Novel cucurbitane triterpenes from the tubers of *Hemsleya amabilis* with their anti-tumor acitivity

Wei Feng ^{1, a}, Yuan Zhou ^{1, a}, Ling-Yu Zhou ¹, Li-Ying Kang ¹, Xiang Wang ¹, Bao-Lin Li ¹, Qing Li ¹, and Li-Ying Niu ^{1,*}

- ¹ School of Pharmaceutical Sciences, Hebei TCM Formula Granule Technology Innovation Center& TCM Formula Granule Research Center of Hebei Province University, Hebei University of Chinese Medicine, Shijiazhuang 050091, China.
- ^a These authors contributed equally to this work
- * Correspondence: <u>niuliyingyy@126.com</u> (L. Niu); Tel.: +86 311 89926208 (L.Niu.)

Received: date; Accepted: date; Published: date

Abstract: The chemical research of the medicinal plant *Hemsleya amabilis* (Cucurbitaceae) yielded five new cucurbitane-type triterpenes hemslelis A-E (**1-5**) by silica gel column, ODS column, and semi-HPLC techniques. The structure was determined by spectroscopic analysis and examined alongside existing data from prior studies. Compound **1-5** was evaluated for their anti-tumor activity against three human tumor cell lines, Hela, HCT-8, and HepG-2, with the IC₅₀ ranging from 5.9 to 33.9 μ M compared to Cisplatin

Keywords: Hemsleya amabilis; cucurbitane-type; triterpenes; cytotoxic activity.

Figure S1. ¹H-NMR (600 MHz, Pyridine- d_5) spectrum of the new compound 1 Figure S2. ¹³C-APT (150 MHz, Pyridine- d_5) spectrum of the new compound 1 Figure S3. HSQC spectrum of the new compound 1 Figure S4. HMBC spectrum of the new compound 1 Figure S5. ¹H-¹H COSY spectrum of the new compound 1 Figure S6. NOESY spectrum of the new compound 1 Figure S7. ¹H-NMR (600 MHz, Pyridine- d_5) spectrum of the new compound 2 Figure S8. ¹³C-APT (150 MHz, Pyridine- d_5) spectrum of the new compound 2 Figure S9. HSQC spectrum of the new compound 2 Figure S10. HMBC spectrum of the new compound 2 Figure S11. ¹H-¹H COSY spectrum of the new compound 2 Figure S12. NOESY spectrum of the new compound 2 Figure S13. ¹H-NMR (600 MHz, Pyridine-d₅) spectrum of the new compound **3** Figure S14. ¹³C-APT (150 MHz, Pyridine-*d*₅) spectrum of the new compound **3** Figure S15. HSQC spectrum of the new compound 3 Figure S16. HMBC spectrum of the new compound 3 Figure S17. ¹H-¹H COSY spectrum of the new compound **3** Figure S18. NOESY spectrum of the new compound 3 Figure S19. ¹H-NMR (600 MHz, Pyridine- d_5) spectrum of the new compound 4 Figure S20. ¹³C-APT (150 MHz, Pyridine- d_5) spectrum of the new compound 4 Figure S21. HSQC spectrum of the new compound 4 Figure S22. HMBC spectrum of the new compound 4 Figure S23. ¹H-¹H COSY spectrum of the new compound 4 Figure S24. NOESY spectrum of the new compound 4 Figure S25. ¹H-NMR (600 MHz, Pyridine- d_5) spectrum of the new compound 5 Figure S26. 13 C-APT (150 MHz, Pyridine- d_5) spectrum of the new compound 5 Figure S27. HSQC spectrum of the new compound 5 Figure S28. HMBC spectrum of the new compound 5 Figure S29. ¹H-¹H COSY spectrum of the new compound **5** Figure S30. NOESY spectrum of the new compound 5

Figure S1. ¹H-NMR (600 MHz, Pyridine-d₅) spectrum of the new compound 1

Figure S2. ¹³C-APT (150 MHz, Pyridine-*d*₅) spectrum of the new compound 1

Figure S3. HSQC spectrum of the new compound 1

Figure S4. HMBC spectrum of the new compound 1

Figure S5. ¹H-¹H COSY spectrum of the new compound 1

Figure S6. NOESY spectrum of the new compound 1

Figure S7. ¹H-NMR (600 MHz, Pyridine-*d*₅) spectrum of the new compound **2**

Figure S8. ¹³C-APT (150 MHz, Pyridine-*d*₅) spectrum of the new compound **2**

Figure S9. HSQC spectrum of the new compound **2**

Figure S10. HMBC spectrum of the new compound **2**

Figure S11. ^{1}H - ^{1}H COSY spectrum of the new compound **2**

Figure S12. NOESY spectrum of the new compound ${\bf 2}$

Figure S13. ¹H-NMR (600 MHz, Pyridine-*d*₅) spectrum of the new compound **3**

Figure S14. ¹³C-APT (150 MHz, Pyridine- d_5) spectrum of the new compound **3**

Figure S15. HSQC spectrum of the new compound **3**

Figure S16. HMBC spectrum of the new compound **3**

Figure S17. ¹H-¹H COSY spectrum of the new compound 3

Figure S18. NOESY spectrum of the new compound **3**

Figure S19. ¹H-NMR (600 MHz, Pyridine-d₅) spectrum of the new compound 4

Figure S20. ¹³C-APT (150 MHz, Pyridine-d₅) spectrum of the new compound 4

Figure S21. HSQC spectrum of the new compound 4

Figure S22. HMBC spectrum of the new compound 4

Figure S23. ¹H-¹H COSY spectrum of the new compound **4**

Figure S24. NOESY spectrum of the new compound 4

Figure S25. ¹H-NMR (600 MHz, Pyridine-*d*₅) spectrum of the new compound **5**

Figure S26. ¹³C-APT (150 MHz, Pyridine-*d*₅) spectrum of the new compound 5

Figure S27. HSQC spectrum of the new compound 5

Figure S28. HMBC spectrum of the new compound 5

Figure S29. ¹H-¹H COSY spectrum of the new compound **5**

Figure S30. NOESY spectrum of the new compound 5