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Abstract: An efficient and simple methodology for Ullmann Cu(I)-catalyzed synthesis of
di- and trisubstituted 1,3,5-triazine derivatives from dichlorotriazinyl benzenesulfonamide and
corresponding nucleophiles is reported. Cations Cu(I) supported on macroporous and weakly
acidic, low-cost industrial resin of polyacrylate type were used as a catalyst. The reaction times and
yields were compared with traditional synthetic methods for synthesis of substituted 1,3,5-triazine
derivatives via nucleophilic substitution of chlorine atoms in dichlorotriazinyl benzenesulfonamide.
It was found that Ullmann-type reactions provide significantly shortened reaction times and, in some
cases, also higher yields. Finally, trisubstituted s-triazine derivatives were effectively prepared via
Ullmann-type reaction in a one-pot synthetic design. Six new s-triazine derivatives with potential
biological activity were prepared and characterized.

Keywords: 1,3,5-triazine; supported Cu(I) catalyst; Ullmann reaction; one-pot synthesis

1. Introduction

The substituted 1,3,5-triazine derivatives show a wide spectrum of effects on biological systems
such as anti-bacterial, anti-viral, anti-mycobacterial, anti-tubercular, anti-malarial, anti-leishmanial,
anti-amoebic, anti-inflammatory, anti-HIV, anti-cancer, and others [1–4]. A variety of biological
activities of triazine derivatives has attracted attention in the field of medicinal chemistry
research. Especially, triazinylaminoalkylbenzenesulfonamides are intensively studied because of
their antimicrobial and anticancer activity [5–9]. They act as inhibitors of carbonic anhydrase and the
key structural moiety for biological activity in these derivatives is aminoalkylbenzenesulfonamide
(examples of the inhibitors are given in Figure 1).

  

Molecules 2019, 24, x; doi: FOR PEER REVIEW www.mdpi.com/journal/molecules 

Article 

New Approach for the One-Pot Synthesis of 1,3,5-

Triazine Derivatives: Application of Cu(I) Supported 

on a Weakly Acidic Cation-Exchanger Resin in a 

Comparative Study 

Eva Havránková 1,*, Jozef Csöllei 1 and Pavel Pazdera 2 

1 Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical 

Sciences, Brno 612 42, Czech Republic; Csolleij@vfu.cz 
2 Department of Chemistry, Faculty of Science, Centre for Syntheses at Sustainable Conditions and Their 

Management, Masaryk University, Brno 625 00, Czech Republic; pazdera@chemi.muni.cz 

* Correspondence: havrankovae@gmail.com or F14190@vfu.cz; Tel: +420 54156 2926 

Academic editor: Romano V. A. Orru 

Received: 20 September 2019; Accepted: 3 October 2019; Published: 5 October 2019 

Abstract: An efficient and simple methodology for Ullmann Cu(I)-catalyzed synthesis of di- and 

trisubstituted 1,3,5-triazine derivatives from dichlorotriazinyl benzenesulfonamide and 

corresponding nucleophiles is reported. Cations Cu(I) supported on macroporous and weakly 

acidic, low-cost industrial resin of polyacrylate type were used as a catalyst. The reaction times and 

yields were compared with traditional synthetic methods for synthesis of substituted 1,3,5-triazine 

derivatives via nucleophilic substitution of chlorine atoms in dichlorotriazinyl benzenesulfonamide. 

It was found that Ullmann-type reactions provide significantly shortened reaction times and, in 

some cases, also higher yields. Finally, trisubstituted s-triazine derivatives were effectively prepared 

via Ullmann-type reaction in a one-pot synthetic design. Six new s-triazine derivatives with 

potential biological activity were prepared and characterized. 

Keywords: 1,3,5-triazine; supported Cu(I) catalyst; Ullmann reaction; one-pot synthesis 

 

1. Introduction 

The substituted 1,3,5-triazine derivatives show a wide spectrum of effects on biological systems 

such as anti-bacterial, anti-viral, anti-mycobacterial, anti-tubercular, anti-malarial, anti-leishmanial, 

anti-amoebic, anti-inflammatory, anti-HIV, anti-cancer, and others. [1–4]. A variety of biological 

activities of triazine derivatives has attracted attention in the field of medicinal chemistry research. 

