6]. However, the development of practical applications using
luminescent molecules is hindered by the ACQ of conventional luminogens; and attaining intensive
photoluminescence in condensed phases or aggregates is a vital parameter for improving their
usefulness. To address the recent demand for efficient luminescence materials in molecular aggregates,
AIE-active luminogens (AIEgens) have been developed, and have attracted prime interest as practical
luminescent materials for biological imaging, chemical sensing, optoelectronic systems, and related
applications [7–12]. A general working mechanism of the AIE involves restriction of intramolecular
motions that lead to non-radiative deactivation of excited states, such as vibration and rotation, due to
aggregation [1–3]. Great effort has been devoted to further restricting intramolecular motions using
the intermolecular interactions of AIEgens.

Molecules containing Au(I) ions are examples of AIEgens that exhibit strong photoluminescence
in condensed phases [13–17]. The aurophilic interaction between Au atoms in Au containing complexes
is an important property which induces luminescence in their aggregates [13,14]. As luminescence
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results from the Au–Au interaction, Au complexes exhibit unique luminescence in their condensed
phase, and their luminescence properties, such as intensity or color, depend on the Au–Au distance,
which can be tuned by modifying the structure of their aggregates [18–31]. Thus far, modifications to
structures of molecular aggregates in the solids by external stimuli have been reported for modifying
the photoluminescence properties of Au complexes [8–11]. For instance, in Au complexes exhibiting
polymorphism, the thermal phase transition causes a drastic change in the luminescence color and
intensity [26–31].

In this study, we designed trinuclear Au complexes represented by DTn (n = 6–8) to induce
multiple Au–Au interactions (Scheme 1) [32–34], and investigated their luminescence behaviors in
solids. We hypothesized that multiple interactions could enhance AIE activity, and that very efficient
AIE could be obtained from trinuclear Au complex solid materials [19–21]. The stabilization energy of
the Au–Au interaction is as large as that of the hydrogen bond [13–16], and for this reason it is often
utilized for the formation of supramolecular assemblies [18–21]. We also anticipated that multiple
Au–Au intermolecular interactions would improve the restriction of the internal motion and would
further enhance the AIE effects in condensed phases of the complexes. Previously, the luminescence
behavior of DT6 (Scheme 1) in a poly(methyl methacrylate) (PMMA) dispersion was reported; the
complex showed efficient phosphorescence in PMMA films [34]. In this study, the mechanism of the
efficient phosphorescence of the trinuclear complexes DTn is discussed in relation to the structures of
the molecular aggregates. Therefore, the luminescence behaviors of the complexes were observed in
crystal, in where the molecular aggregated structure is well defined, to understand the relationship
between aggregated structure and photophysical properties. Here, we report that the complex crystals
emitted highly efficient room-temperature phosphorescence (RTP) in the presence of air, accompanied
by an extremely large Stokes shift. The mechanism of the in-air RTP from the crystals of complexes is
discussed in terms of the structures of the molecular aggregates in the crystals.
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2. Results and Discussion

2.1. Synthesis and Characterization of Complexes

The molecular structure and synthesis of DTnare shown in Scheme 1. Our molecular design strategy
centered around the use of a simple ligand without bulky substituents around the Au atoms to improve
the Au–Au intermolecular interaction, which is typically blocked by the steric hindrance of bulky ligands.
Therefore, a simple pyrazole derivative with a long n-alkyl side chain at the 4-position was designed as
the ligand for the trinuclear Au complexes. The pyrazole ligands were synthesized from commercially
available 2,4-pentanedione in two steps. The trinuclear Au complexes DTnwere then prepared by
complexation of (tht)AuCl (tht: tetrahydrothiophene) and the corresponding pyrazole ligands [32–34].
All the synthesized complexes were purified by silica gel column chromatography and recrystallisation.
The complexes were fully characterized, and the analytical data confirmed that the desired complexes
were obtained in high purity. The related analytical data are provided in the experimental section. Details
of the preparation of the pyrazole ligands are provided in the Electronic Supplementary Information (ESI)
and 1H and 13C-NMR spectra of the final compounds are shown in Figures S1–S3.
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2.2. Photoluminescence Behavior of the Complexes

