
molecules

Article

Improved Access to Chiral
Tetranaphthoazepinium-Based Organocatalysts Using
Aqueous Ammonia as Nitrogen Source

Auraya Manaprasertsak 1, Sorachat Tharamak 1, Christina Schedl 2, Alexander Roller 3 and
Michael Widhalm 4,*

1 Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
auraya.ma@ku.th (A.M.); sorachat.th@ku.th (S.T.)

2 Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Wien, Austria;
christina.schedl@univie.ac.at

3 Institute of Inorganic Chemistry, University of Vienna, Währinger Straße 42, Wien 1090, Austria;
alexander.roller@univie.ac.at

4 Institute of Chemical Catalysis, University of Vienna, Währinger Straße 38, 1090 Wien, Austria
* Correspondence: m.widhalm@univie.ac.at; Tel.: +43-01-4277-70305

Academic Editor: Rafael Chinchilla
Received: 4 October 2019; Accepted: 23 October 2019; Published: 25 October 2019

����������
�������

Abstract: The class of 3,3′-diaryl substituted tetranaphthobisazepinium bromides has found wide
application as highly efficient C2-symmetrical phase-transfer catalysts (PTCs, Maruoka type catalysts).
Unfortunately, the synthesis requires a large number of steps and hampers the build-up of catalyst
libraries which are often desired for screening experiments. Here, we present a more economic strategy
using dinaphthoazepine 7 as the common key intermediate. Only at this stage various aryl substituents
are introduced, and only two individual steps are required to access target structures. This protocol
was applied to synthesize ten tetranaphthobisazepinium compounds 1a–1j. Their efficiency as
PTCs was tested in the asymmetric substitution of tert-butyl 2-((diphenylmethylene)amino)acetate.
Enantioselectivities up to 92% have been observed with new catalysts.

Keywords: asymmetric phase transfer catalysis; organo catalysis; 1,1′-binaphthyls; optical resolution;
chiral catalyst synthesis

1. Introduction

In many asymmetric transformations the atropisomeric 1,1’-binaphthyl moiety serves as a highly
efficient chiral backbone [1]. The possibility to introduce suitable functional groups, particularly at C-2
and C-2’, as well as at C-3 and C-3’ has made the binaphthyl group an indispensable chiral modifyer in
stoichiometric and catalytic asymmetric synthesis [2–8]. While functionalities at C-2 and C-2′ serve
particularly as sites for primary interaction in organocatalysis or coordination in transition metal
catalysis, substituents at C-3 and C-3′ are introduced for secondary substrate or reagent activation or
to tune steric interaction.

One particularly successful subgroup are N-spiro-di- and tetranaphthoazepinium salts 1 (Figure 1)
which found application as efficient phase-transfer catalysts (PTCs) [9–24]. Several strategies for
their synthetic access have been developed, particularly by Maruoka’s group. All are based on
non-racemic 2,2’-dihydroxy-1,1’-binaphthol or 1,1’-binaphthyl-2,2’-dicarboxylic acid or corresponding
biphenyl precursors and comprise ortho-metallation steps, introduction of aryl groups at C-3 and C-3’,
and manipulation of functional groups at C-2/C-2’ to end up with 2,2′-bromomethyl groups suitable for
cyclization with allylamine. Cleavage of the N-allyl substituent is required before dibenzylation with a
second 2,2’-bis(bromo)methyl-1,1’-binaphthyl moiety forms the ammonium salts of general structure
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1. When starting from non-racemic binaphthol, typically 13 to 15 steps are required to obtain the
ammonium salt [25] or in an alternative approach six steps from diacid 2 to obtain the 3,3’ substituted
subunit [26]. Although the yields are satisfying, the expenditure of time is still high.
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Figure 1. N-spiro-di- and tetranaphthoazepinium salts (R = aryl).

With the aim to facilitate the built-up of ligand libraries [27,28] we recently developed a strategy
introducing 3,3′-aryl substituents at a late stage of the synthesis, and replacing allylamine with
ammonia. Among others spiro-ammonium salts 1a–1c containing electron donating aryl groups were
synthesized in good yield (Scheme 1) [29].

In the present paper we further extend this protocol to the introduction of electron
withdrawing or more bulky aryl substituents to give amines 9d–9j. Subsequent cyclisation with
2,2’-bis(bromo)methyl-1,1’-binaphthyl afforded seven tetranaphthobisazepinium bromides 1d–1j
which were tested in prototypical organocatalyzed reactions. Moreover, an optical resolution procedure
of key intermediate 7 is provided.

2. Results and Discussion

With the intention to introduce various aryl groups at C-3/3′ of the binaphthyl core but at a
late stage of the synthesis, diiodoazepine 7 was chosen as key intermediate. Its synthesis started
from 1,1’-binaphthyl-2,2’-dicarboxylic acid 2 which is accessible in enantiomerically pure form
on the multigram scale from non-racemic 2,2′-dimethyl-1,1′-binaphthyl [30] or 2,2’-binaphthol in
two to four steps [31–33], respectively or as a racemate applying various procedures from the
literature [34]. As we noticed that 1 (R = H, X = Br) can be conveniently prepared from non-racemic
2,2’-bis(bromomethyl)-1,1’-binaphthyl and aqueous ammonia in 94% yield [35], it was easy to apply
similar conditions for 3,3’-substituted substrates with the expectation that steric hindrance might stop
the reaction at the stage of the secondary amine. (For use of ammonia in the synthesis of symmetrical
N-spiroazepine compounds, see [36–38].) As precursors 3 and 6 were prepared from 2 in three or four
steps (overall yield: 47% for 3, 48% for 6) according to literature [39]. Treatment of dibromides 3 and 6
with aqueous ammonia (25%) in acetonitrile at 60 ◦C overnight afforded 4 and 7 in 85% and 88% [29],
respectively. An alternative approach to 7 via the bis(trimethylsilyl)azepine 4 gave lower yield. An
attempted spiro-cyclisation of 4 to 5 failed; only minor amounts of rearranged products could be
identified (see Supplementary Materials). Non-racemic 4 and 7 can be prepared from enantiomerically
pure precursors (R)- and (S)-2 but requires optical resolution of the diacid. Applying published
procedures, this step is quite time consuming and uses toxic or expensive amines as resolving agents,
which are often difficult to recycle. Consequently alternatives were considered (see also comments in
Supporting Materials of [29]). Instead we found it more economic to work out an optical resolution
procedure for the secondary amine 7 preferably using some cheap chiral acid as resolving agent. This
seemed most appropriate as it is the common key intermediate for all catalysts and at the end of the
synthetic path.
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Scheme 1. Synthesis of spiro-azepinium catalysts 1a–j. Legend: a. [39]; b. NH3, MeCN, 65–70 ◦C,
overnight (85%); c. (S)-2,2′-bisbromomethyl-1,1′-binaphthyl or 2,2′-bisbromomethyl-1,1′-biphenyl (1e’,
5′), K2CO3, MeCN, 85–90 ◦C, overnight (50%–88%); d. [39]; e. [29]; f. Boc2O, Amberlyst-15, EtOH, 10
min (84%); g. ArB(OH)2, Na2CO3, Pd(Ph3P)4 or (dppf)PdCl2 (9d), toluene, 12–24 h, (55%–98%); h.
ArB(OH)2, Na2CO3, Pd(OAc)2, tol3P, toluene, 12–24 h; i. B2Pin2, KOAc, Pd(OAc)2, DMF, 100 ◦C, 20 h
(66%); k. trifluoroacetic acid (TFA), dichloromethane (DCM), r.t., 2 h (60%–80% over 2 steps).

Optical resolution of 7: A procedure similar to that published for the enantioseparation of the
unsubstituted analogue 3,5-dihydro-4H-dinaphth[2,1-c:1’,2’-e]azepine was applied [40]. A 2:1 mixture
of rac-7 and (S,S)-di-O-benzoyltartaric acid in dichloromethane (DCM)/MeOH-deposited colourless
needles upon standing for several hours at r.t. An X-ray structure analyses of a single crystal showed a
di-(R)-azepium tartrate with local C2-symmetry and one molecule of DCM in the asymmetric unit
(Figure 2). After removal of the auxiliary and one recrystallisation (R)- and (S)-7 were isolated in
approximately 40% yield. The enantiomeric purity was determined by chiral high-performance liquid
chromatography (HPLC) to be ≥99% (see Experimental section) [41].
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Figure 2. X-ray structure of [(R)-7]2 (S,S)-O,O’-Dibenzoyltartrate. Cation [7]+ and counter ion form
two independent hydrogen bonds constructing a rhombus. Bond length and rhombus visualized.

