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Abstract: A chiral primary amine-salicylamide is used as an organocatalyst for the enantioselective
conjugate addition of α,α-disubstituted aldehydes to maleimides and nitroalkenes. The reactions
are performed in deep eutectic solvents as reaction media at room temperature, leading to the
corresponding adducts with enantioselectivities up to 88% (for maleimides) and 80% (for nitroalkenes).
Catalyst and solvent can be recovered and reused.
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1. Introduction

Currently, traditional volatile organic compounds (VOCs) are the common solvents for performing
organic reactions although, from an environmental point of view, they show many intrinsic drawbacks,
such as accumulation in the atmosphere due to their low boiling points, flammability, toxicity and
non-biodegradability. For all these reasons several greener and friendlier synthetic methodologies
based on alternative reaction media have been developed, all of them having certain number of
advantages, as well as disadvantages [1,2].

Among these alternative reaction media, deep eutectic solvents (DESs) are attracting a growing
interest [3]. A DES is a combination of two or three compounds, Lewis or Brønsted acids and bases
containing a variety of anionic and/or cationic species, which interacts through hydrogen bonds
forming a eutectic mixture with a melting point lower than the individual components [3]. DESs
are non-volatile, show a low ecological footprint, are economical, essentially nontoxic and easily
recyclable, therefore research concerning their use as environmentally friendly neoteric solvents in
organic synthesis is growing rapidly [4–11].

In addition, probably the most attractive methodology for the enantioselective preparation
of functionalized molecules in organic synthesis is the use of asymmetric organocatalysis, since
metal-free small organic compounds are used as catalysts under usually very mild and simple reaction
conditions [12,13]. This methodology maintains sustainability in organic synthesis and provides many
advantages, such as accessibility, inexpensive catalysts and reduced toxicity. However, most of these
asymmetric processes are carried out using environmentally unfriendly VOCs as reaction media,
although efforts have been devoted to achieving more sustainable synthetic procedures [14].

Therefore, the combination of asymmetric organocatalysis and the use of DESs as solvents
would show quite powerful and promising in order to achieve the enantioselective preparation of
compounds of interest in an environmentally friendly manner. However, the application of DESs
in asymmetric organocatalysis is still in its infancy, very few examples being reported (Figure 1).
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Thus, enantioselective aldol reactions have been performed in DESs using the amino acids L-proline
(1) [15,16] and L-isoleucine (2) [17] as organocatalysts, as well as a combination of diaryl prolinols
3 [18] or 4 [19] and an enzyme. In addition, some enantioselective conjugate additions have been
performed in DESs, such as the reaction of isobutyraldehyde and β-nitrostyrene and other conjugate
addition reactions using 9-amino-9-deoxy-epi-quinine (5) as catalyst [20], the reaction of 1,3-dicarbonyl
compounds with β-nitrostyrenes organocatalyzed by 2-amino benzimidazole 6 [21], and the reaction
of aldehydes and maleimides organocatalyzed by primary-amine monocarbamate 7 [22]. Moreover,
benzimidazole ent-6 has also been used as catalyst for the α-amination of 1,3-dicarbonyl compounds in
DESs [23].
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Figure 1. Chiral organocatalysts employed in enantioselective reactions performed in deep eutectic
solvents (DESs).

Recently, our group has employed a simple chiral primary amine-monosalicylamide from
trans-cyclohexane-1,2-diamine 8 (Figure 2) and ent-8 as organocatalysts in the enantioselective Michael
addition of the “difficult” α,α-disubstituted aldehydes to maleimides [24] and β-nitroalkenes [25],
obtaining the corresponding succinimides and γ-nitroaldehydes, respectively, in excellent chemical
yields and enantioselections, but working in conventional VOCs as reaction media. The enantioselective
preparation of succinimides and γ-nitroaldehydes shows interest, as the succinimide moiety is present
in natural products and drug candidates [26–28], and also can be transformed into interesting
compounds such as γ-lactams [29], which are important in the treatment of HIV [30] and neurological
disorders [31,32]. In addition, γ-nitroaldehydes are precursors of γ-aminobutyric acid analogues
(GABAs), which exhibit many pharmacological activities including antidepressant, anticonvulsant,
anxiolytic and others [33,34], as well as can be potent drugs in the treatment of neurodegenerative
disorders [35].
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Therefore, the asymmetric preparation of these compounds using 8 as catalyst would gain
considerably from an environmentally point if the mentioned preparations could be performed in
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DESs. Thus, we present now the enantioselective addition of aldehydes to maleimides and nitroalkenes
organocatalyzed by 8 using DESs as reaction media.

2. Results and Discussion

The primary amine-salicylamide 8 was prepared as described by monoamidation of
(1R,2R)-cyclohexane-1,2-diamine with phenyl salicylate in refluxing propan-2-ol [25]. Initially, we
explored the reaction of aldehydes with maleimides in DESs, using the model conjugate addition of
isobutyraldehyde (9a) to N-phenylmaleimide (10a) (Table 1).