The recrystallized complexes were placed between a pair of quartz plates and irradiated with UV light
at 254 nm at ambient temperature in the presence of air. Bright red photoluminescence could be observed
from all complexes using the naked eye (Figure 1a). The emission and excitation spectra of the Au complex
crystals at ambient temperature are shown in Figure 1b, and the quantitative photophysical parameters
for the room-temperature photoluminescence of the crystals are summarized in Table 1. The crystals of
all the complexes exhibited broad unstructured luminescence at around 730 nm with significantly high
quantum yields (Φ). The highestΦwas obtained for the DT6 crystal;Φwas 75% for DT6, while it was
~60% for the other complexes. In contrast, we could not observe such intense luminescence in dilute
solutions of any of the complexes. Figure 1c shows the luminescence spectra of DT6 in hexane solutions
as a representative example. A 10−5 mol L−1 solution of DT6 exhibited no luminescence, and only very
weak luminescence was observed at the same wavelength as in the crystal in a concentrated solution (10−3

mol L−1). Hexane is actually a poor solvent for these complexes, and it can be assumed that aggregates of
the complexes are formed in concentrated hexane solutions. These results indicate that the trinuclear Au
complexes we prepared cannot emit luminescence in dilute solution, wherein only isolated molecules
exist, which suggests that the DTncomplexes are AIE active and that the luminescence of the complexes is
induced by the formation of aggregates. The AIE activity was further confirmed through the observation
of luminescence behavior in the mixed solvent system for DT6 (Figure S7d). In pure CH2Cl2, which is a
good solvent for DT6, the complex showed no luminescence; however, the addition of methanol, which is
a poor solvent, to the solution with the volume fraction of >80% to induce the aggregation of molecules,
significantly enhanced the emission (Figure S7e).
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Figure 1. (a) Photograph of crystals taken under UV irradiation at 254 nm using a handheld lamp,
and CIE (Commission Internationale de l’Éclairage) chromaticity diagram of the photoluminescence
of the crystals: �, DT6; H, DT7; �, DT8. (b) Photoluminescence (solid line) and excitation spectra
(dotted line) of the crystals of DTn at room temperature in air (red: DT6, green: DT7, blue: DT8).
The excitation wavelength (λex) was 280 nm for the luminescence spectra, and the luminescence was
monitored at their λmax

lum for the excitation spectra (Table 1). (c) Photoluminescence spectra of DT6 in
crystalline form and in hexane solutions (λex = 280 nm). Concentrations of the hexane solutions are
indicated in the Figure. (d) Decay profile of the luminescence of the DT6 crystal at 733 nm at ambient
temperature (λex = 330 nm; pulse width = 600 ps): red, observed luminescence decay; blue, fitting
curve; green, instrument response function.
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Table 1. Photophysical parameters of the crystalline complexes observed at room temperature in the
presence of air.

Sample λmax
lum[nm] a) Φ a,b) τ [µs] kr [s−1] c) knr [s−1] c)

DT6 733 0.748 13 5.8 × 104 1.9 × 104

DT7 726 0.609 13 4.7 × 104 3.0 × 104

DT8 733 0.625 12 5.2 × 104 3.1 × 104

a) Excitation wavelength was 280 nm for steady-state measurements. b) The luminescence intensity was integrated
from 350 nm to 875 nm for estimation of Φ (Figure S8). The measurements were performed in triplicate to check
reproducibility, and the averaged value is indicated here. c) kr, the rate constant for radiative transition was estimated
by Φ/τ, and knr, the rate constant for non-radiative deactivation was estimated by (1 − Φ)/τ.

Notably, the complexes displayed extremely large Stokes shifts. The absorption maxima of the
complexes in dilute solutions were around 250 nm (Figure S6), and the absorption maxima of the
crystals, estimated from the excitation spectra (Figure 1b) were located at 280 nm. Therefore, the crystals
displayed a Stokes shift of at least 2.2 × 104 cm−1 (450 nm) in all complexes. This feature is highly
favorable for their application as imaging and sensing materials [1–3].

