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Abstract: A series of fluorescent coumarin derivatives 2a–e were systematically designed,
synthesized and studied for their Cu2+ sensing performance in aqueous media. The sensitivities and
selectivities of the on-to-off fluorescent Cu2+ sensing signal were in direct correlation with the relative
arrangements of the heteroatoms within the coordinating moieties of these coumarins. Probes 2b and
2d exhibited Cu2+ concentration dependent and selective fluorescence quenching, with linear ranges
of 0–80 µM and 0–10 µM, and limits of detection of 0.14 µM and 0.38 µM, respectively. Structural
changes of 2b upon Cu2+ coordination were followed by fluorescence titration, attenuated total
reflection Fourier transform infrared spectroscopy (ATR-FTIR), mass spectrometry, and single crystal
X-ray diffraction on the isolated Cu2+-coumarin complex. The results revealed a 1:1 stoichiometry
between 2b and Cu2+, and that the essential structural features for Cu2+-selective coordination are
the coumarin C=O and a three-bond distance between the amide NH and heterocyclic N. Probe 2b
was also used to determine copper (II) levels in aqueous soil extracts, with recovery rates over 80%
when compared to the standard soil analysis method: inductively coupled plasma-mass spectrometry
(ICP-MS).
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1. Introduction

Heavy metal contamination [1] in soil and water is a major concern due to its direct effect on the
quality of drinking water, safe food production [2,3], and the detrimental impact on human health
when present in the body in excessive amounts [4,5]. However, heavy metals are also important
micronutrients for living organisms, thus are desired ingredients in soil and water [6]. Copper is
known as one of the most abundant essential trace elements in human body [7,8], and is also required
by many living organisms to maintain healthy physiological processes due to its redox-active nature [9].
The World Health Organization (WHO) sets the maximum allowable level of Cu2+ in drinking water
at 30 µM and recommends that the population mean intake should not exceed 10–12 mg per day for
adults [10]. Thus, the development of methods allowing for sensitive, selective, and real-time detection
of bioavailable heavy metals, including Cu2+, in environmental samples is ever relevant.
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Some of the most readily utilized sensing methods are based on molecular probes that display
concentration dependent changes in their optical properties arising from the structural changes upon
interaction with the analytes of interest [11]. Coumarins are attractive for use as fluorescent optical
probes, due to their easy-to-tailor structure that allows for metal ion-selective coordination sites, as
well as their exhibiting significant changes in their optical signals upon interaction with such target
analytes [12]. When interacting with Cu2+, coumarins can undergo ligand to metal charge transfer,
forming a Cu2+–coumarin complex. This can inhibit the intramolecular charge transfer (ICT) – the
mechanism responsible for its fluorescence – within the coumarin. Thus, complex formation can result
in the quenching of the coumarin’s fluorescence [13–16]. A broad range of coumarin-based fluorescent
Cu2+-sensors have been reported [17]. For example, a ratiometric coumarin-hydrazone sensor exhibited
Cu2+ selectivity in the presence of other transition metal ions, and its fluorescence emission at 574 nm
was quenched by increasing amounts of Cu2+ present [18]. A reversible ratiometric Cu2+-sensor
incorporating two covalently linked fluorophores (coumarin and 4-amino-7-sulfamoyl benzoxadiazole)
displayed Cu2+-induced blue shift of its emission (from 555 to 460 nm) upon coordination of Cu2+

due to decreased intramolecular fluorescence resonance energy transfer (FRET) [19]. Despite the
ever-increasing number of optical molecular probes reported for Cu2+ detection, improvements in
selectivity and sensitivity, and a better understanding of the structural requirements when designing
these Cu2+-coordinating molecular probes, remain of interest.