Table 1. Screening and optimization of the reaction conditions for the model enantioselective conjugate
addition of isobutyraldehyde to N-phenylmaleimide in DESs organocatalyzed by 8.
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Thus, the reaction organocatalyzed by 8 (10 mol%) carried out in several choline chloride
(ChCl)-containing DESs (1:2 molar ratio) at room temperature afforded the corresponding substituted
succinimide (S)-11aa after 2 d reaction time (Table 1, entries 1–4). The (S) absolute configuration of the
final adduct was determined by comparison of the elution order of the corresponding enantiomers
in chiral HPLC with those in the literature [36]. The DES resulting in a higher enantioselection was
the formed by the mixture 1ChCl/2EG (EG = ethylene glycol), which gave 11aa in 80% ee (Table 1,
entry 3). The use of a mixture of 1Ph3MePBr/2Gly as DES gave a similar enantioselectivity, but slightly
lower conversion (Table 1, entry 5). In addition, we also assayed the influence of the addition of
some acid or basic additives. Thus, acid additives improved the enantioselectivity of the reaction
(Table 1, entries 6–9), the best ee for 11aa (88%) being obtained when 4-nitrobenzoic acid was used
(Table 1, entry 8). The addition of a basic additive such as imidazole gave very similar results, but
the addition of 4-(dimethylamino)pyridine (DMAP) gave rise to decomposition products. We also
increased and lowered the loading of organocatalyst and the best additive but without achieving better
results (Table 1, entries 12–14).

Next, we extended this enantioselective reaction to other maleimides 10 under the best conditions
[8 (10 mol%), 4-O2NC6H4CO2H (10 mol%), 1ChCl/2EG, rt], the results being summarized in Table 2.
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The absolute configuration of the known succinimides 11 was assigned in accordance with the elution
order of the enantiomers in chiral HPLC (see the Experimental Section). Thus, when 9a reacted
with N-aryl maleimides 10b and 10c bearing electron-donating groups on the phenyl ring, such
as 4-methyl and 4-methoxy, adducts 11ab and 11ac were obtained in 66 and 86% ee, respectively
(Table 2, entries 2 and 3). When N-aryl maleimides 10d and 10e, bearing chloro and bromo groups
at the para-position, were used, succinimides 11ad and 11ae were isolated in similar 81 and 78% ee,
respectively (Table 2, entries 4 and 5). Interestingly, the reaction of isobutyraldehyde with maleimides
non-N-arylated such as N-methylmaleimide (10f) or even the simple maleimide (10g), gave rise to the
corresponding succinimides 11af and 11ag in almost quantitative yield and with enantioselectivities of
78 and 73%, respectively (Table 2, entries 6 and 7). We also employed cyclohexanecarbaldehyde (9b)
as reacting aldehyde with N-phenylmaleimide (10a), although isolated yield and enantioselectivity
for the corresponding adduct 11ba diminished (Table 2, entry 8). Moreover, we also explored the
performance of organocatalyst 7 (Figure 1), instead of 8, in the case of entry 1 (Table 2), but we obtained
adduct 11aa in only 73% ee.

Table 2. Enantioselective conjugate addition of aldehydes to maleimides organocatalyzed by 8 in a DES.
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Next, we explored the suitability of DESs as reaction media in the reaction of isobutyraldehyde (9a)
with β-nitrostyrene (12a) organocatalyzed by 8 (10 mol%) to give γ-nitroaldehyde 13aa (Table 3). Thus,
when ChCl-including mixtures were employed as DESs, adduct 13aa was obtained (Table 3, entries
1–4), the (R) absolute configuration of the final adduct being determined by comparison of the elution
order of the corresponding enantiomers in chiral HPLC with those in the literature [37]. However,
the results were rather disappointing, the conversions being low-to-very low. The conversion rose up
dramatically when employing as DES the mixture 1Ph3MePBr/2Gly, but the enantioselection was very
poor (Table 3, entry 5). The addition of different acid or basic additives when the DESs 1ChCl/2Urea,
1ChCl/2Gly or 1ChCl/2EG were used did not give higher conversions, whereas the addition of additives
when the DES 1Ph3MePBr/2Gly was employed did not afford a higher enantioselectivity. However,
in the case of using 1ChCl/2H2O, we observed that the presence of basic additives certainly had an
influence on the conversion and the enantioselectivity to 13aa (Table 3, entries 6–8). Thus, the use of
1,4-diazabicyclo[2.2.2]octane (DABCO) (10 mol%) as basic additive gave rise to quantitative conversion
to 13aa with 55% ee (Table 3, entry 7), whereas the use of DMAP (10 mol%) afforded also quantitative
conversion and 75% ee (Table 3, entry 8). On the contrary, the addition of acid additives such as benzoic
acid or hexanedioic acid (HDA) lowered down the conversion dramatically (Table 3, entries 9 and 10).
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Finally, lowering or increasing the amount of organocatalyst 8 and DMAP gave a lower conversion or
enantioselection (Table 3, entries 11 and 12).

Table 3. Screening and optimization of the reaction conditions for the model enantioselective conjugate
addition of isobutyraldehyde to trans-β-nitrostyrene in DES organocatalyzed by 8.
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Michael acceptor, the corresponding adduct 13al was obtained in 75% ee (Table 4, entry 12), whereas 
the use of a 2-furanyl-containing nitroalkene 12m gave rise to adduct 13am in 76% ee (Table 4, entry 
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Table 4. Enantioselective conjugate addition of isobutyraldehyde to nitroalkenes organocatalyzed by 
8 in a DES. 

Entry 8 mol% Additive (mol%) a DES a,b Conv. (%) c ee (%) d

1 10 - ChCl/Urea 35 57
2 10 - ChCl/Gly 7 n.d.
3 10 - ChCl/EG 16 74
4 10 - ChCl/H2O 18 15
5 10 - Ph3MePBr/Gly 99 11
6 10 Imidazole (10) ChCl/H2O 30 62
7 10 DABCO (10) ChCl/H2O 99 55
8 10 DMAP (10) ChCl/H2O 99 75
9 10 PhCO2H (10) ChCl/H2O 3 n.d.