For the synthesis of azepinium compounds 1 arylation of 7 followed by reaction with
non-racemic 2,2′-bisbromomethyl-1,1′-binaphthyl worked well [42]. A practicable route to target
structures 1 might be therefore 2 → 6 → 7 (optical resolution) → 9 → 1. The general feasability
was previously testet in the synthesis of 1a–1c [29] and was now extended to spiro ammonium
compounds 1d–1j from enantiomerically pure 7. Suzuki-Miyaura reactions with appropriate boronic
acids or tetramethyldioxaborolanes afforded 9d, 9e, 9i, and 9j in fair to good yield. Only for
electron-withdrawing aryl groups the yields for Suzuki coupling were low (49% and 29% for 9f and 9h,
respectively). In those cases N-Boc protected diiodide 8 was a proper intermediate (60%–80% for 9f–9h).
In contrast, coupling of 7 or 8 with ferroceneboronic acid or bisborolane 11 with 1-bromoferrocene failed
to give 9k. The final step, the formation of spiro-ammonium compounds 1, proceeded under standard
conditions with satisfying yields except for 1e which gave a bad mixture. The target compound was
isolated by only 7% after repeated chromatography. We speculate that, similarly to 4, steric strain in 1e
might facilitate subsequent Stevens rearrangement under slightly basic conditions. Two side products
with correct high-resolution mass spectrometry (HRMS) and 1H-nuclear magnetic resonance (NMR)
multiplets (two AB and one ABX systems corresponding to Ar-CH2-N and Ar-CH2-CH(N)-Ar) have
been detected in the product mixture (See Supplementary Materials). To lower steric repulsion within
the target molecule we cyclized azepines 4 and 9e with 2,2′-bisbromomethyl-1,1′-biphenyl yielding 5′

and 1e’ in good yield.
Organocatalysis: With this catalyst library in hand we next wanted to create a reactivity/selectivity

profile for application in phase-transfer reactions (PTC) under strictly standardised conditions using the
well known α-benzylation of tert-butyl 2-((diphenylmethylene)amino)acetate 12 with benzylbromide
13A, one of the most popular conversions to test a new PTC (Scheme 2). Further on, with promising



Molecules 2019, 24, 3844 5 of 18

catalysts we were also interested to introduce substituents with functional groups to extend the scope
for application.
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Scheme 2. Asymmetric substitution of 12 with 13A–I under phase-transfer catalysis (PTC) conditions.

In a preliminary study new ammonium salts (S,S)-1a–1j, (S)-1e’, and (S)-5′ were tested in the
asymmetric benzylation of tert-butyl 2-((diphenylmethylene)amino)acetate 12 under standard PTC
conditions (Table 1) [43,44]. For all experiments we compared “expected yields” based on integration
and “isolated yields” after chromatography to demonstrate equivalence of methods (Table 1, row 3
and 4). Typically a loss of 1%–5% of product after chromatography was observed. We attribute
this to variing quality of column packing, incomplete separation, and changes in adsorbent activity.
In addition, interaction of the substrate and product with silicagel resulting in partial cleavage of
the imino group might be responsible for reduced isolated yields after purification [45]. Therefore,
we considered reporting of the “chemical yield” by comparison of NMR signals of product and added
internal standard more reliable and moreover, time-saving than an “isolated yield”.

Table 1. Asymmetric benzylation of tert-butyl 2-((diphenylmethylene)amino)acetate 12 with 13A under
PTC conditions yielding 14A. a.

entry cat. yield/% b yield/% c ee/% d

1 1a e 78 74 86
2 1b f 91 89 94
3 1c 86 86 92
4 1d 92 88 91
5 1e’ 72 69 rac.
6 1f g 82 79 94
7 1g h 90 85 99
8 1h 33 28 92
9 1i 67 67 88
10 1j 87 83 89
11 5′ 92 91 61

a 0.25 mmol substrate, 0.30 mmol benzylbromide, 1 mol % of catalyst with (S,S)-configuration, 1.5 mL toluene, 0.5 mL
KOH (50%), vigorous stirring at 0 ◦C for 4 h. b Yield after extractive work-up based on 1H-NMR (nuclear magnetic
resonance) integration of signals of product and methylene groups of bibenzyl as internal standard. c Isolated
yield after extractive work-up and subsequent chromatography. d Determined by chiral high-performance liquid
chromatography (HPLC, Chiralcel ODH), products with (R)-configuration predominating. e 89% ee, 81% isol. yield
at 0 ◦C, 0.5 h [25,46]. f 96% ee, 95% isol.yield at 0 ◦C, 0.5 h [25]. g 94% ee, 74% isol. yield at 0 ◦C, 2 h [25]. h 99% ee,
79% isol. yield at 0 ◦C, 2 h [25].

In agreement with previous findings 1b, 1f, and 1g were most efficient [25]. Literature results
could be reproduced in most cases, although reported conditions were in part different from our’s
(see notes in Table 1). Elongation of 3,3′-substituents (1c, 1d, see also X-ray structure Figure 3) did not
further increase selectivity or activity, in several cases even reduced the asymmetric induction (entry
3,4). Particularly remarkable was the failure of 1e’ yielding an almost racemic product in moderate
yield (entry 5). This is also in line with the low ee obtained with 5′ (entry 11). We suspect that two
effects might be responsible for destroying the asymmetric induction: (1) the strong predominance of
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the biphenyl atropomer with a configuration opposite to that of the binaphthyl as it was also found in
the X-ray structure of 1e’ (Figure 4), overriding eventually even a higher reactivity of the minor species
with “homo-chirality”; and (2) the presence of more spherical and not distinctly directed substituents
which might disguise the C2 symmetry of the catalyst. Also, the introduction of hetero aromates (1i, 1j)
gave lower ee (entry 9,10).
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After this preliminary estimation of reactivity and enantioselectivity of new spiro-ammonium
catalysts we choose the more promising candidates 1c and 1d for next investigations and compared
their efficiency with known catalysts with different reactivity 1g [25] and 1h [47]. Activated benzylic
bromides (13B–F, Scheme 2) were tested under same conditions as in Table 1 to make results comparable
(0 ◦C, 20 h, 1 mol % of catalyst in toluene with 50% KOH, 0.25 mmol scale). In addition, also electrophiles
13G–I with functional groups, eventually of interest for subsequent transformations, were included.
As before, in all cases chemical yields based on NMR integration with IS were slightly higher (1%–4%)
than those calculated from weighted products, isolated after chromatography (Table 2). Products
14B–F were formed in good to excellent yield and enantioselectivity particularly with 1g. Merely,
1h showed pronounced low reactivity and in two cases unusual poor ee which can be attributed to
a significant degree of background reaction. For sterically less demanding electrophiles 13B, 13C,
and 13F new ligands 1c and 1d were also effective, very similar to each other and also to the known
3,3′-bis(2-naphthyl) substituted analogue. Using more bulky/less reactive bromides 13D, 13E yields
and/or enantioselectivity were lower in some cases. Also a pyridyl substituent could be introduced
(14G) with use of catalysts 1c, 1d, 1g, and 1h. In all cases the reaction proceded smoothly giving
comparable yield (81%–91%) and up to 83% ee. A more challenging electrophile was 13H which formed
only 13% of 14H with 62% ee using the most reactive catalyst 1g under standard conditions. As a side
product cyclopropane 15 was produced as a single stereoisomer from a Michael addition followed by
cyclisation. To accelerate the reaction KOH was replaced with CsOH. With these conditions complete
conversion was achieved yielding 61% of 14H (79% ee) and only 8% of 15. While nearly the same
result was obtained with 1h, the enantioselectivtity with 1c and 1d remained low. Also the use of
4-iodocrotonate did not improve the results (for details see Supplementary Materials, Table S2). Finally,
we aimed to introduce a N-protected alkenylamino substituent to obtain 14I. In pre-experiments we
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noticed that use of strongly alkaline media resulted in considerable loss of product through ring
opening of the phthalimide. Therefore, solid Cs2CO3 was used instead (33% yield, 88% ee). But even
with the more reactive iodide (13I with I replacing Br) the yield was still low (20%–33%) and asymmetric
induction moderate (51%–83% ee).
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Table 2. Asymmetric substitution of tert-butyl 2-((diphenylmethylene)amino)acetate (12) with
electrophiles 13B-13I under phase-transfer (PT) conditions. a.

14B 14C 14D 14E 14F 14G 14H b 14I c

cat. y/ee d y/ee d y/ee d y/ee d y/ee d y/ee d y/ee d y/ee d

1c 89/88 80/91 90/75 51/83 92/89 88/72 62/51 e 33/57 f

1d 90/88 86/91 90/74 55/88 91/88 91/71 56/41 g 26/51 f

1g 89/98 h 71/95 i 87/93 72/68 90/90 j 81/83 61/79 k 23/83 f

(33/88)
1h 70/98 45/52 61/84 66/14 30/90 83/73 60/80 20/83 i

a 0.25 mmol of substrate, 0.30 mmol of electrophile, 1 mol % of catalyst with (S,S)-configuration, 1.5 mL toluene,
0.5 mL KOH (50%), vigorous stirring at 0 ◦C for 20 h. b CsOH (50%) was used instead of KOH. c Solid Cs2CO3
(5 equiv.) was used instead of KOH. d Yield after extractive work-up based on 1H-NMR integration of signals of
product and bibenzyl added as internal standard. Ee determined by chiral HPLC (Chiralcel ODH or Chiralpak
ADH), products with (R)-configuration predominating. e 12% of 15 formed. f Instead of 13I the corresponding iodo
compound was used which gave higher yield and enantioselectivity with the excepion of cat. 1g where the bromide
was superior (in paranthesis). g 13% of 15 formed. h 99% ee, 80% isolated yield, 0 ◦C, 24 h [25]. i 99% ee 86% over
two steps, 0 ◦C, 24 h [25]. j 99% ee 89% isolated yield, 0 ◦C, 15 h [25]. k 8% of 15 formed.