This work was aimed at the design, synthesis, and simultaneous evaluation of a series of
structurally related coumarin derivatives to further understand the structural requirements towards
optical Cu2+-sensors that have enhanced selectivity and sensitivity, especially when employed in
mixed aqueous media. Previously reported work on picolyl-substituted coumarin-3-carboxylic acid
derivatives 1a–c (Scheme 1a) [20] indicated that the distance and relative orientation of the pyridine
nitrogen relative to the other coordinating moieties (the coumarin C=O and the amide NH) were
essential features affecting the ability to coordinate Cu2+. Coumarin 1a displayed Cu2+-selective
fluorescence quenching, as opposed to 1b–c which failed to do so. Herein, we designed a series of
coumarin derivatives 2a–e (Scheme 1b) incorporating various spacers between the amide NH and
a pyridine N (two-bond in 2a, three-bond in 2b, and four-bond in 2c), or benzoimidazole N in 2d,
or ethylenediamine -NH2 in 2e. Thus, information on the effect of (i) the different spacers between the
Cu2+-coordinating heteroatoms in 2a–c, and (ii) the distribution and availability of the electrons on the
nitrogen oriented three-bonds away from the amide NH (2b, 2d, and 2e) on the coordination of Cu2+

can be gained. The coumarin derivatives which showed Cu2+-dependent fluorescence quenching were
further studied by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR),
mass spectrometry, and single crystal X-ray diffraction to indicate changes in their structure before
and after Cu2+-coordination. From the results obtained, candidate 2b was evaluated on aqueous
extracts of real soil samples collected from the roadside in the western parts of Melbourne, Victoria,
Australia; the results were compared to the standard, inductively coupled plasma mass spectrometry
(ICP-MS) method.
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Scheme 1. Schematic representation of (a) the Cu2+-coordinating capability of picolyl-substituted
diethylamino-coumarins 1a–c, and (b) the newly designed coumarins 2a–e.

2. Results and Discussion

2.1. Design and Synthesis of Coumarin Derivatives 2a–e

In order to gain further information on the ideal relative atomic arrangement of the Cu2+-selective
coordinating moiety within substituted carboxylic coumarins; a series of alkylamino-pyridines 3a–c,
a benzimidazole 3d, and a linear chain mono-protected diaminoethylene 3e were selected and subjected
to amide bond formation with coumarin-3-carboxylic acid using PyBOP as a coupling agent and
triethylamine as a non-nucleophilic base (Scheme 2) [21]. Although the yields of 2a–e were moderate
(Table 1) (presumably due to the potential side reactions resulting in undesired by-products) [22],
the choice of this coupling agent allowed for a facile, one-step purification process upon completion of
the reaction. Due to the formation of water-soluble by-products, the desired products 2a–d and Boc-2e
were isolated after a simple extraction to a purity suitable for characterisation and analytical studies.
Boc-2e was then subjected to deprotection using TFA, and then the TFA salt of 2e was neutralised
with NaOH to obtain 2e. The resulting coumarins 2a–e were characterised by 1H and 13C-NMR, IR,
and high-resolution mass spectrometry (Figures S1–S20). Absorption, and fluorescence excitation
and emission spectra for 2a–e were recorded and the corresponding maxima are listed in Table 1.
The Stokes shifts (∆ = λem − λex) were greater than 100 nm for each of these coumarin derivatives 2a–e.
This is a desired property for optical molecular probes, facilitating enhanced sensitivity due to the
lesser overlap between the selected wavelengths of the exciting light-source and the emission filter in
the detector recording the sensing signal [23].
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Table 1. Selected amines 3a–e, synthesized coumarin derivatives 2a–e, and their corresponding yields
(%), absorption maxima, excitation and emission maxima, and Stokes shifts.
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λem (nm) 406 412 412 436 412 
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* 2e was obtained after removal of the protecting group of Boc-2e using TFA in DCM to give 2e (see 
Section 3.2.5); ^ overall yield. 

