Supporting information

Article

Synthesis and Bioactivity of Hydrazide-hydrazones of 1-Adamantyl-carbonyl Moiety

Hien Pham Van¹, Dung Phan Thi Phuong², Chau Phan Dinh^{3,*} and Duong Vu Binh^{1,*}

- ¹ Drug R&D center, Vietnam Military Medical University. No.160, Phung Hung str., Phuc La ward, Ha Dong district, Hanoi 100000, Vietnam.
- ² Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy. No. 15, Le Thanh Tong Str., Hoan Kiem district, Hanoi 100000, Vietnam.
- ³ Hanoi University of Science and Technology. No.1, Dai Co Viet str., Bach Khoa ward, Hai Ba Trung district, Hanoi 100000, Vietnam.

*Correspondence: <u>vbduong2978@gmail.com</u> and <u>chau.phandinh@hust.edu.vn</u>; Tel.: +84 983 425 460; Fax: +84 243 688 4077.

Table of content

Scheme 1. Synthesis of hydrazide hydrazones 4a-i and 5a-k	1
Table 1. Crystal solvent (Cryst. Solv.), melting point (m.p), yield (%), molecular formulae, molecu	ılar
weight (Mol. Wt.) and Rf of hydrazide-hydrazones 4a-i and 5a-k	2
Table 2. MIC of synthesized hydrazide-hydrazole 4a-i and 5a-k	3
Table 3. IC50 of synthesized hydrazide-hydrazole 4a-i and 5a-k	4
Table 4. The effect of newly synthesized hydrazide-hydrazole 4a-i and 5a-k on the viability of HeP	°3B,
Hela, A549 and MCF-7 cell after 48 h of incubation	5
¹ H-NMR spectrum of compound 4a	6
¹³ C-NMR spectrum of compound 4a	6
HMBC spectrum of compound 4a	7
HSQC spectrum of compound 4a	7
ESI-MS spectrum of compound 4a (negative)	8
ESI-MS spectrum of compound 4a (positive)	8
¹ H-NMR spectrum of compound 4b	9
ESI-MS spectrum of compound 4b (negative)	9
ESI-MS spectrum of compound 4b (positive)	10
¹ H-NMR spectrum of compound 4c	10
ESI-MS spectrum of compound 4c (negative)	11
¹ H-NMR spectrum of compound 4d	11
ESI-MS spectrum of compound 4d (negative)	12
ESI-MS spectrum of compound 4d (positive)	12
¹ H-NMR spectrum of compound 4e	13
ESI-MS spectrum of compound 4e (negative)	13
ESI-MS spectrum of compound 4e (positive)	14
¹ H-NMR spectrum of compound 4f	14
ESI-MS spectrum of compound 4f (positive)	14
¹ H-NMR spectrum of compound 4g	15
ESI-MS spectrum of compound 4g (positive)	. 15
¹ H-NMR spectrum of compound 4h	. 16
ESI-MS spectrum of compound 4h (positive)	. 16
¹ H-NMR spectrum of compound 4i	. 17
ESI-MS spectrum of compound 4i (positive)	. 18
¹ H-NMR spectrum of compound 5a	18
ESI-MS spectrum of compound 5a (negative)	18
ESI-MS spectrum of compound 5a (positive)	19
¹ H-NMR spectrum of compound 5c	20
ESI-MS spectrum of compound 5c (positive)	20
¹ H-NMR spectrum of compound 5e	21
ESI-MS spectrum of compound 5e (negative)	21
ESI-MS spectrum of compound 5e (positive)	22
¹ H-NMR spectrum of compound 5i	22
ESI-MS spectrum of compound 5i (positive)	22
¹ H-NMR spectrum of compound 5 j	23
ESI-MS spectrum of compound 5j (negative)	23
ESI-MS spectrum of compound 5j (positive)	24
¹ H-NMR spectrum of compound 5k	24
ESI-MS spectrum of compound 5k (positive)	25