To obtain more information about the photoluminescence properties of the complexes, we
measured the luminescence lifetime (τ) of their crystals at the wavelength of their luminescence
maxima (λmax

lum). The luminescence decay profile for the DT6 crystal is shown in Figure 1d as a
representative example. The crystals of all the complexes exhibited a single-exponential decay profile
at room temperature (Figure 1d and Figure S9). The τ values determined from the decay profile were
in the microsecond range for all the complexes, indicating that the observed luminescence of the
crystals at room temperature was phosphorescence. Although the luminescence was phosphorescence,
the crystals of the prepared complexes exhibited very high Φ values at room temperature in the
presence of air (Φ = 61%–75%). It is well-known that the triplet excited state is easily quenched by the
molecular oxygen in air. In addition, the rate constants for phosphorescence emission (kr) are much
smaller than those of non-radiative deactivation processes (knr) at ambient temperature, as the T1–S0

radiative transition is a spin-forbidden process. Therefore, although it has been reported that some
specific organic and organometallic materials exhibit RTP recently [1–3], phosphorescence is typically
observed only at low temperatures in the absence of oxygen molecules. Considering such sensitivity,
it is noteworthy that the complexes reported here exhibited high Φ values under room-temperature
conditions in the presence of air.

2.3. Relationship between the Room-Temperature Phosphorescence Properties and Aggregated Structure

To understand the underlying reason for the efficient in-air RTP of the DTn crystals, we analyzed
their crystal structures. Single crystals of all the complexes were obtained by slow evaporation from
a mixed solvent system of dichloromethane and acetone, and analyses of their single-crystal X-ray
structures were performed. Their crystal packing structures are shown in Figure 2, Figures S4 and
S5, in which two neighboring molecules are extracted and shown to discuss their intermolecular
interactions in the crystals. The related key crystallographic data is listed in Table S1. Select interatomic
distances between neighboring complexes are summarized in Table 2 to analyze the structure–property
relationships of the complexes. The X-ray structure analysis of DTn indicated that the intermolecular
Au–Au distance was 3.40 Å or less. It is generally accepted that the Au–Au distance is in the range of
2.50–3.50 Å, substantially shorter than the sum of the van der Waals radii (3.8 Å) of two Au atoms,
suggesting the existence of an aurophilic interaction between them [16]. Furthermore, the Au atom
was located close to the pyrazole ring of the neighboring molecule; the distance between the Au
atom and centroid of the pyrazole ring was determined to be 3.58 Å or less, and the angle between
the vector normal to the pyrazole ring and that passing through the centroid of the Au atom (θ)
was 2.4◦–15◦. Au complexes form aggregates due to the interactions between the Au atoms and
aromatic π-electron systems (Au–π interaction) when the distance between them is less than 4.0 Å,
with the θ angle being equal to or less than 20◦ [35]. Therefore, the geometric parameters obtained
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from the single-crystal structural analysis of DTn indicated the presence of an intermolecular Au–π
interaction between neighboring molecules. The analysis further indicated that all the complexes
formed dimers in the crystal via both non-covalent Au–Au and Au–π intermolecular interactions
(Figure 2c, Figures S4 and S5).
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(c) side view. (b) Structure of the column-like supramolecular polymer; three dimers are extracted from
the polymer. For clarity, H atoms and alkyl side chains are omitted. Atom color legend: grey, C; purple,
N; yellow, Au; red, the centroid of pyrazole ring. Intermolecular Au–Au and Au–π interactions are
indicated using blue and red lines, respectively.

Table 2. Selected distances and angles between the closest neighboring molecules in room-temperature
crystals of DTn.

Sample Au–Au Distance [Å] Au–π Distance [Å] θ [deg] a)

DT6 3.40 3.58 15
DT7 3.29 3.38 2.4
DT8 3.25 3.39 7.0

a) The angle, θ, was defined as the angle between the vector normal to the pyrazole ring and that passing through
the centroid to the Au atom.