2.2. The Effects of pH and Concentration On The Fluorescence of 2a–e 

In order to find the optimum conditions to evaluate the Cu2+-sensing performance, fluorescence 
intensities of 2a–e were recorded across the pH range of 3–13 (Figure 1a). The fluorescence of 2a–e 
between pH 3–11 showed no significant changes; however, above pH 11, sharp quenching was 
observed. Fluorescence intensities at various concentrations of dissolved coumarin 2a–e were also 
recorded within the range of 5–80 μM (Figure 1b). For the subsequent studies, 30 μM of dissolved 
2a–e at pH 7 was chosen, as beyond that concentration, no further concentration dependent 
fluorescence was observed. 
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2.2. The Effects of pH and Concentration On The Fluorescence of 2a–e

In order to find the optimum conditions to evaluate the Cu2+-sensing performance, fluorescence
intensities of 2a–e were recorded across the pH range of 3–13 (Figure 1a). The fluorescence of 2a–e
between pH 3–11 showed no significant changes; however, above pH 11, sharp quenching was
observed. Fluorescence intensities at various concentrations of dissolved coumarin 2a–e were also
recorded within the range of 5–80 µM (Figure 1b). For the subsequent studies, 30 µM of dissolved 2a–e
at pH 7 was chosen, as beyond that concentration, no further concentration dependent fluorescence
was observed.
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Figure 1. Fluorescence emission intensities of 2a–e (λex according to Table 1) (a) at various pH values
and (b) at various dissolved coumarin concentrations in DMSO/HEPES buffer (v/v, 1/9).

2.3. UV-Vis and Fluorescence Properties of 2a–e in the Presence of Cu2+

UV-Vis spectra of 2a–e in DMSO/HEPES buffer (v/v, 1/9) were recorded upon the addition of one
equivalent of CuCl2 (Figure S21). Coumarins 2a and 2c–e showed no changes in their absorbances,
with only 2b showing a broadening of the absorption peak upon addition of CuCl2. Recording of
the fluorescence emission intensities of 2a–e in DMSO/HEPES buffer (v/v, 1/9) in the absence and
presence of one equivalent of CuCl2 (λex according to Table 1) revealed that 2a, 2c, and 2e exhibited no
optical response to Cu2+ (Figure 2). However, fluorescence quenching was observed for both 2b (λem

= 412 nm) and 2d (λem = 436 nm), suggesting the coordination of Cu2+. In 2b, 2d, and 2e, the relative
arrangement of the moieties that can donate electrons towards the copper are similar, yet despite this,
only 2b and 2d exhibited optical responses upon interaction with the Cu2+. The lack of fluorescence
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quenching in 2e is proposedly due to the greater flexibility of the linear chain amino group that does not
facilitate the formation of a metal-coumarin complex. Based on these results, a three-bond spacing and
restricted flexibility between the heterocyclic nitrogen and the amide NH are deemed to be essential
for the Cu2+-based fluorescence quenching, and consequently, 2b and 2d were further studied for their
Cu2+-sensing performance is aqueous media.
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a calculated association constant of 7.83 × 105 M−1 (versus that of 2b at 6.85 × 104 M−1) [26], and a LOD 
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in the presence of Cu2+ at concentrations >10 μM. Thus, 2d may only be applicable for Cu2+-sensing 
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Figure 2. Fluorescence intensities of 2a–e (30 µM) in DMSO/HEPES buffer (v/v, 1/9) in the absence
(black lines) and presence (red lines) of one equivalent of CuCl2 at their corresponding excitation
maxima (see Table 1) (a) 2a; (b) 2b; (c) 2c; (d) 2d; (e) 2e.

Firstly, fluorescence titrations of 2b and 2d (30 µM) with CuCl2 (0–80 µM) in DMSO/HEPES buffer
were carried out (Figure 3) to identify the linear range and the limit of detection (LOD). Both 2b and
2d responded with gradually quenched fluorescence intensities at their emission maxima, 412 nm
and 436 nm, respectively, during the addition of increasing amounts of CuCl2. The fluorescence
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quenching of 2b by Cu2+ was linear (R2 = 0.995) within the Cu2+ concentration range of 0–80 µM,
which is a significant improvement from the previously reported probe 1a, whose response was linear
only within the range of 0–25 µM [20]. The calculated limit of detection (LOD) was 0.14 µM (LOD =