Especially, triazinylaminoalkylbenzenesulfonamides are intensively studied because of their 

antimicrobial and anticancer activity [5–9]. They act as inhibitors of carbonic anhydrase and the key 

structural moiety for biological activity in these derivatives is aminoalkylbenzenesulfonamide 

(examples of the inhibitors are given in Figure 1). 

 

Figure 1. Example of a carbonic anhydrase inhibitors structure. [10]. Figure 1. Example of a carbonic anhydrase inhibitors structure [10].

Substituted 1,3,5-triazines are usually synthesized in two different ways. The classic method is
based on the nucleophilic substitution of chlorine atoms in starting 2,4,6-trichloro-1,3,5-triazine, i.e.,
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cyanuric chloride [11–14]. Another approach to synthesis is a sequential construction of a triazine
ring [15–17]. Zhang et al. [18] recently published a copper-catalyzed synthesis (construction of a
triazine ring) of substituted 2,4-diamino-1,3,5-triazines from 1,1-dibromoalkenes and biguanides under
mild conditions.

Copper based catalytic systems used for Ullmann C–N coupling are in most cases used
under conditions of a homogenous catalysis and in the presence of ligands, which are necessary
for stabilization of Cu(I)- and Cu(III)-intermediates [19,20]. In last twenty years, only few
heterogeneous/solid supported reusable Cu-catalysts suitable for Ullmann coupling reactions were
developed. Interesting examples of the abovementioned exceptions were cellulose-supported
copper(0) [21], an iminopyridine ligand grafted onto phosphorus dendrimers [22], supported copper
fluorapatite [23,24], copper nanoparticles [25], Cu2O-coated Cu-nanoparticles [26], titanium oxide
encapsulated copper nanocatalyst [27], furfural functionalized polymer-amine grafted with copper
catalyst [28], N-heterocyclic carbene–copper complex supported on hyper crosslinked polymers [29],
and glass beads coated with Cu/Zn nanocatalyst [30] or silica-tethered copper complex [31].

Solid supported catalysts combine advantages of homogenous and heterogeneous catalysts [32–34].
Commercially available industrial cation exchange resins, which are very cheap and easily available,
proved to be an optimal supporting material for this type of heterogeneous catalyst [34–38].
Modified cation exchange resins supporting metal ions as catalytic systems have many advantages
(i.e., they are very effective, easily separable and stable).

In this paper, we report an efficient and simple synthetic approach for preparation of 1,3,5-triazine
derivatives carried out as a one-pot reaction and catalyzed by Cu(I)-supported on a weekly acidic resin.

2. Results and Discussion

Our heterogeneous catalyst containing Cu(I)-cations supported on a cation exchange resin is,
in comparison with most of the previously reported heterogeneous Cu(I) catalysts, very easy for
preparation and very cheap. Large size of resin beads allows the separation of catalyst more easily
than other solid supports (i.e., alumina, silica, carbon, zeolite). Also, unlike the other hard supports,
the presented catalytic system does not rub against the surface of reaction vessels. Because of these
reasons, the catalyst can be easily used in industrial production. The recoverability of catalyst was also
studied (see Supporting Information). It was found, that catalyst can be used in one-pot synthesis for
ten times without loss of a catalytic activity.

The catalytic efficiency of Cu(I)-cations supported on a macroporous weakly acidic cation
exchanger in syntheses of di- and trisubstituted 1,3,5-triazine derivatives starting from dichlorotriazinyl
benzenesulfonamide and corresponding nucleophiles was studied in this research. The catalyzed
reactions were performed (see Section 3) with the addition of 2.5 mol% of Cu(I)-supported on a given
resin. The general scheme of the reactions was demonstrated by Scheme 1. The resulting reaction
times and obtained yields of catalyzed reactions are summarized in Table 1 together with the results
of uncatalyzed reactions of the same type (the %yields of reactions and spectral characterization of
compounds were published recently in Reference [39]).

It is well known that the best results for Ullmann-type synthesis catalyzed by Cu(I) are achieved
under specific conditions as there are many variables [40]. Potassium carbonate (inorganic base)
is recommended as one of the most effective bases for Ullmann couplings especially together with
N,N-dimethylformamide as a solvent. These findings were also confirmed by the obtained results.

Data in Table 1 clearly shows that employment of Cu(I) supported catalytic system lead to
significantly shorter reaction times and usually provided better yields than those observed in case of
uncatalyzed reactions.