Summarising, we presented an alternative route to non-racemic 3,3′-aryl substituted
tetranaphtho-spiro-bisazepinium bromides as demonstrated in the synthesis of 1a–1j in seven to eight
steps via 3,3′-substituted dinaphthoazepines 9a–9j [48] using 1,1′-binaphthyl-2,2′-dicarboxylic acid as
starting material and 3,3′-diiodo-dinaphthoazepine 7 as the common key intermediate. This scalable
synthesis required only two chromatographic purification steps and target structures have been isolated
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in 23%–25% overall yield. A preliminary study on their use in PTC was conducted using a simplified
screening protocol. Moderate to good asymmetric induction of 41%–92% ee has been observed with
new catalysts.

3. Materials and Methods

3.1. General Information

Melting points: Kofler melting point apparatus (Reichert Thermovar, Reichert Technologies,
Depew, NY, USA), uncorrected. NMR: Bruker AV III 400 spectrometer) at 400.27 MHz (1H) and
100.66 MHz (13C), and Bruker AV III 600 at 600.25 MHz (1H) and 150.95 MHz (13C), respectively
(Bruker Biospin, Billerica, MA, USA); chemical shifts δ are reported in ppm rel. to solvent signals (7.26
and 77.00 ppm for CHCl3 and CDCl3, respectively). Coupling patterns are designated as s(inglet),
d(oublet), t(riplet), q(uartet), m(ultiplet), ps(eudo), and br(oad). 13C{1H} NMR spectra are recorded
in a J-modulated mode; signals are assigned as C, CH, CH2, and CH3. HRMS spectra were obtained
on a maXis ESI-Qq-TOF mass spectrometer (Bruker Daltonics, Bremen, Germany) in the positive-ion
mode by direct infusion. For HPLC determination of chiral products, an Agilent 1200 chromatograph
(Agilent Technologies, Santa Clara, CA, USA) equipped with a diode array detector and autosampler
was used. Optical rotations were measured with a Perkin Elmer polarimeter 243 (PerkinElmer, Inc.
Waltham, MA, USA) using a 1 dm thermostated cell. Column chromatography (MPLC) was performed
on a Isolera One system (Biotage, Uppsala, Sweden) with self-packed columns, SiO2, 40–63 µm.

Heptane, dichloromethane (DCM), and ethyl acetate (EtOAc) were distilled, absolute THF from
sodium benzophenone ketyl, Et2O from LiAlH4; acetonitrile, DCM, and triethylamine from CaH2;
n-BuLi was used as 1.6 M solution in n-hexane (Aldrich). All the other chemicals were analytical grade
and used without further purification.

Reported procedures have been followed to obtain non-racemic 2,2′-
bis(bromomethyl)-1,1′-binaphthyl [49], azepine 7 [29], racemic and non-racemic 1,1′-binaphthyl-
2,2′-dicarboxylic acid (required for the synthesis of 7) [31–33,50,51], 2-([1,1’:4’,1”-terphenyl]-4-yl)-
4,4,5,5-tetramethyl-1,3,2-dioxaborolane, and 4,4,5,5-tetramethyl-2-(4-tritylphenyl)-1,3,2-dioxaborolane [52].
Syntheses of 9a [29,53], 9b [29], 9c [29], 1a [25,29,46], 1b [29,46], and 1c [25,29] have been published.

3.2. Synthesis

Spiro cyclisation of (S)-9a–9k with (S)-2,2′-bis(bromomethyl)-1,1′-binaphthyl yielding (S,S)-1a–1k,
respectively. (General procedure A): A Schlenk tube, equipped with magnetic stirring bar and glass
stopper, was charged with a solution of substrate (0.3 mmol) in MeCN (6 mL) and K2CO3 (83 mg,
2 eq) followed by (S)-2,2′-bis(bromomethyl)-1,1′-binaphthyl (132 mg, 0.3 mmol) and the mixture was
degassed. The reaction was left stirring at 85–90 ◦C (bath) for 24 h. After cooling to r.t., DCM (30 mL)
and H2O (30 mL) were added and the phases were separated. The aqueous phase was extracted with
DCM (3 × 15 mL). The combined organic extracts were evaporated under reduced pressure and the
crude material was purified by MPLC using a solvent gradient (MeOH(0→8%)/DCM).

Synthesis of 1a (76%), 1b (88%), and 1c (81%) was published recently applying the same
protocol [29].

(11bS,11b’S)-2,6-Di([1,1’:4’,1”-terphenyl]-4-yl)-3,3’,5,5’-tetrahydro-4,4’-spirobi[dinaphtho[2,1-c:1’,2’-
e]azepin]-4-ium bromide (1d): 83% yield; mp: 255–260 ◦C (dec.), [α]D

20 = +139 (c: 0.56, DCM). 1H-NMR
δ: 8.31 (s, 2H); 8.00 (d, J = 8.2 Hz, 2H); 7.80–7.83 (m, 7H); 7.73–7.79 (m, 4H); 7.61 (d, J = 8.2 Hz, 2H);
7.55 (m, 4H); 7.37–7.46 (m, 4H); 7.31 (br.m, 2H); 7.10–7.20 (m, 6H); 7.08 (d, J = 8.6 Hz, 2H); 6.83 (br.m,
2H); 6.47 (d, J = 8.6 Hz, 2H); 4.88 (br.d, J = 13.9 Hz, 2H); 4.32 (d, J = 13.8 Hz, 2H); 4.31 (d, J = 13.9 Hz,
2H); 3.43 (br.d, J = 14.0 Hz, 2H) ppm. Note: in addition a broad band was observed (6.6–8.7 ppm)
corresponding to ~9H. 13C-NMR δ: 141.03 (C); 140.93 (C); 140.49 (C); 139.15 (C); 138.92 (C); 138.90 (C);
138.33 (C); 136.20 (C); 134.05 (C); 133.78 (C); 132.43 (CH); 131.06 (C); 131.05 (C); 128.96 (CH); 128.67
(CH); 128.64 (CH); 128.10 (CH); 127.90 (2 CH); 127.66 (CH); 127.59 (CH); 127.57 (CH); 127.38 (CH);
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127.28 (CH); 127.14 (CH); 127.12 (CH); 126.67 (CH); 125.49 (C); 122.88 (C); 61.88 (CH2); 56.89 (CH2)
ppm. HRMS (ESI) calculated for C80H56N [M − Br]+: 1030.4407, found 1030.4412.

(11bS,11b’S)-2,6-Bis(4-tritylphenyl)-3,3’,5,5’-tetrahydro-4,4’-spirobi[dinaphtho[2,1-c:1’,2’-e]azepin]-4-ium
bromide (1e): 7% yield. 1H-NMR δ: 8.23 (s, 2H); 8.00 (d, J = 8.2 Hz, 2H); 7.69 (d, J = 8.2 Hz, 2H);
7.49–7.55 (m, 4H); 7.41 (d, J = 8.4 Hz, 2H); 7.23-7.39 (m, ~40H); 7.17 (br.m, 2H); 7.16 (d, J = 8.6 Hz, 2H);
7.04 (d, J = 8.6 Hz, 2H); 6.86 (d, J = 8.4 Hz, 2H); 4.97 (d, J = 13.7 Hz, 2H); 4.42 (d, J = 13.6 Hz, 4H); 3.73
(br.d, J = 13.6 Hz, 2H) ppm. HRMS (ESI) calculated for C94H68N [M - Br]+: 1210.5347, found 1210.5327.

(S)-2’,6’-Bis(4-tritylphenyl)-3’,5,5’,7-tetrahydrospiro[dibenzo[c,e]azepine-6,4’-dinaphtho[2,1-c:1’,2’-
e]azepin]-6-ium bromide (1e’): 66% yield; mp: 260–270 ◦C (dec.), [α]D

20 = -130 (c: 0.68, DCM). 1H-NMR
δ: 8.12 (s, 2H); 8.04 (d, J = 8.3 Hz, 2H); 7.81 (d, J = 7.6 Hz, 2H); 7.63 (t, J = 7.5 Hz, 2H); 7.51–7.56 (m, 4H);
7.46 (t, J = 7.5 Hz, 2H); 7.15–7.45 (br.m, ~12H); 7.10–7.18 (m, ~16H); 7.07 (dm, J = 8.6 Hz, 4H); 6.95 (dm,
J = 7.6 Hz, 10H); 4.85 (d, J = 13.3 Hz, 2H); 4.65 (d, J = 13.3 Hz, 2H); 4.48 (d, J = 12.8 Hz, 2H); 2.76 (d,
J = 12.8 Hz, 2H) ppm. 13C-NMR δ: 146.55 (C); 146.23 (C); 140.52 (C); 139.01 (C); 138.47 (C); 136.52 (C);
134.30 (C); 131.85 (CH); 131.16 (CH); 131.10 (C); 131.08 (CH); 130.96 (CH); 130.86 (CH); 128.98 (CH);
128.84 (CH); 128.03 (CH); 127.77 (CH); 127.45 (CH); 127.17 (CH); 127.07 (C); 126.01 (CH); 124.35 (C);
64.52 (C); 62.62 (CH2); 59.23 (CH2) ppm. HRMS (ESI) calculated for C86H64N [M − Br]+: 1110.5033,
found 1110.5033.

