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Abstract: Few high-performance liquid chromatography–tandem mass spectrometry (LC-MS/MS)
methods have been developed for the full quantitation of fatty acids from human plasma without
derivatization. Therefore, we propose a method that requires fewer sample preparation steps,
which can be used for the quantitation of several polyunsaturated fatty acids in human plasma.
The method offers rapid, accurate, sensitive, and simultaneous quantification of omega 3 (α-linolenic,
eicosapentaenoic, and docosahexaenoic acids) and omega 6 fatty acids (arachidonic and linoleic acids)
using high-performance LC-MS/MS. The selected fatty acids were analysed in lipid extracts from
both free and total forms. Chromatographic separation was achieved using a reversed phase C18
column with isocratic flow using ammonium acetate for improving negative electrospray ionization
(ESI) response. Mass detection was performed in multiple reaction monitoring (MRM) mode,
and deuterated internal standards were used for each target compound. The limits of quantification
were situated in the low nanomolar range, excepting linoleic acid, for which the limit was in the
high nanomolar range. The method was validated according to the U.S. Department of Health and
Human Services guidelines, and offers a fast, sensitive, and reliable quantification of selected omega
3 and 6 fatty acids in human plasma.

Keywords: high-performance liquid chromatography; tandem mass spectrometry; polyunsaturated
fatty acids; metabolomics; negative electrospray ionization; human plasma; C18 column; PUFA; MRM

1. Introduction

Polyunsaturated fatty acids (PUFAs) play essential roles in human physiology, and are both
obtained from foods and synthesized endogenously. Dietary habits have changed in the last decades,
especially in the western world where the intake ratio between polyunsaturated omega 3 (n-3) and
omega 6 (n-6) fatty acids has shifted from 1:1 to 20:1 in favour of n-3. Studies revealed that this modified
ratio has several health implications, influencing health outcomes through several mechanisms
such as systemic inflammation, adipogenesis, browning of adipose tissue, lipid homeostasis, and the
brain–gut–adipose-tissue communication [1]. Dietary supplementation with n-3 fatty acids has proven
effective in reducing the risk of heart disease, triglycerides levels, symptoms of rheumatoid arthritis,
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and progression of eye diseases [2–4]. As such, supplementation with PUFAs enhanced the expression
of genes involved in insulin signalling and glucose transport [5].

The n-3 fatty acids family includes α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and
docosahexaenoic acid (DHA). ALA, one of the two essential fatty acids (FAs) along with linoleic acid,
is available mostly from plant seeds (chia, flaxseed, hemp) and from other plant oils [6]. DHA and
EPA (also n-3 FAs) can be synthetized from ALA through desaturation and elongation, but with
relative low efficiency [7]. The main dietary sources of DHA and ALA are marine algae and fish oil.
DHA is a major constituent of brain, skin, and retina, while EPA is a precursor for eicosanoids [6].
The other essential FAs, linoleic acid (LA), is a n-6 FA available from vegetable oils, seeds, nuts, eggs,
and meat and, apart from its role as an energy source, it is a constituent of cell membranes, and its
derivate molecules are involved in cell signalling. LA is converted into gamma linolenic (GLA) by
a ∆6 desaturase enzyme. GLA is further converted into dihomo gamma linolenic (DGLA), conversion
which is enhanced by high levels of ALA. DGLA is converted into arachidonic acid (ARA), a n-6
FA that is an important constituent of phospholipids in cell membranes, and is also involved in cell
signalling [8].

Considering their important physiological roles in an organism, accurate plasma quantification of
n-3 and n-6 FAs (from both their free and total forms) is used in many studies.

Until recently, FAs were commonly quantified using gas chromatography–mass spectrometry
(GS-MS) with electron impact ionization following methyl esters derivatization [9,10] and gas
chromatography-flame ionization (GS-FID) [11]. Liquid chromatography–mass spectrometry (LC–MS)
began more recently to be used for FAs analysis. Using electrospray ionization (ESI), FAs tend to
ionize in negative mode, but they were reported to exhibit low specificity [12]. Therefore, chemical
derivatization was used to improve the ESI-LC-MS detection [12–14]. However, derivatization
requires additional steps in the sample preparation protocol. Several LC-MS methods for analysing
underivatized FAs were published, but these methods did not use tandem MS detection [15,16], or they
were focused on qualitative analysis [17]. Underivatized fatty acids were also quantitatively analysed
with barium acetate as the cationization agent in the positive ionization mode with a limit of detection
in low micromolar range [18]. Additionally, only few reports focused on quantifying both free and
total FAs together.