The side products were not observed even in reactions with strong nucleophiles. The first reason is
that aminoalkylbenzenesulfonamide structural motive present in starting compound rapidly decreases
the reactivity of remaining chlorine atoms on triazine skeleton. It was also observed, that occurrence of
side products can be well controlled by the reaction temperature. In the reactions with lower yields,
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the conversion of starting nucleophile was not full, and the reaction was terminated when the rate of
conversion did not change after 24 h.

The general rule of nucleophilicity applies—the better the nucleophile, the better the results in
reaction time. Therefore, in the synthesis of compounds 1, 3, and 5 the reaction time is shortened with
the increasing number of CH2 groups between the piperazine ring and the terminal methoxycarbonyl
(EWG) which improves the nucleophilicity of the second piperazine nitrogen atom.
Molecules 2019, 24, x FOR PEER REVIEW 3 of 9 
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Scheme 1. General scheme of syntheses of di- and trisubstituted 1,3,5-triazine derivatives.

On the other hand, Table 1 shows the reversed effect of the present sulfonamide group (EWG) on the
reactivity of the triazine ring when substituting the chlorine atom. The reactivity of the triazine skeleton
decreases with the increasing distance of the sulfonamide group, i.e., with the increasing number of
CH2 groups. Surprisingly, for compounds containing aminopropanole substituent, the opposite trend
was observed.

As an additional contribution of our study, a simplified design of the synthesis was proposed and
successfully verified. The catalyzed syntheses of trisubstituted derivatives of s-triazine (compounds
10–17) can now be carried out as one-pot reactions which brings further benefits. The reaction times
of one-pot syntheses are comparable with those of step-by-step substitution reactions (see Table 1).
The one-pot design of reactions moreover provides slightly higher yields.

The efficiency of our catalyst was also compared with CuI (see Table 2). Synthesis of compound 5
was carried out as described in experimental section (Section 3.3.1) and the supported catalyst was
replaced with 2.5 mol% of CuI. We were pleased to find that use of CuI as a catalyst did not have
any effect on the model reaction and the yield and reaction time were comparable with those of the
uncatalyzed reaction (see Table 2). As an explanation of different catalytic activity of Cu(I)-cations
supported on resin and free CuI, we supposed that the carboxylate groups present on the surface of
resin could stabilize Cu(I) cations.



Molecules 2019, 24, 3586 4 of 10

Table 1. Results of uncatalyzed and catalyzed syntheses of di- and trisubstituted 1,3,5-triazine derivatives including one-pot synthesis of trisubstituted
1,3,5-triazine derivatives.

Compound n R R′
Without Catalyst Catalyst-Supported Cu(I) b One-Pot Reaction; Catalyst-Supported Cu(I) b

t (h) %yield t (h) %yield t (h) %yield

1 a 1 [N(CH2CH2)2N]COOCH3 Cl 168 63.4 10 67.2 - -
2 a 0 [N(CH2CH2)2N]COOCH3 Cl 64 89.3 4 87.9 - -
3 a 1 [N(CH2CH2)2N]CH2COOCH3 Cl 144 44.3 8 54.8 - -
4 a 0 [N(CH2CH2)2N]CH2COOCH3 Cl 50 86.9 3 88.1 - -
5 a 1 [N(CH2CH2)2N]CH2CH2COOCH3 Cl 72 29.8 2 59.9 - -
6 1 NH-CH2CH2CH2OH Cl 23 64.1 7 57.4 - -
7 2 NH-CH2CH2CH2OH Cl 27 97.9 3 95.2 - -
8 2 NH-CH2CH(OH)CH2OH Cl 13 87.6 5 77.2 - -
9 2 [N(CH2CH2)2N]CH2CH2COOCH3 Cl 33 77.8 5 78.1 - -