In order to clarify the luminescence mechanism in the crystal, the molecular orbitals, transition
energies, and oscillator strengths (f ) of the complexes were calculated using time-dependent density
functional theory (TD-DFT) computations. The calculations were performed for the dimer model
formed in the DT6 crystal, as a representative example, using the initial conformation obtained
from X-ray crystallography (Figure 2). The DFT calculations suggested that there are three allowed
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electron transitions are in the UV region; viz., HOMO→ LUMO at 267.23 nm (f = 0.0002), HOMO–2
→ LUMO at 262.04 nm (f = 0.0033), and HOMO → LUMO+2 at 255.46 nm (f = 0.0292) (see ESI).
The calculations’ results were almost consistent with the excitation spectra of the complexes in the
crystal (Figure 1b). As shown in Figure 3, the HOMO and HOMO–2 are delocalized mainly over
the pyrazole ring, and the LUMO and LUMO+2 are localized mainly on a non-covalent aurophilic
bonding between Au–Au atoms. Therefore, the results indicate that those electronic transitions in the
excitation spectra can be assigned as a ligand-to-metal–metal charge transfer (LMMCT) transition.
The broad photoluminescence band without vibronic structures observed at ~730 is consistent with the
previously reported luminescence band for crystal of similar Au complexes [13,14], and it has been
proposed that the luminescence is originated from metal-centered excimeric states based on the Au–Au
interaction [14]. The computational results also support that the luminescence in the DTn crystals was
emitted from the metal-centered excimeric states.
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As shown in Figure 2c, Figure S4 and S5, in all the complexes, both Au–Au and Au–π interactions
exist at two sites in each dimer. Additionally, both interactions are extended in DT6, as a result of
which, the DT6 dimers stack to form a column-like supramolecular polymer (Figure 2b). In contrast,
these interactions are not extended in DT7 and DT8 crystals, and their dimers exist independently
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(Figure S4 and S5). We concluded that these multiple dual-mode intermolecular interactions forming
the dimer and polymer were the cause of the highly efficient, in-air RTP observed in this system, which is
likely enhanced due to the following three key effects: (i) The crystallinity of the complexes we prepared
can prevent penetration of molecular oxygen from the air into the densely packed crystal lattice, as
previously proposed by Tang et al. [36–38]. (ii) In the present system, the multiple intermolecular
interactions can further restrict the internal motions in the crystal; therefore, knr is decreased more
effectively, and the Φ of phosphorescence is increased, which is in line with the general working
mechanism of AIE [1–3]. (iii) Each molecule in the developed system has three heavy Au atoms, which
induce both internal and external heavy atom effects simultaneously. Consequently, both kr and the
rate constant for the spin-forbidden singlet-triplet intersystem crossing are effectively improved by
the internal/external heavy atom effects. A combination of these effects likely brought about the very
high Φ value in the in-air RTP. The multiple dual-mode intermolecular interactions observed in the
crystals can increase the density of the molecular packing and can amplify all the aforementioned
effects, resulting in highly efficient in-air RTP. Especially in DT6, the presence of extended, multiple
dual-mode interactions would be expected to afford the strongest amplification, which was the case,
and DT6 showed the highest Φ value for the in-air RTP among the complexes prepared.

3. Materials and Methods

3.1. Preparation of Materials

The complete synthetic route for the preparation of the trinuclear Au(I) complexes (DTn)
is shown in Scheme S1. The complexes DTn were synthesized from the corresponding
4-alkyl-3,5-dimethylpyrazole ligand and (tht)AuCl, according to the procedure reported, with some
modifications to the purification processes [32–34]. Unless otherwise noted, all solvents and reagents
were purchased from commercial suppliers and were used without further purification. 1H NMR
spectra were recorded using a ECS-400 spectrometer (JEOL, Tokyo, Japan) at 400 MHz using the
residual proton in the NMR solvent as an internal reference. The complexes were fully characterized
by high-resolution mass spectroscopy (HRMS), infrared spectroscopy (IR), and elemental analysis.
Electrospray ionization mass spectra (ESI-MS) were measured using a JMS-T1000LC (JEOL, Tokyo,
Japan). IR spectra were recorded using a FT/IR-4100 spectrometer (JASCO, Tokyo, Japan) as a KBr
pellet. The melting points of the final products were determined as the peak onset in differential
scanning calorimetry (DSC) with heating and cooling rates of 1.0 ◦C min−1.

DT6. 4-Hexyl-3,5-dimethylpyrazole (0.51 g, 2.8 mmol) and (tht)AuCl (1.0 g, 3.2 mmol) were
dissolved in 30 mL of acetone. A 1.0 mol L−1 methanol solution (3.0 mL) of potassium hydroxide
was added to the reaction mixture slowly (2 drops per second) with stirring. The solution was
stirred for 2 h at room temperature, after which the white precipitate formed was collected by
filtration. The crude product was purified on a silica gel column (eluent: CH2Cl2), and then
recrystallized from a mixture of dichloromethane and acetone to give 0.69 g (0.61 mmol) of colorless
needles (DT6) in 65% yield. mp 134 ◦C. 1H NMR (400 MHz, CDCl3, δ): 2.31 (t, J = 7.2 Hz; 6H;
CH2(CH2)4CH3), 2.15 (s, 18H; pyrazole–CH3), 1.28–1.41 (m, 24H; CH2(CH2)4CH3), 0.88 (t, J = 6.8 Hz; 9H;
(CH2)5CH3). 13C NMR (100 MHz, CDCl3, δ): 145.71 (3,5-C in pyrazole), 115.73 (4-C in pyrazole), 32.16
(pyrazole–CH3), 31.25 (–CH2(CH2)4CH3), 29.44 (CH2CH2(CH2)3CH3), 24.48 ((CH2)2CH2(CH2)2CH3),
23.08 ((CH2)3CH2CH2CH3), 14.50 ((CH2)4CH2CH3), 12.34((CH2)5CH3). FTIR (KBr): ν = 2956 cm−1