The aim of this study was to develop and validate a LC-MS/MS method to fully quantitate ALA,
ARA, DHA, EPA, and LA in plasma from both their free and total forms, using a simplified sample
preparation procedure without the need of chemical derivatization. The method is intended as
an improved alternative to the existing gas chromatography-based methods by offering shorter
analytical runs.

2. Results and Discussion

2.1. Comparison of the Two Extraction Procedures

The lipid extraction method with hexane/isopropanol was adapted after a method described
by Hara and Radin [19] for extracting lipids from nervous tissue. By comparing it to the Bligh–Dyer
method, we found that the two methods gave similar results for free FAs extraction. However, for total
FAs extraction, the hexane/isopropanol method proved to be more efficient as most FAs levels were
higher (see Figure S2).

A previous study by Reis et al. [20] showed that the hexane/isopropanol method is very efficient
for extracting triacylglycerols, ceramides, and free fatty acids, and fairly efficient for extracting
phosphatidylcholine. The same study indicated that different extraction solvents gave different
results for different classes of lipids. Thus, the choice of the extraction method should take into
consideration the targeted class of lipids, since no single method can cover them all. In addition,
it should be adapted to the sample matrix. In our study, which was focused on plasma samples
where triacylglycerols are the predominant class of lipids, the hexane/isopropanol was considered
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appropriate. We also considered the simplicity of the method and the fact that it is less time-consuming.
We estimated that the time saved was approximately three minutes per sample as compared to the
Bligh-Dyer method, a fact that counts especially when a large number of samples are prepared, such as
in metabolomic assessments.

2.2. Simultaneous Quantification of 5 Fatty Acids

A multiple reaction monitoring (MRM) method was successfully developed for all selected FAs.
Where possible, two transitions per compound were used. Thus, for ARA, DHA, and EPA we used
2 transitions while for ALA and LA only one transition was used. MRM chromatograms for each
targeted FA are exemplified in Figure 1.
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Figure 1. Multiple reaction monitoring (MRM) chromatograms of ALA, ALA-d14, ARA, ARA-d8,
DHA, DHA-d5, EPA, EPA-d5, LA, and LA-d4 standards at concentration of 0.016, 0.2, 0.08, 0.1, 0.016,
0.1, 0.016, 0.1, 0.08, and 0.2 µg/mL respectively. Legend: ALA—α-linolenic acid, ARA—arachidonic
acid, DHA—docosahexaenoic acid, EPA—eicosapentaenoic acid, LA—linoleic acid.

The limits of detection (LODs) were situated in a 0.8–10.7 nmol/L interval, while the limits of
quantification (LOQs) were in a 2.4–285.3 nmol/L range (Table 1).
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Table 1. Retention times (RT) and their relative standard deviation (RSD), limit of detection (LOD),
and limits of quantification (LOQ) for each compound.

Compound RT (min) RSD% for RT LOD (nmol/L) LOQ (nmol/L)

ALA 4.17 1.10 3.59 17.96
ARA 4.60 0.50 3.28 13.14
DHA 4.08 0.60 0.82 2.47
EPA 3.83 0.50 2.02 6.12
LA 5.07 0.50 10.70 285.26

ALA D14 4.07 0.50 N/A N/A
ARA D8 4.53 0.33 N/A N/A
DHA D5 4.05 0.55 N/A N/A
EPA D5 3.81 0.50 N/A N/A
LA D4 5.02 0.35 N/A N/A

Legend: RT—retention time, RSD—relative standard deviation, LOD—limit of detection, LOQ—limit of quantification,
ALA—α-linolenic acid, ARA—arachidonic acid, DHA—docosahexaenoic acid, EPA—eicosapentaenoic acid,
LA—linoleic acid.

The LOQs were situated in low nanomolar range excepting for LA, for which the limit was in
high nanomolar range but not considered an issue since its minimum observed level in samples was in
micromolar range. Descriptive statistics on plasma FAs results are indicated in Table 2.