10 a 1 NH-CH2CH2-C6H4(1,4)-4-SO2NH2 NH-CH2CH2-C6H4(1,4)-4-SO2NH2 22 32.0 2 51.9 12 56.9
11 a 0 NH-CH2CH2-C6H4(1,4)-4-SO2NH2 NH-CH2CH2-C6H4(1,4)-4-SO2NH2 24 68.3 2 71.2 8 73.2
12 a 1 NH-CH2-C6H4(1,4)-4-SO2NH2 NH-CH2CH(OH)CH2OH 30 45.5 4 62.9 16 67.1
13 a 1 [N(CH2CH2)2N]COOCH3 NH-CH2CH(OH)CH2OH 72 20.2 8 46.0 18 51.4
14 a 1 NH-C6H4(1,4)-4-OH NH-CH2CH(OH)CH2OH 96 24.6 7 54.8 14 60.7
15 a 1 [N(CH2CH2)2N]CH2COOCH3 NH-CH2CH(OH)CH2OH 72 27.0 5 53.9 13 56.8
16 2 [N(CH2CH2)2N]CH2CH2COOCH3 NH-C6H4(1,4)-4-COCH3 16 26.8 5 47.0 9 49.8
17 2 NH-CH2CH(OH)CH2OH NH-C6H4(1,4)-4-COCH3 9 35.5 3 46.0 10 47.6

a The spectral characteristics, yields of non-catalyzed reactions, and general methodology for non-catalyzed synthesis of these compounds were previously reported in Reference [39].
b Detailed reaction conditions are reported in the experimental section.
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Table 2. Results of synthesis of compound 5 catalyzed by supported Cu(I) and free CuI.

Catalyst t (h) %Yield

supported Cu(I) a 2 59.9
CuI a 75 28.7

a Detailed reaction conditions are reported in the experimental section.

3. Experimental Section

3.1. General Information

All reagents were purchased from commercial suppliers (Sigma-Aldrich, Darmstadt, Germany) and
used as supplied without further purification. Purolite C104 Plus (Purolite® Worldwide, Bala Cynwyd,
PA, USA) was used as a solid support. Characteristic properties of Purolite C104 Plus: weakly acidic
polyacrylic cation-exchanger resin of macroporous type, H+ ionic form, total volume capacity 4.5 eq/L,
specific gravity 1.19 g/mL (for further characteristics of the resin please see the Supplementary
Information).

All the reactions were monitored by TLC performed on precoated Silica gel 60 F254 plates (Merck,
Darmstadt, Germany). Methanol was used as eluent; UV light (254 and 356 nm) and ninhydrin reagent
were used for detection of spots at 180 ◦C. NMR spectra were recorded on DRX 500 Avance (Bruker
Biospin, Billerica, MA, USA) spectrometer using tetramethylsilane as an internal standard. The FTIR
spectra were obtained on an Alpha II FTIR Spectrometer (Bruker, Billerica, MA, USA) equipped with
ATR module. Melting points (uncorrected) were recorded on Kofler’s block Boetius Rapido PHMK
79/2106 (Wagetechnik, Dresden, Germany) with temperature gradient 4 ◦C.min−1.

All data of known compounds agreed with those of previously reported [39].

3.2. Catalyst Preparation and Characterization

Seventy-five grams of Purolite® C104 Plus resin in Na+ form was stirred in 200 mL of water.
Cupric acetate monohydrate (49.9 g, 0.25 mol) was dissolved in 750 mL of water and 85 mL of aqueous
ammonia solution (commercially available 28 w/w % solution, 1.255 mol) was added. The resulting
dark-blue solution was added to the resin suspension and stirred for 30 min. Then the aqueous phase
was decanted and the blue solid washed with water until pH 7–8. Hydroxylammonium chloride
(29.9 g, 0.43 mol) was dissolved in 250 mL of water and the resin was added into the solution and
stirred at 50 ◦C until the color changed from blue to light gray (30 min). After the change of color,
the solution was decanted and the solid was washed with water until neutral pH and then twice with
methanol (300 mL).

The copper content determined by flame atomic absorption spectroscopy (Shimadzu, Kjóto, Japan)
was approximately 0.078 mmol of Cu/1 g of a dry catalyst. The oxidation state of the copper present in
the catalyst was confirmed by XPS (X-ray photoelectron spectroscopy, Kratos Analytical, Manchester,
UK). The Cu 2p3/2 peak was located at 932.84 eV and the Cu 2p1/2 peak was located at 952.67 eV
which is characteristic of the presence of Cu(I) in the catalyst [41]. The IR spectra of the catalyst in
different stages of preparation are given in the Supplementary Materials. These spectra do not provide
much information, but it confirms the presence of free hydroxy groups in the catalyst which helps to
stabilize Cu(I)-cations.