3σ/slope, where σ is standard deviation of the blank measurements) [24]. Both the linear range and the
LOD were satisfactory to fulfil the sensing requirements for monitoring copper levels in drinking water,
as the maximum allowed level is specified at 30 µM by the Australian Drinking Water Guidelines [25].
Meanwhile, 2d (Figure 3c–d) exhibited a rather narrow linear range of 0–10 µM, and a calculated
association constant of 7.83 × 105 M−1 (versus that of 2b at 6.85 × 104 M−1) [26], and a LOD of 0.38 µM.
Furthermore, a shift of the emission maxima from 436 nm towards 405 nm was observed in the presence
of Cu2+ at concentrations >10 µM. Thus, 2d may only be applicable for Cu2+-sensing within the range
of 0.4–10 µM. Also, the greater association constant shows higher affinity of 2d to coordinate Cu2+,
which is suggested to be indicative to the greater availability of the heterocyclic N lone pair in 2d [27],
hence the faster coordination of Cu2+.
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Figure 3. Fluorescence spectra of (a) 2b (λex = 303 nm) and (c) 2d (λex = 325 nm) (30 µM) with the
addition of various concentrations of CuCl2 in HEPES/DMSO buffer and the corresponding titration
curves and linear ranges of (b) 2b and (d) 2d.

For both 2b and 2d, the fluorescence quenching mechanism can be explained by the previously
reported ligand to metal charge transfer [28]. The fluorescence quenching results herein showed
that a decrease of the emission intensity occurs beyond the addition of one equivalent (30 µM) of
Cu2+ to both 2b and 2d (Figure 3a,c). This phenomenon was previously studied via femtosecond
time-resolved fluorescence, showing evidence that the charge transfer only contributes to 29% of the
overall fluorescence quenching [20].

To further assess the time-frame of developing coordination and charge transfer between Cu2+

and the probes, the changes in the fluorescence intensity as functions of time were recorded for 2b
and 2d. After the addition of two equivalents of Cu2+ (ensuring the full quenching of fluorescence),
and a subsequent mixing step taking 3.5 sec, the fluorescence intensity values were recorded at 25 °C
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(Figure 4) and fitted with modified first order kinetics according to (Equation (1)) [29] to identify the
time points where the fluorescence was quenched by the Cu2+:

ln(I) = k × t + b (1)

where I (a.u.) was fluorescence intensity of the coumarins, t (s) was time, and k (s−1) was the rate
constant of the first-order model. The linear range of ln(I) versus time (s) function for 2b and 2d
is shown in Figure 4, with R2 values of 0.99 and 0.98, respectively. To determine the time frame
within which the fluorescent intensities of 2b and 2d were quenched by the copper, firstly, the average
quenched fluorescence intensity was identified, as shown in Figure S22. Then, based on the linear
fitted equations (Figure 4), the quenching time points were calculated to be 7.5 sec and 6.9 sec for 2b
and 2d, respectively. Those results show the faster quenching of 2d compared to 2b, suggesting greater
availability of the heterocyclic N lone pair in 2d [27] resulting in faster coordination.
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Figure 4. First-order plots for the coordination of Cu2+ with (a) 2b and (b) 2d.

One of the most indispensable qualities of a fluorescent probe is its selectivity towards a target
analyte over other commonly encountered species. To evaluate the selectivity of 2b and 2d (30 µM)
towards Cu2+ (30 µM), a variety of metal ions (30 µM) including Al3+, Ca2+, Cd2+, Co2+, Fe3+, Mn2+,
Pb2+, Hg2+, Ni2+, Cu+, Mg2+, Li+, and Zn2+ were pre-mixed with the probes and fluorescence emissions
were examined with and without the addition of Cu2+. In the presence of one equivalent of the
potentially interfering cations, both 2b and 2d exhibited selectivity towards Cu2+ (Figure S23). When
considering real life assays, the copper may be present at a significantly lower concentration compared
to other metal ions; therefore, fluorescence quenching in the presence of excess amounts (20 equivalents)
of interfering metal ions was also investigated for 2b and 2d (Figure 5). Fluorescence intensity prior
the addition of the target analyte Cu2+ was quenched by more than 10% by only Fe3+ and Cd2+ for 2b
(Table S1), and Co2+, Fe3+, Ni2+, and Hg2+ for 2d (Table S2). The inferior selectivity observed in the
case of 2d suggests that the heterocyclic N and the availability of its lone pair have an essential role in
the coordination of the metal ion species.