Comp.	D 1	D0	Cryst.	m.p	Yield	Molecular Formular	TLC*
No.	KI	K2	Solv.	(°C)	(%)	(Mol. Wt.)	(Rf)
4a	Η	4-OH	EtOH	252.5-254.1	30.6	C19H24N2O2 (312.41)	0.36
4b	Н	4-NO2	EtOH	226.0-227.6	60.5	C19H23N3O3 (341.41)	0.58
4c	Η	4-OC2H5	EtOH	159.5-160.6	32.2	C21H28N2O2 (340.47)	0.57
4d	3-NO2	4-OCH3	EtOH	182.0-184.1	33.0	C20H25N3O4 (371.44)	0.44
4e	3-NO2	4-Cl	EtOH	188.2-189.3	26.2	C19H22ClN3O3 (375.85)	0.56
4f	Η	4-Br	EtOH	190.7-191.0	29.0	C19H23BrN2O (375.31)	0.62
4g	Η	4-OCH3	EtOH	171.6-173.0	30.0	C20H26N2O2 (326.44)	0.52
4h	Η	4-CH3	EtOH	179.5-180.4	37.3	C20H26N2O (310.44)	0.66
4i	Η	Н	EtOH	174.4-175.2	54.5	C19H24N2O (296.41)	0.59
5a	Η	4-OH	EtOH	289.6 -290.5	44.0	C18H22N2O2 (298.39)	0.33
5c	Н	4-OC2H5	EtOH	235.2-236.4	15.1	C20H26N2O2 (326.44)	0.59
5e	3-NO2	4-Cl	EtOH	247.8-248.5	50.6	C18H20ClN3O3 (361.83)	0.55
5i	Η	Н	EtOH	186.9-187.2	60.5	C18H22N2O (282.39)	0.54
5j	2-OH	5-CH3	EtOH	247.6-248.8	60.4	C19H24N2O2 (312.41)	0.57
5k	2-CH3	5-CH3	EtOH	283.5-284.0	35.5	C20H26N2O (310.44)	0.45

Table 1. Crystal solvent (Cryst. Solv.), melting point (m.p), yield (%), molecular formulae, molecular weight (Mol. Wt.) and Rf of hydrazide-hydrazones **4a-i** and **5a-k**.

Comm	MIC of synthesized compounds (µM)								
No		Gram (+)			Fungus				
	EF	SA	BC	EC	PA	SE	CA		
4a	12.5	12.5	12.5	-	-	-	12.5		
4b	25	25	25	-	-	-	25		
4 c	25	25	25	-	-	-	25		
4d	12.5	50	100	-	-	-	6.25		
4e	25	50	50	-	-	-	25		
4f	50	50	50	-	-	-	12.5		
4g	25	25	100	-	-	-	25		
4h	25	25	50	-	-	-	12.5		
4i	25	50	50	-	-	-	25		
5a	12.5	25	25	-	-	-	12.5		
5c	12.5	50	100	-	-	-	12.5		
5e	25	25	25	-	-	-	25		
5i	50	50	50	-	-	-	50		
5j	50	50	50	-	-	-	25		
5k	25	25	25	-	-	-	25		
STM	256 µg/mL	256 µg/mL	128 µg/mL	32 µg/mL	256 µg/mL	128 µg/mL	NT		
CHM	NT	NT	NT	NT	NT	NT	32 µg/mL		

Table 2. MIC of synthesized hydrazide-hydrazole 4a-i and 5a-k

EF: Enterococcus faecalis (ATCC13124); SA: *Stapphylococus aureus* (ATCC25923); BC: *Bacillus cereus* (ATCC 13245); EC: *Escherichia coli* (ATCC25922); PA: *Pseudomonas aeruginosa* (ATCC27853); SE: *Salmonella enterica* (ATCC12228); CA: *Candida albicans* (ATCC10231); STM: streptomycine; CHM: Cycloheximide; NT: not tested; - : inactive

_	IC50 of synthesized compounds (μM)							
Comp.	Gram (+)				Fungus			
No.	EF	SA	BC	EC	PA	SE	CA	
4a	6.35	6.77	6.12	-	-	-	6.37	
4b	11.56	11.45	12.56	-	-	-	12.78	
4 c	13.24	12.67	12.77	-	-	-	13.11	
4d	6.88	25.45	52.11	-	-	-	3.56	
4e	13.55	25.11	25.99	-	-	-	13.57	
4f	24.79	13.44	25.33	-	-	-	6.77	
4g	12.56	12.55	56.7	-	-	-	11.55	
4h	13.22	13.45	23.88	-	-	-	6.45	
4i	12.56	25.66	25.65	-	-	-	12.33	
5a	6.73	12.33	12.37	-	-	-	6.25	
5c	6.77	26.55	26.78	-	-	-	6.66	
5e	13.25	12.67	12.33	-	-	-	13.22	
5i	25.66	26.55	26.56	-	-	-	25.33	
5j	24.58	24.56	24.33	-	-	-	11.45	
5k	12.35	12.45	12.33	-	-	-	13.46	

Table 3. IC50 of synthesized hydrazide-hydrazole 4a-i and 5a-k

EF: Enterococcus faecalis (ATCC13124); SA: Stapphylococus aureus (ATCC25923); BC: Bacillus cereus (ATCC 13245); EC: Escherichia coli (ATCC25922); PA: Pseudomonas aeruginosa (ATCC27853); SE: Salmonella enterica (ATCC12228); CA: Candida albicans (ATCC10231); - : inactive.