3.3. General Synthetic Procedures

3.3.1. General Method for Synthesis of Disubstituted Derivatives of Cyanuric Chloride as a
Step-by-Step Reaction

Uncatalyzed reactions were performed according to the methodology published previously in [39].
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Catalyzed reactions were performed according to the general method: Starting dichlorotriazinyl
benzenesulfonamide (1 mmol; 0.320 g of 4-[(4,6-dichloro-1,3,5-triazin-2-yl)amino]-benzene-1-sulfonamide,
0.334 g of 4-{[(4,6-dichloro-1,3,5-triazin-2-yl)amino]methyl}-benzene-1-sulfonamide or 0.348 g of
4-{2-[(4,6-dichloro-1,3,5-triazin-2-yl)amino]ethyl}benzene-1-sulfonamide) was dissolved in 10 mL of
DMF. Then 1 mmol (0.138 g) of solid anhydrous potassium carbonate was added in small portions and
the mixture was stirred for 10 min. Then 1 mmol of the appropriate nucleophile was added portion
wise. Finally, 2.5% mol of supported Cu(I) ions (312 mg of catalyst) were added into the reaction
mixture. Reaction was stirred at 35 ◦C until the maximum conversion of starting reactants was achieved
(monitored by TLC). After completion of a reaction, the catalyst and salt were filtered off. Crushed ice
was then added into the solution and the formed precipitate was collected by filtration. The crude
product was dissolved in hot acetone and precipitated by the addition of isopropyl alcohol.

3.3.2. General Method for Synthesis of Trisubstituted Derivatives of Cyanuric Chloride as a
Step-by-Step Reaction

Uncatalyzed reactions were performed according to the methodology published previously in [39].
Catalyzed reactions were performed according to the general method: Appropriate disubstituted

s-triazine derivative (1 mmol) was dissolved in 10 mL of DMF. Then 1 mmol (0.138 g) of solid anhydrous
potassium carbonate was added in small portions and the mixture was stirred for 10 min. Then 1 mmol
of the appropriate nucleophile was added portion wise. Finally, 2.5% mol. of supported Cu(I) ions
(312 mg of catalyst) was added into the reaction mixture. The reaction mixture was then stirred at
100 ◦C until the maximum conversion of starting nucleophile was achieved (monitored by TLC).
After completion of the reaction, the catalyst and salt were filtered off. Crushed ice was then added into
the solution and the formed precipitate was collected by filtration. The crude product was dissolved in
hot acetone and precipitated by the addition of isopropyl alcohol.

3.3.3. General Method for Synthesis of Trisubstituted Derivatives of Cyanuric Chloride as a
One-Pot Reaction

Starting dichlorotriazinyl benzenesulfonamide (1 mmol; 0.320 g of
4- [(4,6-dichloro-1,3,5-triazin-2-yl)amino]benzene-1-sulfonamide, 0.334 g of
4-{[(4,6-dichloro-1,3,5-triazin-2-yl)amino]methyl}benzene-1-sulfonamide or 0.348 g of
4-{2-[(4,6-dichloro-1,3,5-triazin-2-yl)amino]-ethyl}benzene-1-sulfonamide)) was dissolved in
20 mL of DMF. Then 1 mmol (0.138 g) of solid anhydrous potassium carbonate was added in small
portions and the mixture was stirred for 10 min. Then 1 mmol of the appropriate nucleophile was
added portion wise. Finally, 2.5% mol. of supported Cu(I) ions (312 mg of catalyst) was added
into the reaction mixture. Reaction was stirred at 35 ◦C until the maximum conversion of starting
material is achieved (monitored by TLC). After completion of the first reaction step, 1 mmol of the
second nucleophile and 1 mmol (0.138 g) of anhydrous potassium carbonate were added into the
reaction mixture. The reaction mixture was then stirred at 100 ◦C until the maximum conversion of a
nucleophile was determined (monitored by TLC). After completion of a reaction, the catalyst and
salt were filtered off. Crushed ice was then added into the solution and the formed precipitate was
collected by filtration. The crude product was dissolved in acetone and precipitated by the addition of
isopropyl alcohol.

3.3.4. Characterization of New Compounds

For % yields and reaction times see Table 1.