10 10 HDA (10) ChCl/H2O 12 n.d.
11 5 DMAP (5) ChCl/H2O 81 73
12 20 DMAP (20) ChCl/H2O 99 64

a Abbreviations: DABCO: 1,4-diazabicyclo[2.2.2]octane; DMAP: 4-(dimethylamino)pyridine; HDA: hexanedioic
acid; ChCl: choline chloride; Gly: glycerol; EG: ethylene glycol. b 1:2 molar ratio. c Determined by 1H NMR
(300 MHz). d Enantioselectivities and absolute stereochemistry determined by chiral HPLC.

Using the above obtained more efficient reaction conditions [8 (10 mol%), DMAP (10 mol%),
1ChCl/2H2O, rt], we explored the use of other β-nitroolefins in the enantioselective conjugate addition
reaction with isobutyraldehyde (Table 4). The absolute configuration of the known γ-nitroaldehydes
13a was assigned in accordance with the elution order of the enantiomers in chiral HPLC when
compared to the literature (see the Experimental Section).

Thus, the reaction of 9a with nitroalkenes 12b and 12c, bearing electron-releasing groups such
as 4-methyl or 4-methoxy in the aromatic ring, were used, the corresponding adducts 13ab and 13ac
were isolated with similar enantioselectivities (Table 4, entries 2 and 3). The presence of a dioxolane
system on the aromatic ring in the nitroolefin 12d raised the enantioselection up to 75% (Table 4, entry
4), whereas this was lowered down to 68% when 12e containing three methoxy groups was used
as electrophile (Table 2, entry 5). When a 4-fluoro group was present (12f) the corresponding 13af
was isolated in 72% ee, whereas a chloro group at 2-position (12g) afforded adduct 13ag in 80% ee
(Table 4, entries 6 and 7). The presence of a 4-chloro (12h) gave 13ah in only a 53% ee (Table 4, entry
8), whereas the presence of bromo groups in 2- and 4- position gave the corresponding products
with enantioselectivities of 80 and 70%, respectively (Table 4, entries 9 and 10). In addition, an
electron-withdrawing group such as the 4-trifluoromethyl (12k) gave a 70% enantioselectivity for 13ak
(Table 4, entry 11). Moreover, when the nitroalkene 12l, bearing a 2-naphthyl group, was employed as
Michael acceptor, the corresponding adduct 13al was obtained in 75% ee (Table 4, entry 12), whereas
the use of a 2-furanyl-containing nitroalkene 12m gave rise to adduct 13am in 76% ee (Table 4, entry
13). Furthermore, we also explored the behavior of organocatalyst 7 (Figure 1) when used instead of 8
in the reaction described in entry 1 (Table 4) but adduct 13aa was obtained in a lower 69% ee.
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Table 4. Enantioselective conjugate addition of isobutyraldehyde to nitroalkenes organocatalyzed by 8
in a DES.
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Entry
Nitroalkene

Time (day)
γ-Nitroaldehyde

R No. No. Yield (%) a ee (%) b

1 Ph 12a 2 13aa 92 75
2 4-MeC6H4 12b 1 13ab 60 61
3 4-MeOC6H4 12c 1 13ac 74 63
4 3,4-(OCH2O)C6H3 12d 2 13ad 67 75
5 3,4,5-(MeO)3C6H2 12e 1 13ae 73 68
6 4-FC6H4 12f 2 13af 78 72
7 2-ClC6H4 12g 1 13ag 49 80
8 4-ClC6H4 12h 2 13ah 89 53
9 2-BrC6H4 12i 2 13ai 70 80

10 4-BrC6H4 12j 1 13aj 83 70
11 4-F3CC6H4 12k 1 13ak 85 70
12 2-Naphthyl 12l 1 13al 67 75
13 2-Furanyl 12m 2 13am 75 76

a Isolated yield after flash chromatography. b Enantioselectivities determined by chiral HPLC. Absolute configuration
assigned by the order of elution of the enantiomers in chiral HPLC (see the Experimental Section).

The possibility of reusing the DES is very important in a synthetic methodology performed using
these neoteric solvents. Therefore, we explored the reusability of the DES, and the catalytic system, by
carrying out different reaction cycles of the model conjugate addition reactions performed under the
best reaction conditions depicted in entry 1 of Tables 2 and 4.

Thus, we explored the reusability of the system in the model reaction of isobutyraldehyde (9a) and
N-phenylmaleimide (10a) (Table 2, entry 1). Once the reaction was finished, 2-methyltetrahydrofuran
(2-MeTHF) was added and the resulting mixture was stirred vigorously. After the two layers settled
down, the upper layer, containing the final adduct 11aa, was separated. 1H NMR analysis of this
crude revealed that the 4-nitrobenzoic acid used as additive, as well as a small amount of ethylene
glycol, were also extracted from the DES, although no traces of the organocatalyst were observed.
Refreshing the catalytic system by the addition of new additive (but no new chiral organocatalyst
8) to the recovered DES allowed to obtain 11aa in a second reaction cycle with similar conversion
and identical enantioselectivity than when used for the first time. Following this recovery procedure,
the DES containing the organocatalyst 8 was used in the third cycle, but the conversion diminished,
although the enantioinduction remained similar (Table 5).

Table 5. Recycle experiments in the reaction of 9a and 10a. Conversions and ee’s of 11aa after consecutive
reaction cycles.

Reaction Cycle Conv. (%) a ee (%) b

1 99 88
2 97 88
3 53 85

a Determined by 1H NMR (300 MHz). b Enantioselectivity determined by chiral HPLC.

