Supporting Information (SI)

For

Design and synthesis of a fluorescent probe with a large Stokes shift for detecting thiophenols and its application in water sample and living cells

Hua Liu^{a,b,c,d,1}, Chuanlong Guo^{a,e,1}, Shuju Guo^{a,b,c}, Lijun Wang^{a,b,c*} and Dayong Shi^{a,b,c,d *}

^aCAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;

^bLaboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;

^cCenter for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China;

^dUniversity of Chinese Academy of Sciences, Beijing, China;

^eDepartment of Pharmacy, College of Chemical Engineering, Qingdao University of

Science and Technology, Qingdao 266042, China

- * Correspondence: shidayong@qdio.ac.cn Tel: 86-532-82898719
- * Correspondence: wanglijun@qdio.ac.cn Tel: 86-532-82898741

¹ These authors contributed equally to this work.

contents

1. Structure characterization	
2. Additional spectra	

1. Structure characterization

¹³C NMR spectrum of probe-KCP

HR-MS spectrum of probe-KCP

2. Additional spectra

¹³C NMR spectrum of probe-OH

HR-MS spectrum of probe-KCN1

 ^{1}H NMR spectrum of S-NO₂

¹³C NMR spectrum of S-NO₂

Figure S1. date for investigation of the sensing mechanism.

Figure S2. The effect of pH on the fluorescence intensity ($\lambda_{em} = 540 \text{ nm}$) of probe-KCP (10 μ M, $\lambda_{ex} = 410 \text{ nm}$) in DMSO/PBS buffer (1:1, ν/ν , 20 mM) upon addition of 100 μ M 4-Methoxy thiophenol after incubation at 37 °C for 20 min.

Figure S3. Fluorescence responses of probe-KCP (10 µM) to thiophenol and other

various analytes (100 μ M) in PBS buffer solution (20 mM, pH = 7.4) containing 50 % DMSO.

Figure S4. Enhanced fluorescence response at 540 nm of the probe-KCP (10 μ M) to thiophenol and other various analytes (100 μ M) in PBS buffer solution (20 mM, pH = 7.4) containing 50 % DMSO.

Figure S5. Percentage of viable A549 cells after treatment with different concentrations of the probe-KCP after 24 h using an MTT assay.

Figure S6. (A)Time-dependent the fluorescence response of probe-KCP (10 μ M) in the absence (blank) and presence of 4-methoxythiophenol, GSH, Cys, Hcy, NaSH or C₂H₅SH (10 equiv) in PBS buffer solution (20 mM, pH = 7.4) containing 50 % DMSO. (B) Time-dependent the fluorescence response of probe-KCP (10 μ M) in the absence (blank) and presence of 4-methoxythiophenol, GSH, Cys, Hcy, NaSH or C₂H₅SH (10 equiv) at 0 min, 10 min, 20 min, 30 min.

Figure S7. Time-dependent the fluorescence response of probe-KCP (10 μ M) in the presence of 4-Methoxythiophenol (10 equiv) in PBS/ DMSO solution (*v*:*v* = 1:1, 20 mM, pH = 7.4).

Figure S8. Photograph of probe-KCP solutions (10 μ M) in the presence of 4methoxythiophenol (10 equiv) under natrual light and UV irradiation (365 nm).

Figure S9. The ESI mass spectrum of probe-KCP in the presence of 4-methoxythiophenol.

Figure S10. (A) Frontier molecular orbital plots of dye probe-OH in DMSO. (B) Frontier molecular orbital plots of probe-KCP in DMSO. The fluorescence emission of probe-KCN1 moieties is quenched by d-PET.