4-[({4-Chloro-6-[(3-hydroxypropyl)amino]-1,3,5-triazin-2-yl}amino)methyl]benzenesulfonamide (6).
White solid; mp 212–214 ◦C. 1H-NMR (500 MHz, DMSO-d6) δ ppm 7.77 (2H, d, J = 8.1 Hz,
CH), 7.48 (2H, d, J = 8.1 Hz, CH), 4.50 (2H, s, NH-CH2), 3.41–3.39 (2H, m, CH2-OH), 3.24–3.23 (2H, m,
NH-CH2), 1.56–1.54 (2H, m, CH2). 13C-NMR (125 MHz, DMSO-d6) δ ppm 168.1, 165.9, 162.8, 144.8,
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143.1, 127.8, 126.2, 58.9, 43.9, 38.1, 32.3. IR νmax (cm−1) 3352 (OH, NH, NH2), 3243, 2942 (CHarom),
2918 (CHalif, CH2alif), 1602 (C=Carom), 1434, 1399, 1155 (SO2NH2).

4-[2-({4-Chloro-6-[(3-hydroxypropyl)amino]-1,3,5-triazin-2-yl}amino)ethyl]benzenesulfonamide (7).
White solid; mp 228–229 ◦C. 1H-NMR (500 MHz, DMSO-d6) δ ppm 7.75 (2H, d, J = 8.1 Hz,
CH), 7.40 (2H, d, J = 8.1 Hz, CH), 3.48–3.43 (2H, m, CH2-OH), 3.35–3.34 (2H, m, NH-CH), 3.27–3.25
(2H, m, NH-CH), 2.89–2.87 (2H, m, CH), 1.70–1.62 (2H, m, CH). 13C-NMR (125 MHz, DMSO-d6) δ ppm
168.6, 168.0, 165.8, 143.7, 143.1, 129.5, 126.3, 58.9, 42.1, 38.2, 34.9, 32.6. IR νmax (cm−1) 3329 (NH, NH2),
3250, 2943 (CHalif, CH2alif), 1637 (C=Carom), 1447, 1405, 1154 (SO2NH2)

4-[2-({4-Chloro-6-[(2,3-dihydroxypropyl)amino]-1,3,5-triazin-2-yl}amino)ethyl]benzenesulfonamide (8).
White solid; mp 185–186 ◦C. 1H-NMR (500 MHz, DMSO-d6) δ ppm 7.75 (2H, d, J = 8.1 Hz, CH),
7.42 (2H, d, J = 8.1 Hz, CH), 6.07 (6H, s, OH, NH, NH2), 3.89–3.85 (1H, m, CH-OH), 3.49–3.46 (4H, m,
CH2), 3.37–3.32 (4H, m, CH2). 13C-NMR (125 MHz, DMSO-d6) δ ppm 168.5, 168.0, 165.7, 143.6, 143.2,
129.5, 126.1, 70.5, 64.5, 44.4, 42.0, 34.9. IR νmax (cm−1) 3352 (OH, NH, NH2), 3221, 2984 (CHArom) 2926
(CHalif, CH2alif), 2856, 1558 (C=CArom), 1407 (SO2NH2), 1151, 1091 (C–OH).

Methyl 3-(4-{4-Chloro-6-[(4-sulfamoylphenethyl) amino]-1,3,5-triazin-2-yl}piperazin-1-yl)propanoate (9).
Beige solid; mp 188–190 ◦C. 1H-NMR (500 MHz, DMSO-d6) δ ppm 7.81 (2H, d, J = 8.1 Hz, CH),
7.47 (2H, d, J = 8.1 Hz, CH), 3.97–3.87 (4H, m, CH2), 3.77–3.75 (2H, m, NH-CH2), 3.66 (3H, s, CH3),
2.98–2.96 (4H, m, CH2), 2.87–2.85 (2H, m, CH2), 2.59 (2H, t, J = 7.8 Hz, N-CH2), 2.12 (2H, t, J = 7.8 Hz,
CH2-COO). 13C-NMR (125 MHz, DMSO-d6) δ ppm 172.8, 168.6, 165.9, 163.9, 143.9, 142.7, 129.6, 126.2,
53.5, 52.5, 51.8, 43.4, 41.9, 34.8, 31.9. IR νmax (cm−1) 3323 (NH, NH2), 3242, 2952 (CHarom) 2913, 2844
(CHalif, CH2alif), 1683 (C=O), 1573 (C=Carom), 1360 (SO2NH2), 1331 (COC), 1142 (SO2NH2), 1081 (COC).