(S,S)-2,6-Bis(4-fluorophenyl)-3,3’,5,5’-tetrahydro-4,4’-spirobi[dinaphtho[2,1-c:1’,2’-e]azepin]-4-ium
bromide (1f) [25]: 50% yield. 1H-NMR δ: 8.28 (s, 2H); 8.08 (d, J = 8.2 Hz, 2H); 7.87 (d, J = 8.2 Hz, 2H);
7.59 (ddd, J = 8.0, 6.7, 1.1 Hz, 2H); 7.49 (ddd, J = 8.1, 6.7, 1.2 Hz, 2H); 7.41 (d, J = 8.3 Hz, 2H); 7.28 (ddd,
J = 8.2, 6.7, 1.2 Hz, 2H); 7.19 (ddd, J = 8.2, 6.7, 1.1 Hz, 2H); 7.10 (dd, J = 9.0, 0.9 Hz, 2H); 7.08 (dd, J = 8.6,
0.9 Hz, 2H); 6.33 (d, J = 8.5 Hz, 2H); 4.93 (d, J = 14.0 Hz, 2H); 4.42 (dd, J = 14.0, 1.4 Hz, 2H); 4.24 (d,
J = 13.6 Hz, 2H); 3.72 (dd, J = 13.5, 1.1 Hz, 2H) ppm; Note: in addition a broad band was observed
(7.3–8.5 ppm) corresponding to ~8H. 13C-NMR δ: 163.25 (d, JCF = 249.5 Hz, C); 139.31 (C); 138.05 (C);
136.32 (C); 135.50 (d, JCF = 3.5 Hz, C); 133.92 (C); 132.85 (br.d, JCF = 6.6 Hz, CH); 132.56 (CH); 131.11 (d,
JCF = 9.4 Hz, C); 128.70 (CH); 128.49 (CH); 128.37 (CH); 128.28 (CH); 127.54 (CH); 127.52 (CH); 127.41
(CH); 126.84 (CH); 126.67 (CH); 124.91 (C); 122.48 (C); 117.04 (d, JCF = 21.7 Hz, CH); 62.46 (CH2); 57.42
(CH2) ppm. HRMS (ESI) calculated for C56H38F2N [M − Br]+: 762.2967, found 762.2951.

(11bS,11b’S)-2,6-Bis(3,4,5-trifluorophenyl)-3,3’,5,5’-tetrahydro-4,4’-spirobi[dinaphtho[2,1-c:1’,2’-
e]azepin]-4-ium bromide (1g) [25]: 66% yield. 1H-NMR δ: 8.26 (s, 2H); 8.09 (d, J = 8.2 Hz, 2H); 7.93 (d,
J = 8.2 Hz, 2H); 7.63 (ddd, J = 8.0, 6.8, 1.1 Hz, 2H); 7.54 (ddd, J = 8.2, 6.8, 1.2 Hz, 2H); 7.53 (d, J = 8.7 Hz,
2H); 7.33 (ddd, J = 8.4, 6.8, 1.2 Hz, 2H); 7.25 (ddd, J = 8.2, 6.7, 1.2 Hz, 2H); 7.13 (d, J = 8.7 Hz, 2H); 7.09
(d, J = 8.7 Hz, 2H); 6.53 (d, J = 8.4 Hz, 2H); 4.81 (d, J = 14.0 Hz, 2H); 4.64 (d, J = 14.0 Hz, 2H); 4.45 (d,
J = 13.8 Hz, 2H); 3.73 (d, J = 13.7 Hz, 2H) ppm. 13C-NMR δ: 151.98 (dm, JCF = 251 Hz, C); 140.29 (dt,
JCF = 257, 15.2 Hz, C); 139.54 (C); 136.65 (C); 136.24 (C); 135.73 (m, C); 134.16 (C); 133.80 (C); 132.99
(CH); 131.62 (C); 131.26 (C); 128.72 (CH); 128.67 (CH); 128.53 (CH); 128.39 (CH); 128.16 (CH); 127.83
(CH); 127.50 (CH); 127.47 (CH); 127.20 (CH); 126.60 (CH); 124.85 (C); 122.11 (C); 115.35 (m, CH); 62.62
(CH2); 57.31 (CH2) ppm. HRMS (ESI) calculated for C56H34F6N [M − Br]+: 834.2590, found 834.2595.

(S,S)-2,6-Bis(3,5-bis(trifluoromethyl)phenyl)-3,3’,5,5’-tetrahydro-4,4’-spirobi[dinaphtho[2,1-c:1’,2’-
e]azepin]-4-ium bromide (1h) [47]: 62% yield. 1H-NMR δ: ~8.4–9.4 (br.s, ~2H); 8.33 (s, 2H); 8.25 (s, 2H);
8.16 (d, J = 8.3 Hz, 2H); 7.84 (d, J = 8.3 Hz, 2H); 7.69 (ps.t, J = 7.3 Hz, 2H); 7.51 (ps.t, J = 7.7 Hz, 2H); 7.41
(br.ddd, J = 8.3, 6.8, 1.0 Hz, 2H); 7.24 (d, J = 8.9 Hz, 2H); 7.23 (br.ddd, J = 7.9, 6.6, 1.0 Hz, 2H); 7.19
(d, J = 8.7 Hz, 2H); 7.08 (d, J = 8.5 Hz, 2H); 6.24 (d, J = 8.7 Hz, 2H); 4.83 (d, J = 13.9 Hz, 2H); 4.64 (d,
J = 14.1 Hz, 2H); 4.54 (d, J = 13.9 Hz, 2H); 3.67 (d, J = 13.7 Hz, 2H) ppm. 13C-NMR δ: 141.96 (C); 139.76
(C); 136.52 (C); 136.06 (C); 134.00 (CH); 133.92 (C); 133.90 (C); 131.94 (C); 131.11 (C); 128.97 (CH); 128.80
(CH); 128.58 (CH); 128.54 (CH); 128.24 (CH); 127.86 (CH); 127.63 (CH); 127.42 (CH); 127.24 (CH); 125.91
(CH); 124.38 (C); 122.35 (br.CH); 121.76 (C); 62.77 (CH2); 57.45 (CH2) ppm. HRMS (ESI) calculated for
C60H36F12N [M − Br]+: 998.2651, found 998.2644.

(S,S)-2,6-Di(furan-2-yl)-3,3’,5,5’-tetrahydro-4,4’-spirobi[dinaphtho[2,1-c:1’,2’-e]azepin]-4-ium bromide
(1i): 81% yield; mp: >200 ◦C (dec.), [α]D

20 = +288 (c: 0.58, DCM). 1H-NMR δ: 8.50 (s, 2H); 8.11 (d,
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J = 8.2 Hz, 2H); 7.95 (d, J = 8.2 Hz, 2H), 7.75 (d, J = 8.5 Hz, 2H); 7.72 (dd, J = 1.8, 0.4 Hz, 2H); 7.62 (ddd,
J = 8.2, 6.9, 1.2 Hz, 2H); 7.54 (ddd, J = 8.0, 6.6, 1.3 Hz, 2H); 7.32 (ddd, J = 8.2, 6.7, 1.1 Hz, 2H); 7.25
(m, 4H); 7.19 (br.d, J = 8.7 Hz, 2H); 7.10 (br.d, J = 8.6 Hz, 2H); 6.90 (dd, J = 3.4, 1.8 Hz, 2H); 6.49 (d,
J = 8.5 Hz, 2H); 5.36 (d, J = 14.4 Hz, 2H); 4.20 (d, J = 14.4 Hz, 2H); 4.19 (d, J = 13.7 Hz, 2H); 3.91 (d,
J = 13.7 Hz, 2H) ppm. 13C-NMR δ: 152.05 (C); 144.12 (CH); 138.96 (C); 136.28 (C); 134.01 (C); 133.88
(C); 131.20 (C); 130.95 (C); 130.85 (CH); 130.14 (CH); 128.72 (CH); 128.56 (CH); 128.32 (CH); 128.22 (C);
127.96 (CH); 127.69 (CH); 127.60 (CH); 127.29 (CH); 126.96 (CH); 126.94 (CH); 125.16 (C); 121.93 (C);
113.15 (CH); 112.11 (CH); 62.35 (CH2); 57.13 (CH2) ppm. HRMS (ESI) calculated for C52H36NO2 [M −
Br]+: 706.2741, found: 706.2745.