In addition, we also explored the reusability of the system DES/organocatalyst in the model
reaction of isobutyraldehyde (9a) and β-nitrostyrene (12a) in 1ChCl/2H2O (Table 4, entry 1). Thus,
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performing a similar extraction than in the previous case using 2-MeTHF, we could also observe (1H
NMR) the necessity of adding new additive (DMAP) after the first reaction cycle, but no leaching of
organocatalyst 8 was detected. Again, refreshing the catalytic system by the addition of new DMAP as
additive (but no new 8) to the recovered DES, allowed to obtain 13aa in a second reaction cycle with
identical enantioselectivity than in the first one (Table 6). The DES containing the organocatalyst 8 was
reused in an additional cycle with a decrease in the conversion but essentially without diminishing
the achieved enantioinduction (Table 6). The reason for the observed decrease in this case (and in
the former) is not totally clear. Probably, the structure of the DES results somehow degraded in the
extraction/recovery process.

Table 6. Recycle experiments in the reaction of 9a and 12a. Conversions and ee’s of 13aa after consecutive
reaction cycles.

Reaction Cycle Conv. (%) a ee (%) b

1 99 75
2 93 75
3 59 74

a Determined by 1H NMR (300 MHz). b Enantioselectivity determined by chiral HPLC.

3. Experimental Section

3.1. General Information

All the reagents and solvents employed were of the best grade available and were used without
further purification. Isobutyraldehyde was distilled. Organocatalyst 8 was obtained as reported [25].
Nitroolefins 12 were purchased or prepared according to a described procedure [38]. The 1H and 13C
spectra were recorded at room temperature on a Bruker Oxford (Bruker, Billerica, MA, USA) AV300 at
300 MHz and on a Bruker Oxford AV400 at 101 MHz, respectively, using TMS as internal standard.
Absolute configurations for adducts 11 and 13a were determined according to the order of elution of
their enantiomers in chiral HPLC. Reference racemic samples of adducts 11 and 13a were obtained by
performing the conjugate addition reactions using 4-methoxybenzylamine (20 mol%) as organocatalyst
in toluene as solvent at room temperature.

3.2. General Procedure for the Preparation of DESs

A mixture of the two components, with the specified molar ratio, was added to a round bottom
flask and the mixture was stirred for 60 min in a temperature range between 65 and 80 ◦C, obtaining
the corresponding DES [39].

3.3. General Procedure for the Enantioselective Conjugate Addition of Aldehydes to Maleimides

To a mixture of catalyst 8 (4.7 mg, 0.02 mmol), 4-nitrobenzoic acid (3.3 mg, 0.02 mmol) and
maleimide 10 (0.2 mmol) in ChCl/EG (1/2 molar ratio, 0.5 mL) was added the aldehyde 9 (0.4 mmol),
and the reaction was vigorously stirred at rt until completion (TLC) (Table 2). After this period,
HCl 2N (10 mL) was added and the reaction product was extracted with AcOEt (3 × 10 mL). The
combined organic phases were washed with saturated NaHCO3 (10 mL) and brine (10 mL), dried over
MgSO4 and, after filtration, the solvent was evaporated under reduced pressure (15 torr) to get the
crude product, which was purified by flash column chromatography on silica gel (n-hexane/AcOEt
gradients). The adducts 11 were identified by comparison of their NMR data with those of the literature
(Supplementary Materials, NMR spectra). Their enantiomeric excesses were determined by chiral
HPLC on the reaction crude, using the conditions described in each case (Supplementary Materials,
HPLC chromatograms).
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2-(2,5-Dioxo-1-phenylpyrrolidin-3-yl)-2-methylpropanal (11aa) [36]. White solid (48 mg, 98%); 1H NMR
(CDCl3): δH = 9.52 (s, 1H), 7.51−7.43 (m, 2H), 7.42–7.36 (m, 1H), 7.31−7.26 (m, 2H), 3.15 (dd, J = 9.5,
5.5 Hz, 1H), 2.98 (dd, J = 18.3, 9.5 Hz, 1H), 2.62 (dd, J = 18.3, 5.5 Hz, 1H), 1.33 (s, 3H), 1.29 (s, 3H) ppm;
13C NMR (CDCl3): δC = 202.9, 177.0, 174.9, 131.9, 129.3, 128.9, 126.7, 48.7, 45.1, 32.0, 20.5, 19.8 ppm;
HPLC: Chiralcel OD-H, λ = 240 nm, n-hexane/2-propanol, 80:20, 1.0 mL/min, tr (major) = 25.0 min, tr

(minor) = 30.6 min.

2-(2,5-Dioxo-1-(p-tolyl)pyrrolidin-3-yl)-2-methylpropanal (11ab) [36]. White solid (46 mg, 88%); 1H NMR
(CDCl3): δH = 9.49 (s, 1H), 7.31−7.22 (m, 2H), 7.17−7.08 (m, 2H), 3.12 (dd, J = 9.5, 5.5 Hz, 1H), 2.93 (dd,
J = 18.3, 9.5 Hz, 1H), 2.57 (dd, J = 18.3, 5.5 Hz, 1H), 2.37 (s, 3H), 1.28 (s, 3H), 1.24 (s, 3H) ppm; 13C NMR
(CDCl3): δC = 202.9, 177.1, 175.0, 138.8, 129.9, 129.2, 126.4, 48.5, 45.0, 31.8, 21.2, 20.3, 19.4 ppm; HPLC:
Chiralcel OD-H, λ = 230 nm, n-hexane/2-propanol, 80:20, 1.0 mL/min, tr (major) = 19.4 min, tr (minor) =

22.6 min.