Another desirable property of a sensing system is the potential for repeated recovery of the sensor,
which results in an extended life-cycle and applicability. Cu2+ is known for its high affinity towards
chelating agents, such as L-cysteine [30], EDTA [31], and dopamine [32]. In this work, EDTA was
used to record fluorescence recovery of both 2b and 2d. Upon the alternating addition of 1 eq. of
Cu2+, then EDTA, the fluorescence levels of 2b was recovered up to approximately 80% of its original
intensity through four recovery cycles (Figure 6). These results indicated that 2b could be employed in
reusable optical sensing devices for Cu2+ detection.
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by EDTA for five cycles in DMSO/HEPES buffer.

A summary of the sensing properties for 2b, 2d, and the previously published probe 1a, can be
found in Table 2. It is apparent that 2b shows improvements both in its LOD and linear range for
Cu2+-sensing in DMSO/HEPES buffer.

Table 2. A comparison of sensing properties among 2b, 2d, and 1a.

2b 2d 1a*

Limit of detection (µM) 0.14 0.38 0.5
Linear range (µM) 0–80 0–10 0–50

Interference Fe3+, Cd2+ Co2+, Fe3+, Ni+, Hg2+ No data included
Association constant (M−1) 6.85 × 104 7.83 × 105 1.17 × 105

* Values taken from literature [20].

2.4. The Coordination of Cu2+ by Coumarin 2b

The fluorescence titration of coumarins 2a–e showed that 2b and 2d had affinities to coordinate
Cu2+, with 2b having a suitable linear range and selectivity for practical application. Hence,
the interaction between 2b and Cu2+ was further studied. Job plot, solid state ATR-FTIR, single crystal
X-ray diffraction, and mass spectra were recorded on 2b and the isolated 2b–Cu2+ complex. The Job
plot analysis, based on the fluorescence recorded by titrating 2b with Cu2+ (Figure 7), revealed a 1:1
stoichiometry between 2b and Cu2+. This corresponds with the mass spectra depicting a peak for
2b-Cu2+ complex at m/z 383.03 (Figure S24). (Note that the corresponding peak is due to the association
of the complex with the solvent used, acetonitrile.) However, tridentate chelation [33] of Cu2+ by 2b in
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a 1:2 stoichiometry is apparent by a m/z 622.09 peak in the mass spectra (Figure S24); upon increasing
Cu2+ concentration this form transitions into a 1:1 complex.
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Infrared spectra were also recorded on the solids isolated from an acetonitrile solution of 2b in the
absence and presence of added Cu2+ (Figure 8 and Figure S25). Notably, the solid samples isolated
from acetonitrile were a mixture of 2b, and 2b–Cu2+. By overlapping the normalised IR spectra,
the characteristic changes in the intensities of particular peaks have confirmed the previously reported
observation, that the key Cu2+-coordinating moieties are the coumarin C=O, the amide NH, and the
pyridine N (Table 3).
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Table 3. Characteristic ATR-FTIR peaks and their intensities (in brackets) for 2b before and after
coordination of Cu2+.

ν(C=O)
Coumarin

ν(C=O)
Amide

ν(C=N)
Pyridine

ν(C=N)
Pyridine

ν(N-H)
Amide

ν(C-N)
Amide

ν(C=C)
Pyridine

ν(C=C)
Pyridine

2b 1706
(0.74)

1648
(0.47)

1608
(0.47)

1601
(0.47)

1564
(0.62)

1514
(0.85)

1480
(0.44)

1451
(0.52)

+0.5 eq.
Cu2+

1707
(0.30)

1653
(0.75)

1609
(0.59)

1595
(0.54)

1566
(0.49)

1535
(0.36)

1483
(0.34)

1451
(0.40)