(S,S)-2,6-Di(thiophen-2-yl)-3,3’,5,5’-tetrahydro-4,4’-spirobi[dinaphtho[2,1-c:1’,2’-e]azepin]-4-ium
bromide (1j): 88% yield; mp: 245–247 ◦C; [α]D

20 = +124 (c: 0.50, DCM). 1H-NMR δ: 8.41 (s, 2H); 8.08 (d,
J = 8.2 Hz, 2H); 7.89 (d, J = 8.2 Hz, 2H); 7.74 (dd, J = 5.3, 0.9 Hz, 2H); 7.62 (ddd, J = 7.9, 6.7, 0.9 Hz, 2H);
7.59 (d, J = 8.5 Hz, 2H); 7.51 (ddd, J = 7.9, 6.7, 0.9 Hz, 2H); 7.50 (br.s, 2H); 7.38 (dd, J = 5.1, 3.7 Hz, 2H);
7.32 (ddd, J = 7.9, 6.7, 1.0 Hz, 2H); 7.22 (ddd, J = 7.9, 6.6, 1.0 Hz, 2H); 7.15 (d, J = 8.8 Hz, 2H); 7.08 (d,
J = 8.6 Hz, 2H); 6.47 (d, J = 8.5 Hz, 2H); 5.36 (d, J = 14.1 Hz, 2H); 4.36 (d, J = 14.0 Hz, 2H); 4.22 (d,
J = 13.6 Hz, 2H); 3.90 (d, J = 13.4 Hz, 2H) ppm. 13C-NMR δ: 140.98 (C); 139.25 (C); 136.34 (C); 133.99
(C); 133.94 (C); 132.73 (CH); 131.77 (C); 131.12 (C); 131.00 (C); 130.59 (CH); 130.02 (CH); 129.30 (CH);
128.56 (CH); 128.51 (CH); 128.24 (CH); 127.80 (CH); 127.68 (CH); 127.48 (2CH); 127.45 (CH); 126.85
(CH); 126.76 (CH); 125.24 (C); 122.66 (C); 62.66 (CH2); 56.92 (CH2) ppm. HRMS (ESI) calculated for
C52H36NS2 [M − Br]+: 738.2284, found: 738.2254.

(S)-2,6-Bis(trimethylsilyl)-4,5-dihydro-3H-dinaphtho[2,1-c:1′,2′-e]azepine (4): To a suspension of
dibromide 3 [39] (380 mg, 0.65 mmol) in acetonitrile (25 mL) was added aqueous ammonia (25%,
10 mL) and the mixture was stirred in a pressure tube at 65–70 ◦C (bath) overnight. The conversion
was followed by TLC. Excess of ammonia was evaporated and DCM (40 mL) was added. The organic
phase was washed with water and brine, dried (Na2SO4), and evaporated. Purification of the residual
oil by column chromatography on silica gel (EtOAc (5→20)/heptane) afforded 243 mg (85%) of 4 as a
colourless foam; [α]D

20 = +416 (c: 1.00, DCM). 1H-NMR δ: 8.15 (s, 2H); 7.93 (br.d, J = 8.2 Hz, 2H); 7.43
(ddd, J = 8.1, 6.3, 1.2 Hz, 2H); 7.28 (br.d, J = 8.1 Hz, 2H); 7.22 (ddd, J = 8.1, 6.6, 1.2 Hz, 2H); 4.09 (d,
J = 12.8 Hz, 2H); 3.47 (d, J = 12.8 Hz, 2H); 1.78 (br.s, 1H); 0.50 (s, 18 H) ppm. 13C-NMR δ: 138.77 (C);
136.50 (C); 136.11 (CH); 135.00 (C); 131.98 (C); 131.96 (C); 128.35 (CH); 127.31 (CH); 126.07 (CH); 125.20
(CH); 47.43 (CH2); 0.55 (CH3) ppm. HRMS (ESI) calculated for C28H34NSi2 [M + H]+: 440.2224, found:
440.2226.

(S)-2′,6′-Bis(trimethylsilyl)-3′,5,5′,7-tetrahydrospiro[dibenzo[c,e]azepine-6,4′-dinaphtho[2,1-c:1′,2′-
e]azepin]-6-ium bromide (5′): 72% yield; [α]D

20 = +62 (c: 1.00, DCM). 1H-NMR δ: 8.29 (s, 2H); 8.02
(dm, J = 8.3 Hz, 2H); 7.71–7.76 (m, 4H); 7.57-7.63 (m, 4H); 7.34 (ddd, J = 8.5, 6.9, 1.3 Hz, 2H); 7.19 (dm,
J = 8.4 Hz, 2H); 4.77 (d, J = 13.3 Hz, 2H); 4.70 (d, J = 13.3 Hz, 2H); 4.39 (d, J = 12.7 Hz, 2H); 3.99 (d,
J = 12.6 Hz, 2H); 0.22 (s, 18H) ppm. 13C-NMR δ: 140.94 (C); 138.62 (CH); 138.05 (C); 136.88 (C); 133.42
(C); 131.96 (C); 131.86 (CH); 131.60 (CH); 129.75 (CH); 128.83 (CH); 128.79 (C); 128.75 (CH); 127.93 (CH);
127.78 (CH); 127.31 (CH); 126.72 (C); 63.74 (CH2); 63.74 (CH2); 1.72 (CH3) ppm. HRMS (ESI) calculated
for C42H44NSi2 [M − Br]+: 618.3007, found: 618.3020.

Optical resolution of rac-7: To a solution of 547 mg (1.0 mmol) of azepine (±)-7 [29] in 12 mL of
DCM and 12 mL of MeOH was added slowly, with gentle mixing, a solution of 93 mg (0.26 mmol)
of (+)-(S,S)-O,O-dibenzoyltartaric acid monohydrate in 5 mL of MeOH at room temperature. The
mixture was left undisturbed for 6–8 h and then kept at +4 ◦C overnight. The crystalline material
containing (S,S)-(R)ax salt was separated from the mother liquor which was subsequently evaporated.
The fractions were stirred in a mixture of DCM/NaOH (2M). The organic phases were separated and
dried (Na2SO4) to yield 236 mg (43%) of (R)-7 with 89% ee from the less soluble salt and 290 mg (53%) of
(S)-7 with 77%ee from the mother liquor. Enantiomerically enriched (R)-7 was recrystallized from DCM
(10 mL)/MeOH (6 mL) to yield 210 mg (38%) of (R)-7 with >99%ee Combined mother liquors containing
(S)-enriched 7 were evaporated and treated with 0.5 equiv. of (-)-(R,R)-O,O-dibenzoyltartaric acid
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monohydrate in MeOH/DCM as before to yield 68% of (S)-7 with 89% ee. Recrystallisation afforded
enantiopure (S)-7. The enantiomeric excess was determined by chiral HPLC analysis (Chiralpak ADH,
2-PrOH/heptane (20:80), 20 ◦C, 0.5 mL min-1; 14.3 min (R), 21.6 min (S)); mp: 261 ◦C for (S)-7.

tert-Butyl (S)-2,6-diiodo-3,5-dihydro-4H-dinaphtho[2,1-c:1’,2’-e]azepine-4-carboxylate (8): A solution
of (S)-7 (558 mg, 1 mmol) in DCM (6 mL) was added to a suspension of amberlyst-15 (56 mg) and
boc-anhydride (436 mg, 1 mmol) in EtOH (3 mL) and stirred at r.t. for 10 min. The reaction mixture was
filtered and evaporated. The remaining solid was repeatedly leached with pentane/ether to remove
excess of boc-anhydride leaving 8 as an off-white solid, sufficiently pure for the next step (yield: 546
mg, 84%, purity 98% by NMR). 1H-NMR (600 MHz) δ: 8.60 (br.s, 2H); 7.81 (d, J = 8.1 Hz, 2H); 7.48 (ps.t,
J ~7.5 Hz, 2H); 7.20–7.29 (m, 4H); 5.64 (br.d, J = 13.1 Hz, 1H); 5.49 (br.d, J = 13.5 Hz, 1H); 3.59 (br.d,
J = 13.8 Hz, 1H); 3.50 (br.d, J = 13.8 Hz, 1H); 1.57 (s, 9H) ppm. 13C-NMR δ: 153.14 (C); 139.99 (CH);
136.11 (br.C); 136.00 (br.C); 134.98 (br.C); 134.62 (br.C); 134.27 (C); 130.76 (C); 127.38 (CH); 127.13 (CH);
126.84 (br.CH); 126.79 (br.CH); 97.90 (C); 97.63 (C); 80.28 (C); 51.60 (CH2); 50.88 (CH2); 28.49 (CH3) ppm.
HRMS (ESI) calculated for C23H16I2NO2 [M − C4H8 + H]+: 591.9265, found: 591.9260.

Suzuki-Miyaura coupling of (S)-7yielding (S)-9 (General Procedure B): A Schlenk tube, equipped with
magnetic stirring bar and glass stopper, was charged with a solution of diiodoazepine (274 mg, 0.50
mmol) in toluene (10 mL) and Na2CO3 solution (2 M in H2O, 5.0 mL). Then arylboronic acid (2.00
mmol, 4 equiv.) was added and the mixture was degassed. After the addition of Pd(PPh3)4 (115
mg, 20 mol %), the reaction was left stirring at 80 ◦C for 6–48 h. The conversion was monitored by
TLC (EtOAc/heptane, 30:70). After cooling to r.t., DCM (50 mL) and H2O (30 mL) were added and
the phases were separated. The aqueous phase was extracted with DCM (3 × 20 mL). The combined
organic phases were washed with KOH solution (10%, 20 mL) and sat. NaCl solution and dried
(K2CO3). After evaporation of solvents, the crude material was purified by MPLC using a solvent
gradient (EtOAc + 5% triethylamine (0→30%)/heptane).