Methyl 3-(4-{4-[(4-acetylphenyl)amino]-6-[(4-sulfamoylphenethyl)amino]-1,3,5-triazin-2-yl}
piperazin-1-yl)propanoate (16). Beige solid; mp 198–200 ◦C. 1H-NMR (500 MHz, DMSO-d6) δ

ppm 8.87 (4H, br s, NH, NH2), 7.61 (2H, d, J = 8.0 Hz, CH), 7.53 (2H, d, J = 8.0 Hz, CH), 7.44 (2H,
d, J = 7.8 Hz, CH), 7.36 (2H, d, J = 7.8 Hz, CH), 3.78–3.76 (4H, m, CH2), 3.63–3.59 (5H, m, CH3,
NH-CH2CH2), 2.91–2.89 (2H, m, NH-CH2CH2), 282 (3H, s, CH3), 2.45–2.43 (4H, m, CH2), 2.38 (2H, t,
J = 7.8 Hz, CH2CH2COO), 2.13 (2H, t, J = 7.8 Hz, CH2CH2COO). 13C-NMR (125 MHz, DMSO-d6) δ
ppm 194.3, 172.9, 167.1, 166.8, 166.2, 146.3, 144.8, 142.3, 133.4, 129.6, 129.1, 126.2, 119.3, 51.7, 51.1, 49.9,
44.2, 43.6, 34.6, 31.9, 26.7. IR νmax (cm−1) 3298, 3280 (NH, NH2), 3070, 3045, 3041 (CHArom), 2974, 2949
(CHalif, CH2 alif), 1660 (C=O), 1631, 1597 (C=C, C=N), 1361 (SO2NH2), 1330 (COC), 1154 (SO2NH2),
1069 (COC)

4-[2-({4-[(4-acetylphenyl)amino]-6-[(2,3-dihydroxypropyl)amino]-1,3,5-triazin-2-yl}amino)ethyl]benzenesulfonamide
(17). Beige solid; mp 210–213 ◦C. 1H-NMR (500 MHz, DMSO-d6) δ ppm 9.13 (5H, br s, NH, NH2),
7.9 (2H, d, J = 8.0 Hz, CH), 7.85 (2H, d, J = 8.0 Hz, CH), 7.73 (2H, d, J = 7.8 Hz, CH), 6.94 (2H, d,
J = 7.8 Hz, CH), 6.57 (2H, br s, OH), 4.29–4.27 (1H, m, CH–OH), 3.61–3.54 (4H, m, NH-CH2, NH-CH2),
2.92–2.90 (2H, m, NH-CH2CH2), 2.01 (3H, s, CH3). 13C-NMR (125 MHz, DMSO-d6) δ ppm 197.0, 166.9,
166.8, 165.8, 145.4, 144.2, 142.2, 132.1, 129.7, 129.6, 126.3, 116.4, 69.0, 62.1, 43.1, 42.9, 34.3, 26.3. IR νmax

(cm−1) 3352, 3316, 3067 (NH, NH2, OH), 2998, 2986, 2967 (CHArom), 2954 (CHalif, CH2 alif), 1670 (C=O),
1635, 1584 (C=C, C=N), 1355 (SO2NH2), 1329 (COC), 1206 (C–OH), 1154 (SO2NH2), 1065 (COC).

4. Conclusions

The catalytic efficiency of Cu(I) cations supported on a macroporous weakly acidic cation exchanger
in synthesis of 1,3,5-triazine derivatives was studied. The study brought two basic improvements into
the synthesis of di- and trisubstituted triazine derivatives. Employment of supported Cu(I) catalyst
lead to significantly shorter reaction times and, moreover, reactions usually provided better yields
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than uncatalyzed reactions. In the case of final trisubstituted s-triazine derivatives starting from
monosubstituted triazine, a new one-pot synthetic design was successfully employed and verified
bringing the additional benefit in higher yields and savings in labor and time. Six new s-triazine
derivatives with potential biological activity were prepared and characterized using the new one-pot
synthetic method.

Supplementary Materials: The following are available online. Table S1: Typical physical &
chemical characteristics of Purolite®C104 Plus.; Attachement S2: IR spectra of catalyst in different
stages of preparation. Attachement S3: Study of Catalyst Recycling for One-pot Synthesis of
4,4´-[(6-{[4-(Aminosulfonyl)phenyl]amino}-1,3,5-triazine-2,4-diyl)bis(iminoethane-2,1-diyl)dibenzene-sulfonamide
(entry 11 in the article).
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