(C–H), 2922 cm−1 (C–H), 2852 cm−1 (C–H), 1515 cm−1 (C=C), 1456 cm−1 (C=C), 1429 cm−1 (C=N), 1371
cm−1 (C–H). Combustion elemental analysis calculated for C33H57Au3N6: C, 35.11; H, 5.09; N, 7.45;
Au, 52.35. Found: C, 34.88; H, 4.94; N, 7.37; Ash, 48.4.

DT7 and DT8. Compounds DT7 and DT8 were obtained by substituting
4-heptyl-3,5-dimethylpyrazole and 4-octyl-3,5-dimethylpyrazole for 4-hexyl-3,5-dimethylpyrazole in
the above procedure, respectively.
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DT7: mp 117 ◦C. 1H NMR (400 MHz, CDCl3, δ): 2.31 (t, J = 7.5 Hz; 6H; CH2(CH2)5CH3), 2.13
(s, 18H; pyrazole–CH3), 1.28–1.43 (m, 30H; CH2(CH2)5CH3), 0.88 (t, J = 6.8 Hz; 9H; (CH2)6CH3).
13C NMR (100 MHz, CDCl3, δ): 145.51 (3,5-C in pyrazole), 115.89 (4-C in pyrazole), 32.29
(pyrazole-CH3), 31.26 (-CH2(CH2)5CH3), 29.72 (CH2CH2(CH2)4CH3), 29.60 ((CH2)2CH2(CH2)3CH3),
24.43 ((CH2)3CH2(CH2)2CH3), 23.05 ((CH2)4CH2CH2CH3), 14.50 ((CH2)5CH2CH3), 12.41 ((CH2)6CH3).
FTIR (KBr): ν = 2955 cm−1 (C–H), 2922 cm−1 (C–H), 2852 cm−1 (C–H), 1515 cm−1 (C=C), 1465 cm−1

(C=C), 1452 cm−1 (C=C), 1436 cm−1 (C=N), 1374 cm−1 (C–H), 1357 cm−1 (C–H). Combustion elemental
analysis calculated for C36H63Au3N6: C, 36.93; H, 5.42; N, 7.18; Au, 50.47. Found: C, 36.60; H, 5.38; N,
7.16; Ash, 36.6.

DT8: mp 114 ◦C. 1H NMR (400 MHz, CDCl3, δ): 2.30 (t, J = 7.5 Hz; 6H; CH2(CH2)6CH3), 2.11
(s, 18H; pyrazole–CH3), 1.27–1.41 (m, 36H; CH2(CH2)6CH3), 0.88 (t, J = 6.8 Hz; 9H; (CH2)7CH3).
13C NMR (100 MHz, CDCl3, δ): 145.51 (3,5-C in pyrazole), 115.58 (4-C in pyrazole), 32.29
(pyrazole-CH3), 31.30 (-CH2(CH2)6CH3), 29.92 (CH2CH2(CH2)5CH3), 29.80 ((CH2)2CH2(CH2)4CH3),
29.76 ((CH2)3CH2(CH2)3CH3), 24.52 ((CH2)4CH2(CH2)2CH3), 23.05 ((CH2)5CH2CH2CH3), 14.48
((CH2)6CH2CH3), 12.30 ((CH2)7CH3). FTIR (KBr): ν = 2953 cm−1 (C–H), 2921 cm−1 (C–H), 2850
cm−1 (C–H), 1514 cm−1 (C=C), 1454 cm−1 (C=C), 1427 cm−1 (C=N), 1374 cm−1 (C–H), 1356 cm−1 (C–H).
Combustion elemental analysis calculated for C39H69Au3N6: C, 38.62; H, 5.73; N, 6.93; Au, 48.72.
Found: C, 38.45; H, 5.64; N, 6.90; Ash, 47.9.