Suzuki–Miyaura coupling of (S)-8yielding (S)-9 (General Procedure C): A Schlenk tube, equipped with
magnetic stirring bar, was charged with a solution of boc-protected diiodoazepine 8 (97 mg, 0.15 mmol)
and tri-ortho-tolylphosphine (9.1 mg, 20 mol %) in toluene (3 mL) and a Na2CO3 solution (2 M in H2O,
2 mL). Then, arylboronic acid (4 equiv.) was added and the mixture was degassed. After the addition
of Pd(OAc)2 (3.4 mg, 10 mol %), the mixture was left stirring at 80 ◦C for 12–48 h. The reaction was
monitored by TLC (EtOAc/heptane, 30:70). After cooling to r.t., DCM (5 mL) and H2O (3 mL) were
added and the phases were separated. The aqueous phase was extracted with DCM (3 × 3 mL) and
the combined organic phases were washed with KOH solution (10%, 5 mL) and sat. NaCl solution
and dried (Na2SO4). After evaporation of solvents DCM (1 mL) and trifluoroacetic acid (1 mL) was
added and the solution stirred at r.t. for 2 h. The reaction was carfully neutralized with solid NaHCO3.
Extractive work-up was followed by MPLC.

(S)-2,6-Diphenyl-4,5-dihydro-3H-dinaphtho[2,1-c:1′,2′-e]azepine (9a) [53]: 77% yield [29] (General
Procedure B).

(S)-2,6-Di(naphthalen-2-yl)-4,5-dihydro-3H-dinaphtho[2,1-c:1′,2′-e]azepine (9b): 68% yield [29]
(General Procedure B).

(S)-2,6-Di([1,1′-biphenyl]-4-yl)-4,5-dihydro-3H-dinaphtho[2,1-c:1′,2′-e]azepine (9c): 68% yield [29]
(General Procedure B).

(S)-2,6-Di([1,1’:4’,1”-terphenyl]-4-yl)-4,5-dihydro-3H-dinaphtho[2,1-c:1’,2’-e]azepine (9d): 55% yield
(General Procedure B was modified using (dppf)PdCl2, 10 mol %); mp: >260 ◦C (dec.); [α]D

20 = +247 (c:
0.60, DCM). 1H-NMR δ: 8.02 (s, 2H); 7.98 (br.d, J = 8.2 Hz, 2H); 7.65–7.79 (m, 20H); 7.44–7.53 (m, 8H);
7.37 (m, 2H); 7.33 (ddd, J = 8.6, 6.7, 1.3 Hz, 2H); 4.11 (d, J = 12.6 Hz, 2H); 3.43 (d, J = 12.6 Hz, 2H) ppm.
13C-NMR δ: 140.69 (C); 140.44 (C); 140.23 (C); 139.68 (C); 139.55 (C); 139.35 (C); 136.13 (C); 133.36 (C);
132.53 (C); 130.89 (C); 130.19 (CH); 129.67 (CH); 128.82 (CH); 128.32 (CH); 127.57 (CH); 127.55 (CH);
127.46 (CH); 127.36 (CH); 127.05 (CH); 126.83 (CH); 125.84 (CH); 125.79 (CH); 44.67 (CH2) ppm. HRMS
(ESI) calculated for C58H42N [M + H]+: 752.3317, found: 752.3289.
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(S)-2,6-Bis(4-tritylphenyl)-4,5-dihydro-3H-dinaphtho[2,1-c:1’,2’-e]azepine (9e): 89% yield, white solid;
(General Procedure B was modified using (dppf)PdCl2, 10 mol %); mp: 280–290 ◦C; [α]D

20 = +206 (c:
0.84, DCM). 1H-NMR δ: 7.97 (s, 2H); 7.92 (br.d, J = 8.0 Hz, 2H); 7.43–7.49 (m, 6H); 7.41 (br.d, J = 8.6 Hz,
2H); 7.17–7.33 (m, ~36H); 4.03 (d, J = 12.4 Hz, 2H); 3.33 (d, J = 12.4 Hz, 2H) ppm. 13C-NMR δ: 146.76
(C); 145.78 (C); 139.41 (C); 138.81 (C); 136.02 (C); 133.36 (C); 132.47 (C); 131.19 (CH); 131.00 (CH); 130.79
(C); 129.62 (CH); 128.67 (CH); 128.22 (CH); 127.51 (2CH); 125.96 (CH); 125.74 (CH); 125.65 (CH); 64.86
(C); 44.63 (CH2) ppm. HRMS (ESI) calculated for C72H54N [M + H]+: 932.4251, found: 932.4217.

(S)-2,6-Bis(4-fluorophenyl)-4,5-dihydro-3H-dinaphtho[2,1-c:1’,2’-e]azepine (9f): 49% yield (General
Procedure B); 60% (General Procedure C); solidifying oil, [α]D

20 = +241 (c: 1.01, DCM). 1H-NMR δ: 7.94
(dm, J = 8.4 Hz, 2H); 7.92 (s, 2H); 7.56 (m, 4H); 7.48 (ddd, J = 8.0, 6.7, 1.1 Hz, 2H); 7.42 (dm, J = 8.6 Hz,
2H); 7.28 (ddd, J = 8.3, 6.7, 1.3 Hz, 2H); 7.16 (m, 4H); 3.94 (d, J = 12.6, 2H); 3.33 (d, J = 12.6 Hz, 2H) ppm.
13C-NMR δ: 162.32 (d, JCF = 245 Hz, CF); 138.64 (C); 137.22 (d, JCF = 2.3 Hz, C); 136.03 (C); 133.20 (C);
132.40 (C); 131.20 (d, JCF = 8.0 Hz, CH); 130.80 (C); 129.72 (CH); 128.24 (CH); 127.48 (CH); 125.88 (d,
JCF = 7.5 Hz, CH); 115.17 (CH); 115.03 (CH); 44.52 (CH2) ppm. HRMS (ESI) calculated for C34H24F2N
[M + H]+: 484.1877, found 484.1877.

(S)-2,6-Bis(3,4,5-trifluorophenyl)-4,5-dihydro-3H-dinaphtho[2,1-c:1’,2’-e]azepine (9g): 80% yield
(General Procedure C); solidifying oil, [α]D

20 = +244 (c: 0.95, DCM). 1H-NMR δ: 7.96 (br.d, J = 8.0 Hz,
2H); 7.92 (s, 2H); 7.52 (ddd, J = 8.0, 7.6, 1.3 Hz, 2H); 7.41 (dm, J = 8.1 Hz, 2H); 7.31 (ddd, J = 8.0, 6.8,
1.3 Hz, 2H); 7.29 (br.m, 4H); 3.94 (d, J = 12.8 Hz, 2H); 3.33 (d, J = 12.8 Hz, 2H); 7.79 (br.s, ~1H) ppm.
13C-NMR δ: 150.86 (ddd, JCF = 250, 10, 4 Hz, C); 139.26 (dt, JCF = 255, 15 Hz, C); 137.16 (td, JCF = 8,
5 Hz, C); 136.74 (C); 136.18 (C); 132.46 (C); 132.30 (C); 131.03 (C); 129.85 (CH); 128.39 (CH); 127.40 (CH);
126.46 (CH); 126.30 (CH); 113.91 (m, CH); 44.43 (CH2) ppm. HRMS (ESI) calculated for C34H20F6N [M
+ H]+: 556.1500, found: 556.1496.

(S)-2,6-Bis(3,5-bis(trifluoromethyl))phenyl)-4,5-dihydro-3H-dinaphtho[2,1-c:1’,2’-e]azepine (9h): 29%
yield (General Procedure B); 75% yield (General Procedure C). solidifying oil, [α]D

20 = +207 (c: 0.99, DCM).
1H-NMR δ: 8.12 (br.s, 4H); 7.99 (dm, J = 8.3 Hz, 2H); 7.98 (s, 2H); 7.94 (m, 2H); 7.54 (ddd, J = 8.1, 6.7,
1.2 Hz, 2H); 7.44 (dm, J = 8.7 Hz, 2H); 7.34 (ddd, J = 8.5, 6.8, 1.4 Hz, 2H); 3.85 (d, J = 12.8 Hz, 2H); 3.39
(d, J = 12.9, 2H) ppm. 13C-NMR δ: 143.18 (C); 136.54 (C); 136.32 (C); 132.34 (C); 132.32 (C); 131.65 (q,
JCF = 33.4 Hz, CCF3); 131.17 (C); 130.30 (CH); 129.88 (br.CH); 128.47 (CH); 127.38 (CH); 126.75 (CH);
126.47 (CH); 123.26 (q, JCF = 274 Hz, CCF3); 121.18 (m, CH); 44.48 (CH2) ppm. HRMS (ESI) calculated
for C38H22F12N [M + H]+: 720.1561, found 720.1553.