+1eq.
Cu2+

1707
(0.15)

1653
(0.71)

1610
(0.69)

1595
(0.51)

1567
(0.46)

1535
(0.57)

1483
(0.36)

1451
(0.39)

Firstly, the defined peak at 3301 cm−1 corresponding to the NH stretch in 2b became broader
and less intense upon the coordination of Cu2+ (Figure S25). The most apparent changes occurred
within the region of 1680–1750 cm−1 originating from alterations of the coumarin C=O bond within 2b.
Upon coordinating the Cu2+, the coumarin C=O peak at 1706 cm−1 became significantly less intense,
suggesting the involvement of the oxygen lone pair electrons in the coordinative bond. Additionally,
the amide C=O stretch shifted from 1648 in 2b to 1653 cm−1 in 2b-Cu2+ along with increased peak
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intensity. That suggests a lesser role of the carbonyl moiety in the potential amide resonance structures,
hence the restoration of the amide C=O double bond, resulting in a stronger dipole, thus absorption at
higher wavenumbers. Further changes were observed in the peaks presenting at about 1608 cm−1,
depicted as C=N stretches of the pyridine ring. Both the amide NH and C–N peaks at 1564 cm−1

decreasing in intensity, and the transition of the 1514 cm−1 peak of free ligand 2b into 1550 cm−1

was observed (see shoulder of 2b-Cu2+) upon coordination with the Cu2+. Comprehensive loss of
those peaks was not expected for two reasons: firstly, the studied solids were a mixture (as discussed
above); secondly, the peak at 1564 cm−1 originates from both the vibration of amide NH and the stretch
of amide C–N bonds. Furthermore, upon addition of Cu2+, the peak at 1451 cm−1 was reduced in
intensity which suggested changes of the possible resonance structures in the pyridine ring.

Ultimately, single crystal X-ray diffraction was recorded on the crystal grown from an aqueous
acetonitrile solution containing 2b and CuCl2 in a 1:1 molar ratio (Figure 9, Figure S26, Tables S1 and
S2), as well as single crystal of 2b itself. The as-observed structure of 2b-Cu2+ complex is depicting
a 1:1 stoichiometric ratio, and that the coumarin O(3), the amide N(2), the pyridine N(1), and a residual
chlorine Cl(1) are the coordinating moieties [20]. This four-bond coordination was previously explained
by the sp3 hybridization of Cu2+ when dissolved in acetonitrile water mixture [34]. According to
the structure exhibited in the X-ray diffraction, the hydrogen of amide N(1) is displaced during the
coordination process. Moreover, the bond length of coumarin C=O increased from 1.21 Å to 1.35 Å
upon Cu2+ coordination, which falls between the conjugated and single bond length [35,36] (Table 4).
This correlates with the IR results, translating into the diminishing C=O IR peak at 1707 cm−1 upon
increasing Cu2+ concentration (Table 3).
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Table 4. Experimental and literature references of bond lengths (Å).

In 2b In 2b-Cu2+ Single bond length

Coumarin C=O 1.21 1.35 1.43

2.5. The Evaluation of 2b on Soil Samples

The evaluation of 2b for Cu2+-sensing in soil was conducted using a water extraction [37]
of roadside soil samples collected in the western parts of Melbourne, Victoria, Australia.
Fluorescence titrations generated using 2b were compared against the industry standard of ICP-MS
quantification [38]. ICP-MS quantifies elemental total copper content, while use of 2b measures
dissolved Cu2+; comparison is still feasible, as it is accepted within the field that following sample
preparation, most copper species will be present as Cu2+ [37,39,40]. The standard curve of 2b was
recorded (Figure S27) and background fluorescence of soil extracts was also tested (Figure S28),
allowing for correction when calculating the Cu2+ concentration by 2b. Recovery of Cu2+, directly from
the water extraction without further sample manipulation was >80% for all three soil samples tested
(Table 5).
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Table 5. Determination and recovery values of Cu2+ in soil samples using both ICP-MS (µM) and 2b (µM).