3.2. Single Crystal X-ray Structure

The molecular structure and crystal packing structure were determined by single crystal X-ray
structural analysis. Single crystals of gold(I) complexes were obtained by slow evaporation from a
mixed solvent system (dichloromethane/acetone). Each crystal was mounted on a glass fiber, and the
omega scanning technique was used to collect the reflection data using a D8 goniometer (Bruker,
Billerica, MA, USA) with monochromatic Mo Kα radiation (λ = 0.71075 Å) for DT6 or a automated
four-circular-axis diffractometer AFC-5R (Rigaku, Tokyo, Japan) with graphite monochromatized Cu
Kα radiation (λ = 1.54178 Å) for DT7 and DT8. To investigate the actual crystal structures of the
materials used, the measurements were performed at ambient temperature (296 K). For DT6, the initial
structure of each unit cell was determined using a direct method in APEX3. The structural models
were refined using a full-matrix least squares method in SHELXL-2014/6 [39,40]. All calculations were
performed using SHELXL programs (University of Gottingen, Germany). For DT7 and DT8, the initial
structure in the unit cell was determined by a direct method using SIR92 [41]. The structure model was
refined by full-matrix least-squares methods using SHELXL97 (University of Gottingen, Germany) [40].
All calculations were performed in the crystallographic software package WinGX (1.80, Farrugia,
UK) [42]. When the alkyl chains were disordered, the occupancy of the atoms was separated into two
parts. The crystal data are summarized in Table S1, and are included in the Cambridge Crystallographic
Data Centre (CCDC) database as reference numbers CCDC 1910566–1910568 for DT6, DT7, and DT8,
respectively. The indexed database contains additional supplementary crystallographic data for this
paper and may be accessed without charge at http://www.ccdc.cam.ac.uk/conts/retrieving.html.

3.3. Photophysical Properties

UV–visible absorption and steady-state photoluminescence spectra were recorded using a V-550
absorption spectrophotometer (JASCO, Tokyo, Japan) and a F-7500 fluorescence spectrophotometer
(Hitachi, Tokyo, Japan), respectively. The quantum yields of the photoluminescence were determined
using a Quantaurus-QY absolute photoluminescence quantum yield spectrometer (C11347-01,
Hamamatsu Photonics, Hamamatsu, Japan). Photoluminescence decay profiles were measured
using a N2 laser (USHO Pulsed dye laser, KEC-160; wavelength, 337 nm; pulse width, 600 ps; 10 Hz)
with a streak camera (C4334, Hamamatsu Photonics, Hamamatsu, Japan).

http://www.ccdc.cam.ac.uk/conts/retrieving.html
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3.4. Computational Studies

The TD-DFT calculations were performed using the Gaussian 03 (revision E.01, Gaussian, Inc.,
Wallingford, CT, USA) program package, employing B3LYP hybrid functionals with SDD (for the
Au atoms) and 6-311G+(d,p) (for the other atoms) basis sets [43]. The computation was carried out for
the dimer formed in the crystal using the initial conformation obtained from the X-ray crystallography
results. The vertical excitation energies and oscillator strengths were estimated for the 8 lowest
transitions to excited singlets.

4. Conclusions

In conclusion, crystalline trinuclear Au complexes were prepared and displayed highly efficient
(Φ = ~75%) RTP in the presence of air. The complexes indicated multiple dual-mode intermolecular
interactions (Au–Au and Au–π interactions), which led to the formation of a supramolecular dimer and
a polymer, and these interactions played a crucial role in the highly efficient, in-air RTP. This intense RTP
appeared in the long wavelength region (~730 nm), accompanied by an extremely large Stokes shift of
2.2 × 104 cm−1 (450 nm). The efficient in-air RTP and the large Stokes shifts of the complexes developed
are desirable properties which will be useful in development of photoluminescence materials. The Au
complexes are expected to have potential applications in luminescent probes for bioimaging and for
chemical sensing, and spectral conversion materials for displays, photovoltaic cells, plant cultivation,
and related technologies [44–49].

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/24/4606/s1.
Scheme S1: Synthesis route of DTn; Figures S1–S3: 1H and 13C-NMR spectra; Figures S4 and S5: Crystal
structures; Figure S6: Absorption spectra; Figure S7: Photoluminescence spectra in solution and in crystal;
Figure S8: Photoluminescence spectra used for estimation of quantum yield; Figure S9: Decay profiles; Table S1:
Crystallographic data; Table S2: Excitation energies and oscillator strengths.
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