Comp. No.	Conc.	Hep3B	Hela	A549	MCF-7
4a	30µM	63.89 ± 0.69	73.09 ± 2.31	67.78 ± 0.26	63.28 ± 1.41
	100 µM	56.53 ± 1.32	66.87 ± 1.10	51.63 ± 0.81	58.60 ± 0.32
4b	30µM	66.83 ± 1.15	82.84 ± 1.37	66.89 ± 0.94	64.32 ± 2.92
	100 μM	56.49 ± 2.17	77.20 ± 0.90	62.26 ± 0.15	52.64 ± 2.02
4c	30µM	80.62 ± 1.25	93.64 ± 0.88	77.76 ± 1.51	79.36 ± 1.40
	100 μM	72.74 ± 2.00	90.51 ± 1.28	70.20 ± 0.13	67.78 ± 0.95
4.4	30µM	96.80 ± 0.26	> 100	65.33 ± 1.28	90.20 ± 0.25
40	100 µM	84.59 ± 2.39	86.34 ± 1.35	62.01 ± 2.37	78.82 ± 2.22
4 -	30µM	94.59 ± 2.20	80.07 ± 1.87	64.43 ± 0.49	60.94 ± 1.39
4e	100 µM	55.91 ± 1.70	44.37 ± 1.39	38.51 ± 1.59	38.69 ± 1.20
16	30µM	>100	88.26 ± 1.74	76.22 ± 0.98	94.68 ± 1.33
41	100 µM	97.95 ± 2.43	83.18 ± 0.20	73.68 ± 1.03	91.27 ± 2.26
10	30µM	91.63 ± 2.63	96.61 ± 1.98	87.40 ± 0.95	83.11 ± 2.86
4g	100 µM	77.00 ± 1.84	79.46 ± 1.28	70.61 ± 1.66	71.75 ± 1.71
4 b	30µM	98.29 ± 2.46	> 100	78.42 ± 0.83	91.59 ± 2.29
411	100 µM	75.83 ± 2.76	99.77 ± 1.89	68.99 ± 2.36	70.66 ± 2.57
4:	30µM	81.96 ± 1.67	88.70 ± 1.79	68.43 ± 1.72	59.77 ± 2.41
41	100 µM	80.7 ± 2.17	87.75 ± 0.29	67.73 ± 1.89	57.24 ± 0.75
Fa	30µM	87.03 ± 1.28	87.53 ± 0.21	69.08 ± 2.56	86.14 ± 0.49
Ja	100 µM	68.89 ± 2.18	68.26 ± 2.02	50.78 ± 1.86	64.33 ± 1.76
Ea	30µM	88.96 ± 0.91	89.07 ± 1.21	90.47 ± 2.23	70.30 ± 1.23
50	100 µM	78.97 ± 1.82	85.41 ± 1.34	81.32 ± 1.20	65.62 ± 0.64
Fo	30µM	57.77 ± 1.59	76.75 ± 1.07	36.42 ± 0.94	52.56 ± 0.75
56	100 µM	37.78 ± 2.44	40.42 ± 0.38	19.62 ± 1.74	34.13 ± 2.22
5;	30µM	83.16 ± 1.19	89.12 ± 2.43	79.49 ± 0.94	71.53 ± 1.64
51	100 µM	74.90 ± 1.34	84.28 ± 2.12	55.22 ± 1.63	65.31 ± 1.66
5;	30µM	92.80 ± 2.24	68.96 ± 2.38	78.71 ± 1.75	86.48 ± 2.08
55	100 µM	85.71 ± 2.28	57.90 ± 1.35	59.18 ± 2.01	79.86 ± 2.13
51/	30µM	98.51 ± 0.38	82.96 ± 0.59	62.55 ± 0.59	91.80 ± 0.35
ЭК	100 µM	83.34 ± 1.65	74.27 ± 1.67	52.39 ± 1.54	77.66 ± 1.54
CPT*	0.1µg/mL	69.56 ± 1.27	57.06 ± 1.35	67.68 ± 1.88	56.68 ± 0.68
	5 μg/mL	37.65 ± 1.21	18.61 ± 0.56	26.74 ± 2.16	28.89 ± 1.07

Table 4. The effect of newly synthesized hydrazide-hydrazole **4a-i** and **5a-k** on the viability ofHeP3B, Hela, A549 and MCF-7 cell after 48 h of incubation

*Camptothecine.

Data is presented as percentage of the cell viability \pm SD.

S8

¹H-NMR spectrum of compound **4b**

ESI-MS spectrum of compound **4b** (negative)

ESI-MS spectrum of compound 4b (positive)

ESI-MS spectrum of compound 4d (negative)

¹H-NMR spectrum of compound 4e

ESI-MS spectrum of compound 4g (positive)

ESI-MS spectrum of compound 4h (positive)

ESI-MS spectrum of compound 5a (negative)

¹H-NMR spectrum of compound **5c**

ESI-MS spectrum of compound 5j (negative)