2-(1-(4-Methoxyphenyl)-2,5-dioxopyrrolidin-3-yl)-2-methylpropanal (11ac) [40]. White solid (54 mg, 98%);
1H NMR (CDCl3): δH = 9.52 (s, 1H), 7.23−7.14 (m, 2H), 7.02−6.93 (m, 2H), 3.82 (s, 3H), 3.14 (dd, J =

9.5, 5.4 Hz, 1H), 2.97 (dd, J = 18.2, 9.5 Hz, 1H), 2.60 (dd, J = 18.2, 5.4 Hz, 1H), 1.32 (s, 3H), 1.28 (s, 3H)
ppm; 13C NMR (CDCl3): δC = 202.9, 177.3, 175.2, 159.7, 127.9, 124.5, 114.6, 55.6, 48.6, 45.1, 31.9, 20.4,
19.7 ppm; HPLC: Chiralpak AS-H, λ = 240 nm, n-hexane/2-propanol, 80:20, 1.0 mL/min, tr (major) =

31.0 min, tr (minor) = 34.8 min.

2-(1-(4-Chlorophenyl)-2,5-dioxopyrrolidin-3-yl)-2-methylpropanal (11ad) [36]. White solid (33 mg, 59%);
1H NMR (CDCl3): δH = 9.49 (s, 1H), 7.51−7.38 (m, 2H), 7.31−7.20 (m, 2H), 3.11 (dd, J = 9.5, 5.4 Hz,
1H), 2.97 (dd, J = 18.1, 9.5 Hz, 1H), 2.61 (dd, J = 18.1, 5.4 Hz, 1H), 1.36 (s, 3H), 1.29 (s, 3H) ppm; 13C
NMR (CDCl3): δC = 202.8, 176.8, 174.6, 134.6, 130.4, 129.5, 127.9, 48.8, 45.1, 32.1, 20.6, 20.0 ppm; HPLC:
Chiralcel OD-H, λ = 230 nm, n-hexane/2-propanol, 80:20, 1.0 mL/min, tr (major) = 21.2 min, tr (minor) =

35.6 min.

2-(1-(4-Bromophenyl)-2,5-dioxopyrrolidin-3-yl)-2-methylpropanal (11ae) [36]. White solid (55 mg, 85%);
1H NMR (CDCl3): δH = 9.48 (s, 1H), 7.64−7.55 (m, 2H), 7.23−7.14 (m, 2H), 3.11 (dd, J = 9.5, 5.5 Hz,
1H), 2.97 (dd, J = 18.2, 9.5 Hz, 1H), 2.61 (dd, J = 18.2, 5.5 Hz, 1H), 1.35 (s, 3H), 1.28 (s, 3H) ppm; 13C
NMR (CDCl3): δC = 202.8, 176.7, 174.5, 132.5, 130.9, 128.2, 122.7, 48.8, 45.1, 32.1, 20.6, 20.0 ppm; HPLC:
Chiralcel OD-H, λ = 240 nm, n-hexane/2-propanol, 80:20, 1.0 mL/min, tr (major) = 22.2 min, tr (minor) =

34.9 min.

2-Methyl-2-(1-methyl-2,5-dioxopyrrolidin-3-yl)propanal (11af) [22]. White solid (36 mg, 98%); 1H NMR
(CDCl3): δH = 9.51 (s, 1H), 3.05 (dd, J = 9.2, 5.2 Hz, 1H), 2.99 (s, 3H), 2.83 (dd, J = 18.2, 9.2 Hz, 1H), 2.45
(dd, J = 18.2, 5.2 Hz, 1H), 1.22 (s, 3H), 1.21 (s, 3H) ppm; 13C NMR (CDCl3): δC = 202.9, 177.9, 175.9,
48.0, 45.1, 31.5, 24.9, 20.1, 19.2 ppm; HPLC: Chiralpak AS-H, λ = 210 nm, n-hexane/2-propanol, 80:20,
1.0 mL/min, tr (minor) = 11.5 min, tr (major) = 12.5 min.

2-(2,5-Dioxopyrrolidin-3-yl)-2-methylpropanal (11ag) [22]. White solid (33 mg, 98%); 1H NMR (CDCl3):
δH = 9.49 (s, 1H), 9.03 (br. s, 1H), 3.10 (dd, J = 7.7, 5.5 Hz, 1H), 2.85 (dd, J = 18.3, 7.7 Hz, 1H), 2.50 (dd, J
= 18.3, 5.5 Hz, 1H), 1.24 (s, 3H), 1.23 (s, 3H) ppm; 13C NMR (CDCl3): δC = 203.0, 178.5, 176.4, 48.1, 46.4,
32.9, 20.2, 19.4 ppm; HPLC: Chiralpak AD-H, λ = 210 nm, n-hexane/2-propanol, 80:20, 1.0 mL/min, tr

(minor) = 16.8 min, tr (major) = 21.2 min.