Table 2. Descriptive statistics of quantification results: Minimum, median, and maximum concentrations
found, and the standard deviation for each quantified fatty acid (total and free).

Compound Min. Conc.
(µmol/L)

Mean Conc.
(µmol/L)

Max. Conc.
(µmol/L)

StDev
(µmol/L)

ALA
total 8.99 20.14 41.49 9.80
free 0.50 6.36 23.16 4.10

ARA
total 215.40 387.10 693.10 119.70
free 3.18 8.36 32.25 4.50

DHA
total 131.20 297.40 544.20 132.30
free 1.50 8.40 42.36 5.70

EPA
total 2.14 9.14 22.02 5.57
free 0.09 0.32 2.90 0.28

LA
total 660.40 1012.00 1555.50 247.20
free 25.60 191.50 601.10 97.05

Legend: StDev—standard deviation, ALA—α-linolenic acid, ARA—arachidonic acid, DHA—docosahexaenoic acid,
EPA—eicosapentaenoic acid, LA—linoleic acid.

When using ammonium acetate in the mobile phase, previously used in other studies [21,22],
the sensitivity was enhanced, probably due to the acetate anion improving negative ESI responses as
indicated by Hua and Jenke [23].

Previous studies have shown that reverse phase C18 columns provided good separation for
fatty acids [12,15]. In the HPLC optimization process, we also evaluated a high-pressure C18 column
(Acquity UPLC 100 × 2.1 mm, 1.7 µm BEH C18 column, Waters, Milford, Massachusetts, USA), but the
results were modest as no peak was detected for ALA at 0.016 µg/mL, and the peak intensities for the
other targeted compounds were significantly lower (obtained MRM chromatograms are showed in
Figure S3). Therefore, the Shim-Pack GIST-HP C18 was selected for further method development.

When using the Shim-Pack GIST-HP C18 column with isocratic flow, elution started at 3.83 min
with EPA, while the last was LA at 5.02 min (Figure 2). The HPLC method ended at 6.5 min. Even if
the run was ended after less than 2 min after the last compound eluted, no carry-over was observed as
no peaks were integrated from blank samples, even after running the highest concentrated standards
(50 µg/mL). In addition, the RSD% of the retention times (Table 1) were low. The use of isocratic flow
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eliminated the need for column equilibration, allowing us to shorten the analytical cycle and to obtain
a high sample throughput.
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Figure 2. The overlaid total ion chromatograms of the targeted fatty acids. Data was obtained following
analysis of a plasma sample (total FAs content). Legend: ALA—α-linolenic acid, ARA—arachidonic
acid, DHA—docosahexaenoic acid, EPA—eicosapentaenoic acid, LA—linoleic acid.

This LC-MS/MS method was designed considering the primary goal, which was to develop
a method of quantification without the derivatization of fatty acids. Derivatization would have
required several extra steps in an already time-consuming sample preparation protocol. Previously
published methods using dimethylaminoethyl ester (DMAE) derivatives of fatty acids provided LODs
in the low femtomoles range [12], however it required an additional incubation and extraction steps,
adding more complexity to an already time-consuming protocol. Although derivatization provides
unparalleled sensitivity, our method proved that FAs from human plasma can be reliably quantified
without the need of derivatization.

In comparison with the GS-MS and GS-FID methods, which require an approximately 20 min
analytical run [11,24], our method is significantly shorter, with a duration of only 6.5 min, which results
in a massive time reduction after running a large number of samples.

2.3. Method Validation

All acceptance criteria were met. The calibration curves showed a very good correlation between
concentration and response, R-squared for all calibrants was greater than 0.995, with no weighting
method applied. All calibration curves were reproducible.

Accuracy was evaluated for four different concentrations for each standard. The RSD%s were all
within the margin of ±15%. The highest RSD (9.1%) was found at the lowest calibrant for LA, a value
that had a large margin inside the Food and Drug Administration (FDA) guide’s acceptance. Accuracy
was also surveyed during each analytical run by inserting a quality control sample for every 10 samples,
and allowance was set for the LabSolution software between 85% and 115%, as any deviation from this
interval would invalidate the results. The RSD% for intra-assay and inter-assay precision test were also
within the acceptable margin of 15%, demonstrating that the results are reproducible. The complete
results for replicated analysis of standards (accuracy) and replicated analysis of samples (precision)
are indicated in Tables 3 and 4, respectively.

