Synthesis and Structure of Methylsulfanyl Derivatives of Nickel

Bis(Dicarbollide)

Sergey A. Anufriev¹, Kyrill Yu. Suponitsky¹, Oleg A. Filippov^{1,2}, Igor B. Sivaev^{1,3,*}

- ¹ A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str, Moscow, 119991, Russia; trueman476@mail.ru (S.A.A.), kirshik@yahoo.com (K.Y.S.), h-bond@ineos.ac.ru (O.A.F.)
- ² Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., Moscow 117997, Russia
- ³ Basic Department of Chemistry of Innovative Materials and Technologies, G.V. Plekhanov Russian University of Economics, 36 Stremyannyi Line, 117997 Moscow 117997, Russia
- * Correspondence: sivaev@ineos.ac.ru; Tel.: +7-916-590-2025

Figure S3. ¹¹B NMR spectrum of (Bu₄N)[4,7⁻-(MeS)₂-Ni(C₂B₉H₁₀)₂] in acetone-d₆.

Figure S4. Crystal packing fragment of (Bu₄N)[8,8'-(MeS)₂-3,3'-Ni(1,2-C₂B₉H₁₀)₂]. Alternation of anionic and cationic layers parallel to the *bc* crystallographic plane is shown.

Figure S5. Crystal packing fragment of $(Bu_4N)[4,7'-(MeS)_2-3,3'-Ni(1,2-C_2B_9H_{10})_2]$. Alternation of anionic and cationic layers parallel to the *bc* crystallographic plane is shown. Total packing is presented on the left side while anion disposition is presented on the left side for more clear understanding. Cationic layers penetrate into anionic layers.

	1	2
formula	$C_6H_{26}B_{18}NiS_2^-, C_{16}H_{36}N^+$	$C_6H_{26}B_{18}NiS_2^-, C_{16}H_{36}N^+$
fw	658.13	658.13
crystal system	Triclinic	Monoclinic
space group	<i>P</i> -1	$P2_{1}/c$
<i>a</i> , Å	10.4662(5)	15.004(4)
<i>b</i> , Å	10.4746(5)	17.500(5)
<i>c</i> , Å	18.6951(9)	14.919(4)
α, deg.	83.6560(10)	90.0
<i>β</i> , deg.	86.5750(10)	111.443(6)
γ, deg.	64.9800(10)	90.0
<i>V</i> , Å ³	1845.64(15)	3646.0(17)
Ζ	2	4
d _{cryst} , g⋅cm ⁻³	1.184	1.199
F(000)	702	1404
μ , mm ⁻¹	0.657	0.665
θ range, deg.	1.1 - 26.0	1.9 - 24.0
independent reflections / Rint	7270	5711
Completeness to theta θ , %	99.9	99.9
refined parameters	486	423
$GOF(F^2)$	1.072	1.033
reflections with $I > 2\sigma(I)$	5668	2971
$R_1(F) (I > 2\sigma(I))^a$	0.0413	0.0761
$wR_2(F^2)$ (all data) ^b	0.1039	0.1901
Largest diff. peak/hole, $e \cdot \text{Å}^{-3}$	0.439 / -0.266	0.785 / -0.409

Table S1. Crystallographic data for compounds $(Bu_4N)[8,8'-(MeS)_2-3,3'-Ni(1,2-C_2B_9H_{10})_2](1)$ and $(Bu_4N)[4,7'-(MeS)_2-3,3'-Ni(1,2-C_2B_9H_{10})_2]$ (2).

^a $R_1 = \sum |F_0 - |F_c|| / \sum (F_0);$ ^b $wR_2 = (\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2]^{1/2}$

	8,8'-isomer			4,7'-isomer			4,4'-isomer			
	cisoid	gauche	transoid	cisoid	gauche	transoid	cisoid1	cisoid2	gauche1	gauche2
ΔE	10.3	3.7	0.0	12.4	8.1	8.5	13.0	10.7	4.7	10.2
ΔG^{298}	10.6	4.0	0.0	12.1	8.4	9.2	13.2	10.3	5.0	10.8
				Inter	ractions with S	atom				
Туре	SS	CH…S	CH…S	CH…S	CH…S	S…HB	S…HB	CH…S	CHS	S…HB
R	3.381	2.656	2.722	2.602	2.528	2.558	2.903	2.575	2.600	2.930
$ ho_c$	0.013	0.012	0.011	0.012	0.014	0.014	0.008	0.014	0.012	0.008
EBCP	-1.7	-2.0	-1.8	-3.0	-2.6	-2.5	-1.2	-2.4	-2.2	-1.1
Туре		CHS	CH…S	S…HB	CH…S	S…HB	S…HB	CH…S	CHS	S…HB
R		2.658	2.722	2.889	2.982	2.558	2.904	2.575	2.600	2.931
ρ _c		0.012	0.011	0.010	0.007	0.014	0.008	0.014	0.012	0.008
EBCP		-2.0	-1.8	-1.5	-1.1	-2.5	-1.2	-2.4	-2.2	-1.1
Туре			CH…S	SS	S…HB		S…HB	S…HB	CHS	SS
R			2.740	3.526	2.820		3.044	3.022	2.902	3.416
ρ _c			0.010	0.009	0.009		0.008	0.007	0.008	0.013
E _{BCP}			-1.6	-1.2	-1.4		-1.1	-1.1	-1.3	-1.6
Type			CH…S				S…HB	S…HB	CHS	
R			2.740				3.044	3.022	2.902	
ρ _c			0.010				0.008	0.007	0.008	
EBCP			-1.6				-1.1	-1.1	-1.3	
				Interaction	ns of CH₃ grou	р (СН…НВ)				
R	2.318	2.472	2.490	2.417	2.517	2.828ª		2.325	2.342	2.407
ρ _c	0.008	0.006	0.006	0.007	0.006	0.008		0.008	0.007	0.008
Ebcp	-1.3	-0.9	-0.8	-1.0	-0.8	-1.1		-1.2	-1.2	-1.1
R	2 318	2 438	2 473	2 294	2 335	2 828ª		2 464	2 530	2 407
0.	0.008	0.006	0.006	0.008	0.007	0.008		0.006	0.005	0.008
PC Epop	-1 3	-0.0	-0.8	-1 3	-1 2	-1 1		-0.000	-0.7	-1 1
LBCP	1.0	0.5	0.0	1.0	1.2	1.1		0.0	0.7	1.1
R		2.473	2.473		2.863 ^a			2.326	2.341	
ρ _c		0.006	0.006		0.007			0.008	0.007	
E _{BCP}		-0.9	-0.8		-1.0			-1.2	-1.2	
R		2 437	2 490					2 465	2 530	
0.		0.006	0.006					0.006	0.005	
		-0.9	-0.8					-0.9	-0.7	
		0.3	0.0	I			l	0.5	0.7	

Table S2. Characteristics of (3,-1) bond critical points associated with the intramolecular interactions of SMe group (interatomic distance r in Å, electron denity at BCP ρ_c in a.u., energies in kcal·mol⁻¹)_____

 $BH \cdots C(Me)$ interaction