1-(2,5-Dioxo-1-phenylpyrrolidin-3-yl)cyclohexane-1-carbaldehyde (11ba) [36]. White solid (36 mg, 63%); 1H
NMR (CDCl3): δH = 9.54 (s, 1H), 7.56−7.33 (m, 3H), 7.33−7.26 (m, 2H), 3.22 (dd, J = 9.4, 6.0 Hz, 1H),
2.88 (dd, J = 18.1, 9.4 Hz, 1H), 2.68 (dd, J = 18.1, 6.0 Hz, 1H), 1.96 (m, 2H), 1.60 (m, 8H) ppm; 13C NMR
(CDCl3): δC = 204.7, 177.2, 174.9, 132.1, 129.3, 128.8, 126.8, 52.3, 42.9, 31.7, 28.8, 28.3, 25.3, 21.6, 21.4 ppm;
HPLC: Chiralcel OD-H, λ = 240 nm, n-hexane/2-propanol, 80:20, 1.0 mL/min, tr (major) = 23.9 min, tr

(minor) = 30.9 min.
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3.4. General Procedure for the Enantioselective Conjugate Addition of Isobutyraldehyde to Nitroalkenes

To a mixture of catalyst 8 (4.7 mg, 0.02 mmol), DMAP (2.4 mg, 0.02 mmol) and nitroalkene 12
(0.2 mmol) in ChCl/H2O (1/2 molar ratio, 0.5 mL) was added isobutyraldehyde 9a (37 µL, 28.8 mg,
0.4 mmol), and the reaction was vigorously stirred at rt until completion (TLC) (Table 4). After this
period, HCl 2N (10 mL) was added and the reaction product was extracted with AcOEt (3 × 10 mL).
The combined organic phases were washed with saturated NaHCO3 (10 mL) and brine (10 mL), dried
over MgSO4 and, after filtration, the solvent was evaporated under reduced pressure (15 torr) to get
the crude product, which was purified by flash column chromatography on silica gel (n-hexane/AcOEt
gradients). The adducts 13a were identified by comparison of their NMR data with those of the
literature (Supplementary Materials, NMR spectra). Their enantiomeric excesses were determined
by chiral HPLC on the reaction crude, using the conditions described in each case (Supplementary
Materials, HPLC chromatograms).

2,2-Dimethyl-4-nitro-3-phenylbutanal (13aa) [37]. Yellow oil (41 mg, 92%); 1H NMR (CDCl3): δH = 9.53 (s,
1H), 7.39−7.28 (m, 3H), 7.24−7.15 (m, 2H), 4.86 (dd, J = 13.0, 11.2 Hz, 1H), 4.69 (dd, J = 13.0, 4.3 Hz, 1H),
3.78 (dd, J = 11.2, 4.3 Hz, 1H), 1.14 (s, 3H), 1.01 (s, 3H) ppm; 13C NMR (CDCl3): δC = 204.4, 135.5, 129.2,
128.9, 128.3, 76.5, 48.7, 48.4, 21.8, 19.1 ppm; HPLC: Chiralcel OD-H, λ = 210 nm, n-hexane/2-propanol,
80:20, 1.0 mL/min, tr (major) = 12.2 min, tr (minor) = 17.4 min.

2,2-Dimethyl-4-nitro-3-(p-tolyl)butanal (13ab) [41]. Yellow oil (28 mg, 60%); 1H NMR (CDCl3): δH =

9.53 (s, 1H), 7.18–7.03 (m, 4H), 4.83 (dd, J = 12.9, 11.3 Hz, 1H), 4.67 (dd, J = 12.9, 4.3 Hz, 1H), 3.74
(dd, J = 11.3, 4.3 Hz, 1H), 2.32 (s, 3H), 1.13 (s, 3H), 1.00 (s, 3H) ppm; 13C NMR (CDCl3): δC = 204.5,
138.1, 132.4, 129.6, 129.1, 76.6, 48.5, 48.4, 21.8, 21.2, 19.1 ppm; HPLC: Chiralcel OD-H, λ = 240 nm,
n-hexane/2-propanol, 80:20, 1.0 mL/min, tr (major) = 9.2 min, tr (minor) = 12.4 min.

3-(4-Methoxyphenyl)-2,2-dimethyl-4-nitrobutanal (13ac) [37]. Yellow oil (37 mg, 74%); 1H NMR (CDCl3):
δH = 9.52 (s, 1H), 7.17−7.05 (m, 2H), 6.91−6.79 (m, 2H), 4.81 (dd, J = 12.8, 11.3 Hz, 1H), 4.66 (dd, J =

12.8, 4.3 Hz, 1H), 3.79 (s, 3H), 3.73 (dd, J = 11.3, 4.3 Hz, 1H), 1.12 (s, 3H), 1.00 (s, 3H) ppm; 13C NMR
(CDCl3): δC = 204.5, 159.5, 130.3, 127.3, 114.3, 76.7, 55.4, 48.5, 48.1, 21.7, 19.1 ppm; HPLC: Chiralcel
OD-H, λ = 240 nm, n-hexane/2-propanol, 80:20, 1.0 mL/min, tr (major) = 12.1 min, tr (minor) = 16.4 min.

3-(Benzo[d] [1,3] dioxol-5-yl)-2,2-dimethyl-4-nitrobutanal (13ad) [25]. Yellow oil (36 mg, 67%); 1H NMR
(CDCl3): δH = 9.51 (s, 1H), 6.75 (d, J = 7.9 Hz, 1H), 6.72−6.61 (m, 2H), 5.96 (s, 2H), 4.78 (dd, J = 12.9,
11.3 Hz, 1H), 4.65 (dd, J = 12.9, 4.3 Hz, 1H), 3.69 (dd, J = 11.3, 4.3 Hz, 1H), 1.13 (s, 3H), 1.02 (s, 3H)
ppm; 13C NMR (CDCl3): δC = 204.4, 148.1, 147.6, 129.1, 122.8, 109.3, 108.5, 101.4, 76.7, 48.5 (2xC), 21.8,
19.2 ppm; HPLC: Chiralcel OD-H, λ = 230 nm, n-hexane/2-propanol, 80:20, 1.0 mL/min, tr (major) =

15.8 min, tr (minor) = 20.5 min.