Recovery efficiency was >90% for all internal standards. Recovery reproducibility results for total
fatty acids samples (RSDs) were: ALA-d14—5.2%, ARA-d8—3.3%, DHA-d5—11% EPA-d5—4.2% and
LA-d4—10.1%; while for free fatty acids samples, the RSDs were: ALA-d14—7%, ARA-d8—9.3%,
DHA-d5—4.6% EPA-d5—3.4% and LA-d4—7.6%. The obtained results showed that the response of
internal standards was consistent and therefore the matrix effect was acceptable.
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Table 3. The results for replicated analysis of standards (test accuracy). Each standard was analysed 10
times and the peak area was used to calculate the relative standard deviation (RSD).

Compound RSD %
Mean RSD%

0.016 µg/mL 0.08 µg/mL 0.4 µg/mL 2 µg/mL 10 µg/mL

ALA N/A 6.9 2.7 5.2 4.7 4.9
ARA N/A 8.6 7.39 2.7 6 6.2
DHA N/A 3.3 7 2.6 6.1 4.7
EPA 6.9 2.3 6.1 6.2 N/A 5.4
LA N/A 7.4 2.7 6 6.7 5.7

Legend: ALA—α-linolenic acid, ARA—arachidonic acid, DHA—docosahexaenoic acid, EPA—eicosapentaenoic
acid, LA—linoleic acid.

Table 4. The results for replicated analysis of samples (test precision). The sample was analysed 10
times in the same day (within-run precision) and 5 times in different days (between-run precision).
The obtained concentrations were used to calculate the relative standard deviation (RSD%).

Compound Intra-Assay RSD% Inter-Assay RSD%

ALA
total 8.05 12.60
free 7.81 13.10

ARA
total 1.92 6.50
free 2.01 7.10

DHA
total 5.54 7.45
free 5.20 7.70

EPA
total 3.00 8.10
free 3.40 9.40

LA
total 2.89 6.05
free 3.34 7.60

Legend: ALA—α-linolenic acid, ARA—arachidonic acid, DHA—docosahexaenoic acid, EPA—eicosapentaenoic
acid, LA—linoleic acid.

3. Materials and Methods

3.1. Participants and Samples

Two hundred obese children (97 males, 103 females) were recruited at the 2nd Paediatric Clinic of
Clinical Emergency County Hospital Timisoara, Romania, in the context of a bigger study. Participants
were aged 7–18 years, with BMI > +2 SD as compared to the World Health Organization (WHO)
reference, and abdominal circumference above the 90th percentile. Their parents or other legal
guardians, as well as the children themselves, were fully informed about the aims and methods
of the study, and informed consent was obtained from legal guardians. The study was conducted
in accordance with the Declaration of Helsinki, and was approved by the Ethics Committee of the
“Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania, and was registered at
ClinicalTrials.gov (NCT02837367).

The blood samples were collected after overnight fasting using a 2 mL VACUTEST® tube Sterile
R interior, with K3EDTA 3.6 mg (Vacutest Kima srl, Arzegrande, Italy). Samples were then subjected to
centrifugation at room temperature at 4000 rpm for 10 minutes. After centrifugation, the upper plasma
was collected and stored at −70 ◦C until further use.

3.2. Standards and Reagents

Docosahexaenoic acid, Docosahexaenoic acid—d5, Eicosapentaenoic acid, Eicosapentaenoic
acid—d5, Arachidonic acid, Arachidonic—d8, Linoleic acid, and α-Linolenic acid were purchased

ClinicalTrials.gov


Molecules 2019, 24, 360 7 of 11

from Sigma-Aldrich (St. Louis, MO, USA). Linolenic Acid—d4 and α-Linolenic Acid—d14 were
purchased from Cayman Chemical Company (Ann Arbor, MI, USA).

Methanol and Hexane were purchased from Honeywell (Seelze, Germany), potassium hydroxide
from Chimreactiv (Bucharest, Romania), acetonitrile from AppliChem GmbH (Darmstadt, Germany),
isopropanol, formic acid, and ammonium acetate from Merck (Darmstadt, Germany), and water from
VWR International (Radnor, Pennsylvania, USA). All reagents were HPLC-grade.