(S)-2,6-Di(furan-2-yl)-4,5-dihydro-3H-dinaphtho[2,1-c:1’,2’-e]azepine (9i): 98% yield (General Procedure
B); colorless foam. 1H-NMR δ: 8.20 (s, 2H); 7.95 (br.d, J = 8.2 Hz, 2H); 7.61 (dd, J = 1.8, 0.7 Hz, 2H); 7.47
(ddd, J = 8.0, 6.7, 1.2 Hz, 2H); 7.37 (dm, J = 8.6 Hz, 2H); 7.25 (ddd, J = 8.3, 6.7, 1.3 Hz, 2H); 6.77 (dd,
J = 3.4, 0.7 Hz, 2H); 6.57 (dd, J = 3.3, 1.8 Hz, 2H); 4.34 (d, J = 12.6 Hz, 2H); 3.36 (d, J = 12.6 Hz, 2H) ppm.
13C-NMR δ: 153.69 (C); 142.59 (CH); 136.31 (C); 132.51 (C); 132.47 (C); 130.88 (C); 129.02 (CH); 128.49
(CH); 128.35 (C); 127.49 (CH); 126.18 (CH); 125.92 (CH); 111.46 (CH); 109.18 (CH); 44.80 (CH2) ppm.
HRMS (ESI) calculated for C30H22NO2 [M + H]+: 428.1651, found: 428.1647.

(S)-2,6-Di(thiophen-2-yl)-4,5-dihydro-3H-dinaphtho[2,1-c:1’,2’-e]azepine (9j): 84% yield (General
Procedure B); colorless foam. 1H-NMR δ: 8.09 (s, 2H); 7.94 (d, J = 8.3 Hz, 2H); 7.48 (ddd, J = 8.0, 6.9,
1.0 Hz, 2H); 7.41 (m, 4 H); 7.31 (dd, J = 3.5, 1.1 Hz, 2H); 7.28 (ddd, J = 8.0, 6.7, 1.1 Hz, 2H); 7.15 (dd,
J = 5.2, 3.5 Hz, 2H); 4.25, (d, J = 12.6 Hz); 3.34 (d, J = 12.6 Hz) ppm. 13C-NMR δ: 142.22 (C); 136.08 (C);
133.68 (C); 132.29 (C); 131.90 (C); 130.92 (C); 130.87 (CH); 128.33 (CH); 127.46 (CH); 127.42 (CH); 127.38
(CH); 126.14 (CH); 125.98 (CH); 125.60 (CH); 44.56 (CH2) ppm. HRMS (ESI) calculated for C30H22NS2

[M + H]+: 460.1194, found: 460.1185.
tert-Butyl (S)-2,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,5-dihydro-4H-dinaphtho[2,1-c:

1’,2’-e]azepine-4-carboxylate (11): A suspension of 8 (324 mg, 0.5 mmol), B2Pin2 (508 mg, 2 mmol), and
KOAc (295 mg, 3 mmol) in DMF was degassed. Pd(OAc)2 (11 mg, 0.05 mmol) was added and the
mixture was degassed once more and stirred for 20 h at 100 ◦C (bath). Solvent was removed under
reduced pressure and the residue was taken up in DCM (100 mL)/water (100 mL). The aqueous layer



Molecules 2019, 24, 3844 13 of 18

was extracted with DCM and combined organics were washed with water and sat. NH4Cl (50 mL).
The organic phase was dried over MgSO4, concentrated and subjected to chromatography (EtOAc
(0→20%)/heptane; yield 66%, pale yellow oil. The material contained 5–10% of B2Pin2 and was used
without further purification. 1H-NMR δ: 8.49 (br.s, 2H); 7.95 (d, J = 8.2 Hz, 2H); 7.42 (m, 2H); 7.20–7.26
(m, 4H); 5.52–6.03 (br.m, 2H); 3.45 (br.d, J = 12.8 Hz, 2H); 1.47 (s, 12H); 1.46 (br.s, ~9H); 1.43 (s, 12H)
ppm. 13C-NMR δ: 154.10 (C); 136.68 (C); 132.68 (br. C); 132.04 (C); 128.67 (CH); 127.24 (CH); 126.80
(CH); 125.48 (CH); 84.08 (br. CH2); 83.43 (C); 78.69 (C); 28.47 (CH3); 24.98 (CH3); 24.89 (CH3) ppm.
HRMS (ESI) calculated for C39H48B2NO6 [M + H]+: 648.3668, found: 648.3680.

Phase-transfer catalyzed α-substitution of tert-butyl 2-((diphenylmethylene)amino)acetate 12 (Typical
procedure with benzylbromide 13A): Stock solution A: 0.025 mmol catalyst in 1 mL DCM, 2.5 × 10−2 M;
Stock solution B: 1.480 g of tert-butyl 2-((diphenylmethylene)amino)acetate 12 in 30 mL of toluene, 1.667
× 10−1 M; Stock solution C: 10 g of solid KOH in 10 g distilled water. A 10 mL Schlenk tube with stirring
bar was subsequently charged with 100 µL of solution A (0.0025 mmol, 1 mol %), 1.500 mL of solution B
(1.310 g; d = 0.873, 0.25 mmol) and 0.5 mL of solution C. The mixture was degassed and cooled to 0 ◦C.
Freshly distilled benzyl bromide was added with a microliter syringe (38 µL, 54 mg, 1.2 equiv.) and the
reaction was vigorously stirred for 4 h. Et2O (5 mL) and water (3 mL) was added with stirring and the
phases were separated. The aqueous phase was extracted with Et2O (3× 5 mL) and the organic layer
was washed with water (5 mL) and brine and dried (MgSO4). Evaporation gave a clear oil to which
solid bibenzyl (0.25 mmol, 45.6 mg) was added and the mixture was completely dissolved in CDCl3
(approx. 1 mL). A 1H-NMR spectrum was recorded (400 MHz). Integration gave %yield of product,
substrate, and eventually benzophenone as a side product. An aliquot (20–30 µL) was transferred to
a HPLC vial and diluted with 2-PrOH to 1 mL. Chiral HPLC analysis applying reported conditions
(Chiralcel ODH (250 × 4.6 mm), 2-PrOH/heptane 1:99, 0.5 mL min−1, 25 ◦C) gave satisfying separation
of enantiomers (13.5 min (R)-14A, 23.6 min (S)-14A) without overlap with internal standard (10.7 min),
substrate (19.8 min) or benzophenone (17.6 min). Alternatively, the reaction mixture was subjected to
MPLC (10 g of SiO2, solvent gradient EtOAc (0%→8%)/heptane) to yield a pure product.

tert-Butyl 2-((diphenylmethylene)amino)-3-(pyridin-2-yl)propanoate (14G): colorless oil. 1H-NMR
δ = 8.50 (dm, J = 4.9 Hz, 1H); 7.63 (m, 2H); 7.59 (td, J = 7.6, 1.9 Hz, 1H); 7.41–7.45 (m, 2H); 7.35–7.40 (m,
4 H); 7.25 (dm, J = 7.6 Hz, 1H); 7.15 (ddd, J = 7.5, 4.9, 1.2 Hz, 1H); 6.78 (br.d, J = 6.8 Hz, 2H); 4.53 (dd,
J = 9.5, 3.9 Hz, 1H); 3.52 (dd, J = 13.4, 4.0 Hz, 1H); 3.45 (dd, J = 13.3, 9.4 Hz, 1H); 1.52 (s, 9 H) ppm.
13C-NMR δ: 170.66 (C); 170.64 (C); 158.61 (C); 149.12 (CH); 139.52 (C); 136.15 (C); 135.87 (CH); 130.03
(CH); 128.67 (CH); 128.34 (CH); 128.01 (CH); 127.83 (CH); 127.61 (CH); 124.50 (CH); 121.14 (CH); 81.08
(C); 66.28 (CH); 41.91 (CH2); 27.95 (CH3) ppm. HRMS: calcd for C25H27N2O2 [M + H]+: 387.2073;
found: 387.2068. HPLC: Chiralpak ADH (250 × 4.6 mm), 2-PrOH/heptane (5:95), 0.5 mL min−1, 25 ◦C,
tR = 13.93 min, 17.55 min.

6-(tert-Butyl) 1-ethyl (E)-5-((diphenylmethylene)amino)hex-2-enedioate (14H): colorless oil. 1H-NMR δ:
7.62–7.65 (m, 2H); 7.41–7.47 (m, 3H); 7.37–7.41 (m, 1H); 7.30–7.34 (m, 2H); 7.15–7.18 (m, 2H); 6.82 (dt,
J = 15.6, 7.6 Hz, 1H); 5.84 (dm, J = 15.6 Hz, 1H); 4.16 (qm, J = 7.1 Hz, 2H); 4.07 (dd, J = 7.6, 5.2 Hz,
1H); 2.71–2.82 (m, 2H); 1.44 (s, 9H); 1.26 (t, J = 7.1 Hz, 3H) ppm. 13C-NMR δ = 170.82 (C); 170.18 (C);
145.02 (CH); 139.37 (C); 136.39 (C); 130.35 (CH); 128.81 (CH); 128.63 (CH); 128.48 (CH); 128.00 (CH);
127.76 (CH); 123.58 (CH); 81.47 (C); 64.94 (CH); 60.13 (CH2); 36.26 (CH2); 28.00 (CH3); 14.23 (CH3) ppm.
HRMS: calculated for C25H30NO4 [M + H]+: 408.2175; found: 408.2171. HPLC: Chiralpak ADH (250 ×
4.6 mm), 2-PrOH/heptane (5:95), 0.5 mL min−1, 25 ◦C, tR = 9.69 min, 12.42 min.