Sample Cu2+ Concentration
by ICP-MS (µM)

Fluorescence of
Solution of 2b at λex
= 412 nm (a.u.)

Cu2+ Concentration
by Using 2b (µM)

Recovery

1 1.23 ± 0.13 173.54 ± 0.69 1.03 ± 0.13 83.7%
2 1.36 ± 0.21 175.11 ± 0.36 1.27 ± 0.05 93.4%
3 1.71 ± 0.27 178.48 ± 0.69 1.75 ± 0.09 102.3%

3. Materials and Methods

3.1. Materials and Instruments

Benzotriazol-1-yloxy tripyrrolidinophosphonium hexafluoro-phosphate (PyBOP) was purchased
from Oakwood Chemical (West Columbia, South Carolina, SC, USA). Coumarin-3-carboxylic acid
(99%), 2-amino pyridine (99%), 2-(2′-pyridyl)ethylamine (95%), and trifluoroacetic acid (99%) were
purchased from Sigma-Aldrich (St. Louis, MO, USA). 2-(Aminomethyl)pyridine (99%) was obtained
from Acros Organic (Belgium, WI, USA). 2-(Aminomethyl)benzimidazole dihydrochloride (98%) was
purchased from Alfa Aesar (Ward Hill, USA). N-Boc-ethylenediamine (98%) was purchased from
Combi-blocks (SanDiego, CA, USA). All chemicals were used as received without further purification.
IR spectra were recorded on Nicolet 6700 FT-IR (Thermo Scientific, Waltham, MA, USA). UV-Vis and
fluorescence spectra were measured on Varian Cary Eclipse 5G UV-Vis-NIR spectrometer and Varian
Cary Eclipse fluorescence spectrophotometer (CMUSA), respectively. NMR were recorded on Bruker
Ascend (Billerica, MA, USA) at 400 MHz for 13C and 100 MHz for 1H, respectively. Mass spectra
were obtained on Thermo Scientific Q Exactive spectrometer in high resolution electrospray mode.
Single crystal X-ray diffraction was recorded on Bruker Axs Apex Duo Single crystal XRD instrument.
ICP-MS was conducted on Agilent Technologies 7700x ICP-MS Analyser (Santa Clara, CA, USA).
CLARIOstar plate reader was used for kinetics study.

3.2. General Synthetic Method for the Preparation of 2a–e

Coumarin derivatives 2a–e were synthesised by the adaptation of a previously reported procedure
with an additional step of deprotection for Boc-2e [20]. Coumarin-3-carboxylic acid (1 eq.), a selected
amine (1.1 eq.), and PyBOP (1 eq.) were stirred at room temperature in acetonitrile. Upon completion,
the reaction was quenched with brine (30 mL/5 mmol of coumarin-3-carboxylic acid) and extraction
was conducted with dichloromethane (30 mL/5 mmol of coumarin-3-carboxylic acid). The organic layer
was then washed with 10% citric acid, then 10% NaHCO3, following water and brine. The organic
residues were dried over Na2SO4. Finally, the solvent was removed under vacuum. The residues were
triturated with ethyl acetate to give the desired product as a solid.

3.2.1. Synthesis of 2-oxo-N-(pyridin-2-yl)-2H-chromene-3-carboxamide (2a)

Yield of 2a: 26%; white solid; FTIR (neat, cm−1) C=O 1701, N–H 3261 and 1565, C=N 1670, C–N
1534; 1H-NMR (400 MHz, DMSO-d6, ppm): δ 7.20 (1H, t, J = 6.1 Hz, CH-4′), 7.49 (1H, t, J = 7.6 Hz,
CH-7), 7.57 (1H, d, J = 8.4 Hz, CH-8), 7.81 (1H, t, J = 7.8 Hz, CH-6), 7.89 (1H, t, J = 7.8 Hz, CH-5′), 8.07
(1H, d, J = 7.8 Hz, CH-5), 8.27 (1H, d, J = 8.3 Hz, CH-3′), 8.39 (1H, d, J = 4.9 Hz, CH-6′), 9.05 (1H, s,
CH-4), 11.17 (1H, s, NH). 13C-NMR (100 MHz, CDCl3, ppm): δ 115.0, 116.9, 118.5, 118.7, 120.4, 125.5,
130.1, 134.7, 138.3, 148.5, 149.4, 151.3, 154.8, 159.9, 161.3; LRMS ASAP [2a + H+] 267.07; HRMS ASAP,
[2a + H+] calculated m/z C15H11N2O3 267.0725, found = 267.0764.