2,2-Dimethyl-4-nitro-3-(3,4,5-trimethoxyphenyl)butanal (13ae) [25]. Yellow oil (45 mg, 73%); 1H NMR
(CDCl3): δH = 9.52 (s, 1H), 6.38 (s, 2H), 4.85 (dd, J = 13.0, 11.2 Hz, 1H), 4.69 (dd, J = 13.0, 4.3 Hz, 1H),
3.84 (s, 6H), 3.83 (s, 3H), 3.69 (dd, J = 11.2, 4.3 Hz, 1H), 1.16 (s, 3H), 1.06 (s, 3H) ppm; 13C NMR (CDCl3):
δC = 204.5, 153.6, 138.1, 131.2, 106.6, 76.6, 61.0, 56.4, 49.2, 48.4, 22.0, 19.6 ppm; HPLC: Chiralcel OD-H, λ
= 210 nm, n-hexane/2-propanol, 80:20, 1.0 mL/min, tr (major) = 15.5 min, tr (minor) = 17.8 min.

3-(4-Fluorophenyl)-2,2-dimethyl-4-nitrobutanal (13af) [37]. Yellow oil (76 mg, 78%); 1H NMR (CDCl3):
δH = 9.51 (s, 1H), 7.24−7.13 (m, 2H), 7.09−6.98 (m, 2H), 4.82 (dd, J = 13.0, 11.3 Hz, 1H), 4.69 (dd, J =

13.0, 4.3 Hz, 1H), 3.78 (dd, J = 11.3, 4.3 Hz, 1H), 1.13 (s, 3H), 1.01 (s, 3H) ppm; 13C NMR (CDCl3): δC =

204.1, 163.6, 161.6, 130.9, 130.8, 116.0, 115.8, 76.5, 48.4, 48.1, 21.8, 19.1 ppm; HPLC: Chiralcel OD-H,
λ = 210 nm, n-hexane/2-propanol, 80:20, 1.0 mL/min, tr (major) = 10.0 min, tr (minor) = 15.6 min.

3-(2-Chlorophenyl)-2,2-dimethyl-4-nitrobutanal (13ag) [42]. Yellow oil (25 mg, 49%); 1H NMR (CDCl3): δH

= 9.55 (s, 1H), 7.45–7.39 (m, 1H), 7.31–7.26 (m, 2H), 7.23 (m, 1H), 4.97–4.48 (m, 3H), 1.17 (s, 3H), 1.07 (s,
3H) ppm; 13C-NMR (CDCl3): δC = 203.9, 135.9, 133.9, 130.6, 129.3, 128.4, 127.3, 76.3, 49.2, 42.6, 21.0, 18.8
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ppm; HPLC: Chiralcel OD-H, λ = 210 nm, n-hexane/2-propanol, 80:20, 1.0 mL/min, tr (major) = 9.7 min,
tr (minor) = 23.2 min.

3-(4-Chlorophenyl)-2,2-dimethyl-4-nitrobutanal (13ah) [37]. Yellow oil (45 mg, 89%); 1H NMR (CDCl3):
δH = 9.50 (s, 1H), 7.35−7.29 (m, 2H), 7.18−7.11 (m, 2H), 4.83 (dd, J = 13.1, 11.3 Hz, 1H), 4.69 (dd, J =

13.1, 4.2 Hz, 1H), 3.77 (dd, J = 11.3, 4.2 Hz, 1H), 1.13 (s, 3H), 1.01 (s, 3H) ppm; 13C-NMR (CDCl3): δC =

204.0, 134.3, 134.1, 130.5, 129.1, 76.3, 48.3, 48.1, 21.9, 19.1 ppm; HPLC: Chiralcel OD-H, λ = 210 nm,
n-hexane/2-propanol, 80:20, 1.0 mL/min, tr (major) = 11.2 min, tr (minor) = 16.4 min.

3-(2-Bromophenyl)-2,2-dimethyl-4-nitrobutanal (13ai) [41]. Yellow oil (42 mg, 70%); 1H NMR (CDCl3): δH

= 9.55 (s, 1H), 7.61 (dd, J = 8.0, 1.2 Hz, 1H), 7.36–7.25 (m, 2H), 7.15 (ddd, J = 8.0, 6.8, 2.2 Hz, 1H), 4.84
(dd, J = 13.2, 11.3 Hz, 1H), 4.72 (dd, J = 13.2, 4.1 Hz, 1H), 4.62 (dd, J = 11.3, 4.1 Hz, 1H), 1.17 (s, 3H),
1.09 (s, 3H) ppm; 13C-NMR (CDCl3): δC = 203.9, 135.7, 134.0, 129.6, 128.5, 128.0, 127.2, 76.6, 49.2, 45.4,
21.1, 18.9 ppm; HPLC: Chiralcel OD-H, λ = 230 nm, n-hexane/2-propanol, 80:20, 1.0 mL/min, tr (major)
= 10.5 min, tr (minor) = 25.6 min.

3-(4-Bromophenyl)-2,2-dimethyl-4-nitrobutanal (13aj) [37]. Yellow oil (50 mg, 83%); 1H NMR (CDCl3):
δH = 9.50 (s, 1H), 7.51−7.42 (m, 2H), 7.15−7.04 (m, 2H), 4.82 (dd, J = 13.1, 11.3 Hz, 1H), 4.69 (dd, J =

13.1, 4.2 Hz, 1H), 3.76 (dd, J = 11.3, 4.2 Hz, 1H), 1.12 (s, 3H), 1.01 (s, 3H) ppm; 13C NMR (CDCl3): δC =

203.9, 134.7, 132.0, 130.9, 122.4, 76.2, 48.2, 48.1, 21.9, 19.1 ppm; HPLC: Chiralcel OD-H, λ = 230 nm,
n-hexane/2-propanol, 80:20, 1.0 mL/min, tr (major) = 12.4 min, tr (minor) = 17.4 min.