tert-Butyl (E)-6-(1,3-dioxoisoindolin-2-yl)-2-((diphenylmethylene)amino)hex-4-enoate (14I): colorless
oil. 1H-NMR δ: 7.73–7.78 (m, 2H); 7.64–7.69 (m, 2H); 7.53–7.57 (m, 2H); 7.38–7.44 (m, 3H); 7.26–7.30
(m, 1H); 7.16–7.23 (m, 4H); 5.59–5.62 (m, 2H); 4.15–4.25 (m, 2H); 3.94 (t, J = 6.7 Hz, 1H); 2.62 (m, 2H);
1.41 (s, 9H) ppm. 13C-NMR δ: 170.66 (C); 170.37 (C); 167.79 (C); 139.59 (C); 136.69 (C); 133.78 (CH);
132.14 (C); 130.85 (CH); 130.04 (CH); 128.67 (CH); 128.47 (CH); 128.38 (CH); 127.95 (CH); 127.83 (CH);
126.14 (CH); 123.13 (CH); 81.06 (C); 65.63 (CH); 39.37 (CH2); 36.51 (CH2); 28.02 (CH3) ppm. HRMS:
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calcd for C31H31N2O4 [M + H]+: 495.2284; found: 495.2283. HPLC: Chiralpak ADH (250 × 4.6 mm),
2-PrOH/heptane (5:95), 1.0 mL min−1, 25 ◦C, tR = 13.11 min, 15.45 min.

Ethyl 2-(2-(tert-butoxy)-1-((diphenylmethylene)amino)-2-oxoethyl)cyclopropane-1-carboxylate (15):
colorless oil. 1H-NMR δ: 7.61–7.63 (m, 2H); 7.42–7.47 (m, 3H); 7.37–7.41 (m, 1H); 7.30–7.34 (m,
2H); 7.15–7.18 (m, 2H); 4.13 (q, J = 7.1 Hz, 2H); 3.79 (d, J = 5.8 Hz, 1H); 2.03 (dddd, J = 10.3, 6.4, 5.9,
4.2 Hz, 1H); 1.83 (ddd, J = 9.5, 5.1, 4.3 Hz, 1H); 1.44 (s, 9H); 1.26 (t, J = 7.1 Hz, 3H); 1.18 (ddd, J = 9.5,
5.1, 4.3 Hz, 1H); 0.91 (ddd, J = 8.4, 6.4, 4.3 Hz, 1H) ppm. 13C-NMR δ: 174.06 (C); 170.77 (C); 170.24 (C);
139.33 (C); 136.27 (C); 130.38 (CH); 128.82 (CH); 128.64 (CH); 128.49 (CH); 127.97 (CH); 127.77 (CH);
81.28 (C); 65.44 (CH); 60.36 (CH2); 27.98 (CH3); 25.13 (CH); 17.03 (CH); 14.26 (CH3); 12.02 (CH2) ppm.
HRMS: calculated for C25H30NO4 [M + H]+: 408.2175; found: 408.2177.

2-([1,1’:4’,1”-Terphenyl]-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane [54]: A literature procedure was
followed [52]; 65% yield. 1H-NMR δ: 7.93 (dm, J = 8.3 Hz, 2H); 7.64–7.75 (m, 8H); 7.48 (m, 2H); 7.37 (m,
1H); 1.39 (s, 12H) ppm. 13C-NMR δ: 143.32 (C); 140.66 (C); 140.43 (C); 139.88 (C); 135.31 (CH); 128.80
(CH); 127.55 (CH); 127.49 (CH); 127.36 (CH); 127.04 (CH); 126.30 (CH); 83.81 (C); 24.88 (CH3) ppm.
HRMS (ESI) calculated for C24H25BNaO2 [M + Na]+: 379.1845, found 379.1843.

4,4,5,5-Tetramethyl-2-(4-tritylphenyl)-1,3,2-dioxaborolane [52]: 1H-NMR δ: 7.69 (dm, J = 8.5 Hz, 2H);
7.15–7.27 (m, ~17H); 1.33 (s, 12H) ppm. 13C-NMR δ: 150.00 (C); 146.64 (C); 133.94 (CH); 131.13 (CH);
130.54 (CH); 127.50 (CH); 125.89 (CH); 83.73 (C); 65.21 (C); 24.88 (CH3) ppm.

Ethyl (E)-4-iodobut-2-enoate: A literature procedure reported for the methylester was applied [55].
Yield: 77% (pale yellow oil, 10 mmol scale) The compound decomposed slowly at r.t. and was stored
at -20 ◦C. 1H-NMR δ: 7.04 (dt, J = 15.3, 8.2 Hz, 1H); 5.93 (dt, J = 15.3, 1.0 Hz, 1H); 4.20 (q, J = 7.2 Hz,
2H); 3.93 (dd, J = 8.3, 1.1 Hz, 2H); 1.29 (t, J = 7.2 Hz, 3H) ppm. 13C-NMR δ: 143.44 (CH); 123.30 (CH);
60.67 (CH2); 14.19 (CH3); 0.72 (CH2) ppm. HRMS calculated for C6H10IO2 [M + H]+: 240.9725; found
240.9723.

(E)-2-(4-Bromobut-2-en-1-yl)isoindoline-1,3-dione: A literature procedure was applied [56]. 1H-NMR
δ: 7.83-7.87 (m, 2H); 7.70-7.74 (m, 2H); 5.94 (dm, J = 15.4 Hz, 2H); 5.83 (dm, J = 15.3 Hz, 2H); 4.30 (dm,
J = 5.7 Hz, 2H); 3.90 (dm, J = 7.2 Hz, 2H) ppm. 13C-NMR δ: 167.70 (C); 134.03 (CH); 132.02 (C); 129.95
(CH), 128.33 (CH); 123.34 (CH); 38.57 (CH2); 31.18 (CH2) ppm.

(E)-2-(4-Iodobut-2-en-1-yl)isoindoline-1,3-dione [57]: To a solution of
(E)-2-(4-bromobut-2-en-1-yl)isoindoline-1,3-dione (560 mg, 2 mmol) in acetone (10 mL) was
added NaI (1.50 g, 10 mmol) and the reaction was stirred at r.t. for 20 h. The mixture was concentrated
and the residue was partitioned between EtOAc and water (50 + 50 mL). The organic phase was
separated, concentrated under reduced presure, and the crude material subjected to chromatography
((EtOAc (5→25%)/heptane) to yield 486 mg (74%) of product as crystalline solid. 1H-NMR δ: 7.83–7.88
(m, 2H); 7.70–7.75 (m, 2H); 5.99 (dtt, J = 15.2, 7.8, 1.3 Hz, 1H); 5.76 (dtt, J = 15.2, 6.2, 1.0 Hz, 2H);
4.27 (dm, J = 6.2 Hz, 2H); 3.82 (dm, J = 7.9 Hz, 2H) ppm. 13C-NMR δ: 167.70 (C); 134.00 (CH);
131.99 (C); 131.63 (CH); 126.91 (CH); 123.31 (CH); 38.57 (CH2); 3.61 (CH2) ppm. HRMS calculatedfor
C12H10INaNO2 [M + Na]+: 349.9654; found: 349.9645.

3.3. X-ray Structure Analysis

Crystals suitable for structure determinations were grown from DCM/heptane (1d, 1e) or
DCM/MeOH (during optical resolution of 7). The X-ray intensity data were measured on Bruker D8
Venture and X8 APEX2 diffractometer (Bruker AXS GmbH, Karlsruhe, BRD) equipped with multilayer
monochromators, Mo K/α INCOATEC micro focus sealed tubes and Oxford and Cryoflex2 cooling
systems at 150 K (1d, 1e) or 100 K (7 tartrate). Crystal data are collected in Table 3. Experimental data
and CCDC codes can be found in Supplementary Materials.
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Table 3. Crystal data for 1d, 1e, and the less soluble (S,S)-dibenzoyltartrate of 7.

(R)(R)-1d (R)bina(S)biphe-1e (R)-7
(S,S)-dibenzoyltartrate

M [g/mol] 1323.48 791.92 811.22
Space group P212121 C2 C2

a [Å] 9.1716(8) 21.7990(14) 28.7403(11)
b [Å] 26.018(2) 23.2291(13) 12.0555(4)
c [Å] 30.298(3) 8.8684(5) 8.9062(3)
α [◦] 90 90 90
ß [◦] 90 94.251(2) 101.095(2)
γ [◦] 90 90 90

V [Å3] 7229.8(11) 4478.3(5) 3028.14(18)
Z 4 4 4

Dcalc [g/cm3] 1.216 1.175 1.779
Rint 0.1022 0.0294 0.0359

Rsigma 0.0399 0.0300 0.0175
R1 (I > 2σ(I)) 0.0812 0.0802 0.0362
wR2 (all data) 0.2433 0.2295 0.0897

Supplementary Materials: The following are available online: Comments on structure of side products upon
rearrangements, 1H- and 13C-NMR spectra of all new compounds, comments on screening experiments, UV
traces of chiral HPLC separations of racemates of 14A-I, and details of X-ray structure determinations of 1d, 1e,
and (S,S)-dibenzoyltartrate of 7.
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