3.3. Sample Preparation

3.3.1. Lipid Extraction

Aliquots of 100 µL plasma were transferred to Eppendorf tubes and mixed with 10 µL of
internal standard mixture containing 10 µg/mL DHA-d5, ARA-d8, and EPA-d5, and 10 µg/mL
LA-d4 and ALA-d1. The lipids were then extracted with hexane/isopropanol, 3:2 v/v at a 1:10
sample/solvent ratio. The tubes were vortexed and maintained at −20 ◦C for 10 min, then centrifuged
at 14,000 g at 4 ◦C for 5 min. The supernatant was collected, transferred to glass tubes, and dried
under nitrogen flow. Then, 1 mL of 80% methanol was added, and the tubes were thoroughly mixed.
Of this, a volume of 100 µL was transferred into an autosampler vial for free fatty acids analysis.
The remaining aliquot was subjected to alkaline hydrolysis.

The Bligh–Dyer method [25] (Supplementary Material 1) was also used for comparison.

3.3.2. Alkaline Hydrolysis

A volume of 100 µL of a solution of 0.3 M KOH in 80% methanol was added to the lipid extract.
The mixture was incubated at 80 ◦C for 30 min. The tubes were allowed to cool, and then 10 µL of
formic acid was added to neutralize the pH. For separating the fatty acids, 1 mL hexane was added,
and the tubes were placed on a rotary mixer for 5 min. The tubes were briefly centrifuged at 1000× g,
and then the top hexane layer was transferred into a clean glass tube and dried under nitrogen flow.
The sediment was reconstituted in 1 mL of 80% methanol, of which 100 µL was transferred into
an autosampler vial for analysis.

3.4. Preparation of Standard Solutions

Calibration standards were prepared in 80% methanol at concentrations of 0.08, 0.4, 2, 10 and
50 µg/mL for LA and ARA; 0.016, 0.08, 0.4, 2 and 10 µg/mL for DHA; and 0.0032, 0.016, 0.08, 0.4 and
2 µg/mL for EPA and ALA. Internal standards were added to all calibration standards at concentrations
of 0.1 µg/mL for DHA-d5, ARA-d8, and EPA-d5, and of 0.2 µg/mL for LA-d4 and ALA-d14.

3.5. LC–MS/MS Analysis

The liquid chromatography–tandem mass spectrometry (LC-MS/MS) system comprised
a Shimadzu UHPLC Nexera X2 system hyphenated to a triple quadrupole mass spectrometer LCMS-8045
(Shimadzu Corporation, Kyoto, Japan). The samples were kept in the autosampler (Nexera X2 SIL-30AC)
at 5 ◦C. The chromatographic separation was performed using a 150× 2.1 mm, 3 µm Shim-Pack GIST-HP
C18 column equipped with a GIST-HP 10× 1.5 mm, 3 µm guard column (Shimadzu Corporation, Kyoto,
Japan). The LC system was composed of one Nexera X2 LC-30AD quaternary pump, a column oven
(CTO-20AC) maintained at 40 ◦C, and a model DGU-20A5R degasser. The separation was performed
using isocratic flow of a solvent composed of 90% acetonitrile, 10% water, and 2 mM ammonium acetate.
The flow rate was set at 0.21 mL/min. The injection volume used was 10 µL.

The mass spectrometer was operated with an electrospray ionization (ESI) source in negative
mode. The interface temperature was set 300 ◦C while the desolvation line and heat block temperatures
were set at 250 and 400 ◦C, respectively. The interface voltage was maintained at 3kV. Nitrogen was
used as nebulizing gas at a flow of 3 L/min, while drying gas and heating gas flows (also nitrogen)
were maintained at 10 L/min. Argon was used as collision gas at 230 kPa.
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The MS/MS parameters (Table 5) were optimized by direct injection of 1 µL volumes of standards
at 100 µg/mL.

Table 5. Optimized MRM transitions.