2,2-Dimethyl-4-nitro-3-(4-(trifluoromethyl)phenyl)butanal (13ak) [43]. Yellow oil (49 mg, 85%); 1H NMR
(CDCl3): δH = 9.50 (s, 1H), 7.61 (d, J = 8.1 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 4.89 (dd, J = 13.3, 11.4 Hz,
1H), 4.74 (dd, J = 13.3, 4.1 Hz, 1H), 3.87 (dd, J = 11.4, 4.1 Hz, 1H), 1.15 (s, 3H), 1.03 (s, 3H) ppm; 13C
NMR (CDCl3): δC = 203.7, 139.9, 129.7, 125.9 (2xC), 125.8 (2xC), 76.1, 48.4, 48.3, 22.0, 19.1 ppm; HPLC:
Chiralcel OD-H, λ = 210 nm, n-hexane/2-propanol, 80:20, 1.0 mL/min, tr (major) = 10.4 min, tr (minor) =

16.2 min.

2,2-Dimethyl-3-(naphthalen-2-yl)-4-nitrobutanal (13al) [37]. Yellow oil (36 mg, 67%); 1H NMR (CDCl3):
δH = 9.55 (s, 1H), 7.84−7.77 (m, 3H), 7.66 (d, J = 1.4 Hz, 1H), 7.52−7.45 (m, 2H), 7.31 (dd, J = 8.6, 1.9 Hz,
1H), 4.98 (dd, J = 13.1, 11.3 Hz, 1H), 4.76 (dd, J = 13.1, 4.2 Hz, 1H), 3.95 (dd, J = 11.3, 4.2 Hz, 1H), 1.17 (s,
3H), 1.04 (s, 3H) ppm; 13C NMR (CDCl3): δC = 204.4, 133.2, 133.1, 133.0, 128.6, 128.5, 128.0, 127.8, 126.7,
126.6, 126.5, 76.5, 48.8, 48.6, 22.0, 19.2 ppm; HPLC: Chiralcel OD-H, λ = 280 nm, n-hexane/2-propanol,
75:25, 1.0 mL/min, tr (major) = 15.6 min, tr (minor) = 18.1 min.

3-(Furan-2-yl)-2,2-dimethyl-4-nitrobutanal (13am) [37]. Yellow oil (32 mg, 75%); 1H NMR (CDCl3): δH =

9.52 (s, 1H), 7.37 (d, J = 1.9 Hz, 1H), 6.32 (dd, J = 3.2, 1.9 Hz, 1H), 6.22 (dd, J = 7.1, 3.2 Hz, 1H), 4.76 (dd,
J = 12.9, 11.0 Hz, 1H), 4.59 (dd, J = 12.9, 3.9 Hz, 1H), 3.92 (dd, J = 11.0, 3.9 Hz, 1H), 1.18 (s, 3H), 1.05
(s, 3H) ppm; 13C NMR (CDCl3): δC = 203.6, 149.9, 142.9, 110.6, 109.8, 75.0, 48.3, 42.4, 21.3, 19.3 ppm;
HPLC: Chiralcel OD-H, λ = 230 nm, n-hexane/2-propanol, 80:20, 1.0 mL/min, tr (major) = 8.1 min, tr

(minor) = 11.8 min.

3.5. General Procedure for Recycling Experiments

To a mixture of catalyst 8 (4.7 mg, 0.02 mmol), additive (4-nitrobenzoic acid or DMAP, 0.02 mmol)
and N-phenylmaleimide 10a (34.6 mg, 0.2 mmol) or β-nitrostyrene 12a (29.8 mg, 0.2 mmol) in the
corresponding DES (0.5 mL) was added isobutyraldehyde 9a (37 µL, 28.8 mg, 0.4 mmol), and the
reaction was vigorously stirred for 2 days at rt. After this period, 2-MeTHF (3 mL) was added and the
mixture was stirred for 10 min at rt. The stirring was stopped to allow phase separation and the upper
organic layer was removed with a pipette. This extractive procedure was repeated two more times
combining the organic extracts, which were washed with water (3 × 5 mL), dried over MgSO4, filtered
and evaporated under reduced pressure (15 torr) to afford the reaction product. The residual volatile
organic solvent present in the DES phase was removed under vacuum evaporation (15 torr) and the
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catalytic system was regenerated by addition of new additive (0.02 mmol) (in the case of the reaction of
isobutyraldehyde and N-phenylmaleimide, 140 µL of additional ethylene glycol were added). The next
reaction cycle was performed with the DES mixture adding isobutyraldehyde and N-phenylmaleimide
or β-nitrostyrene. Once the reaction was finished, the reaction mixture was subjected again to the
above-described procedure and further reaction cycles were repeated using the recycled DES phase
containing 8.

4. Conclusions

We concluded that a primary amine-salicylamide, prepared by a simple monoamidation of an
enantiomerically pure trans-cyclohexane-1,2-diamine, could act as chiral organocatalyst suitable for
the enantioselective conjugate addition of aldehydes to maleimides or nitroolefins carried out in deep
eutectic mixtures as “green” solvents. Good yields and enantioselectivities could be achieved working
in choline chloride/ethylene glycol (for maleimides) and choline chloride/water (for nitroolefins), the
presence of acid and basic additives, respectively, being necessary. The eutectic solvent containing the
organocatalyst could be recycled and reused affording similar enantioselectivities.

Supplementary Materials: The following are available online, NMR spectra and HPLC chromatograms.
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