Compound Transition
(m/z)

Dwell Time
(ms)

Q1 Pre-Bias
(V)

Collision
Energy

Q3 Pre-Bias
(V)

ALA 277.25→259.15 100 10 16 16

ALA D14 291.30→271.40 100 14 18 12

DHA 327.30→283.35
327.30→229.35

100
100

12
12

10
12

18
15

DHA D5 332.25→288.40
332.25→234.40

100
100

17
17

11
12

12
14

LA 279.20→261.25 100 11 18 27

LA D4 283.25→265.40 100 14 18 26

ARA 303.30→259.35
303.30→205.35

100
100

15
15

12
13

16
12

ARA D8 311.25→267.40
311.25→212.40

100
100

16
16

13
13

12
13

EPA 301.25→257.30
301.25→203.30

100
100

11
16

10
12

11
12

EPA D5 306.25→264.40
306.25→208.40

100
100

11
15

11
12

11
12

The MS data were processed using LabSolution software (v5.91/2017, Shimadzu Corporation,
Kyoto, Japan). Spectra was smoothed using a standard method with a width of 20 s. Peak integration
was performed using the i-PeakFinder algorithm with a 1-degree baseline following. Peak identification
was based on absolute retention time (RT) with a window of 2%. No reference RT update was used.
Reference ion ratio allowance (for ALA, ALA-D14, DHA, DHA-d5, EPA, and EPA-d5) was set to 50%.
The quantitation method was based on 5-point calibration and using peak areas. Calibration curves
were set to linear with no forcing or weighting applied.

3.6. Method Validation

Method validation procedures followed the recommendations and the acceptance criteria found
in the FDA guide for bioanalytical method validation [26] addressing calibration curve, accuracy,
precision, recovery, quality control samples, and sensitivity.

Calibration curves were obtained using the LabSolution software (v5.91/2017, Shimadzu
Corporation, Kyoto, Japan) where the acceptance criterion for calibration points was ±20% of the
theoretical concentrations.

For evaluating accuracy, 10 replicate analyses of standards were performed at the following
concentrations: 0.08, 0.4, 2, 10 µg/mL for ALA, DHA, LA, and ARA, and 0.016, 0.08, 0.4, 2 µg/mL for
EPA. Relative standard deviation (RSD%) was calculated using analyte peak area. Also, the RSD was
calculated for the retention times. The acceptance criterion was ±15% RSD.

For evaluating precision, three plasma samples were pooled, extracted, and analysed 10 times in
the same day (within-run precision) and five times in different days (between-run precision). RSD was
calculated for the obtained results (concentration), and the acceptance criterion was ±15%.

For recovery, both efficiency and reproducibility were evaluated. The efficiency was calculated
by comparing the internal standard peak areas of standards and real samples. Reproducibility was
evaluated by calculating the RSD of the internal standard peak area from 20 samples. The FDA guide
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does not mention acceptance criterion in this case, however it recommends that internal standard
recovery should be consistent and reproducible. Therefore, we set the acceptance criterion to ±15%.

One quality control (QC) sample and one blank (consisting of 80% methanol) were analysed for
every 10 samples. The allowance range was set at 85–115%.

For sensitivity evaluation, the limit of detection (LOD) and limit of quantification (LOQ) were
automatically calculated by the LabSolution software (v5.91/2017, Shimadzu Corporation, Kyoto,
Japan). LOD was established as the lowest concentration of the calibration standard detected with
a signal-to-noise (S/N) ratio ≥ 3:1 while the LOQ was established as the lowest concentration of the
calibration standard detected with a S/N ratio ≥ 10:1.

3.7. Statistics

RSD% used in validation was calculated with LabSolution software (v5.91/2017, Shimadzu
Corporation, Kyoto, Japan).

Descriptive statistics were performed using Minitab version 17.1.0 (Minitab, Inc. State College,
PA, USA).

4. Conclusions

The developed and validated method described offers a simplified extraction procedure without
the need of derivatization, and a fast and reproducible LC-MS/MS quantification. It is suitable for
quantifying n-3 and n-6 fatty acids in human plasma, in both free and total forms.

Due to the fact the derivatization is not needed, the sample preparation is less time-consuming.
The LC-MS/MS proved significantly faster than previously published GS-MS methods. Combining
these two factors, the proposed workflow is significantly less time-consuming than existing GS–MS
and LC-MS methods.

The method can be used to assess changes in fatty acid metabolism, which have implications in
obesity, type 2 diabetes, insulin resistance, and interrelationship with other metabolic pathways.

Supplementary Materials: The Supplementary Materials are available online.
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