3.2.2. Synthesis of 2-oxo-N-(pyridin-2-ylmethyl)-2H-chromene-3 carboxamide (2b)

Yield of 2b 23%; white solid; FTIR (neat, cm−1) C=O 1706, N–H 3301 and 1564, C=N 1648, C–N
1514; 1H-NMR (400 MHz, DMSO-d6, ppm): δ 4.65 (2H, d, J = 5.6 Hz, CH2), 7.28 (1H, t, J = 6.2 Hz,
CH-4′), 7.39 (1H, d, J = 7.8 Hz, CH-3′), 7.46 (1H, t, J = 7.5 Hz, CH-7), 7.53 (1H, d, J = 8.4 Hz, CH-8),



Molecules 2019, 24, 3569 12 of 17

7.77 (2H, m, CH-5′ and 6), 8.01 (1H, d, J = 7.2 Hz, CH-5), 8.55 (1H, d, J=4.9 Hz, CH-6′), 8.91 (1H, s,
CH-4), 9.44 (1H, t, J = 5.5 Hz, NH); 13C-NMR (100 MHz, CDCl3, ppm): δ 45.5, 116.7, 118.5, 118.7, 121.8,
122.4, 125.3, 129.9, 134.1, 136.8, 148.5, 149.5, 154.6, 156.8, 161.3, 161.8. LRMS ASAP [2b + H+] 281.09;
HRMS ASAP [2b]− calculated m/z C16H12N2O3 280.0881, found = 280.0847.

3.2.3. Synthesis of 2-oxo-N-(2-(pyridin-2-yl) ethyl)-2H-chromene-3-carboxamide (2c)

Yield of 2c: 25%; white solid; FTIR (neat, cm−1): C=O 1706, N–H 3299 and 1566, C=N 1654, C–N 1516;
1H-NMR (500 MHz, DMSO-d6, ppm): δ3.00 (2H, t, J = 7.0 Hz, CH2-7′), 3.74 (2H, q, J = 6.6 Hz, CH2-8′), 7.24
(1H, t, J = 4.8 Hz, CH-4′), 7.31 (1H, d, J = 7.8 Hz, CH-3’), 7.43 (1H, t, J = 6.0 Hz, CH-7),7.51 (1H, d, J = 8.4
Hz, CH-8), 7.70–7.76 (2H, m, 5′ and 6), 7.98 (1H, d, J = 6.2 Hz, CH-5), 8.52 (1H, d, J = 3.8 Hz, CH-6′), 8.87
(1H, s, CH-4), 8.92 (1H, t, J = 5.6 Hz, NH); 13C-NMR (100 MHz, DMSO-d6, ppm): δ36.9, 38.8, 116.2, 118.5,
118.9, 121.7, 123.3, 125.2, 130.3, 134.1, 136.6, 147.6, 149.2, 153.9, 159.0, 160.4, 161.0. LRMS ASAP [2c + H+]
295.10; HRMS ASAP [2c + H+] calculated m/z C17H15N2O3 295.1038, found = 295.1079.

3.2.4. Synthesis of N-((1H-benzo[d]imidazol-2-yl) methyl)-2-oxo-2H-chromene-3-carboxamide (2d)

Yield of 2d: 26%; orange solid; FT-IR (neat, cm−1): C=O 1691, N–H 3395 and 1566, C=N 1653, C–N
1544; 1H-NMR (400 MHz, DMSO-d6, ppm): δ 4.94 (2H, s, CH2), 6.63 (1H, t, J = 7.6 Hz, CHbenzoimidazol)
6.80 (1H, d, J = 8.0 Hz, CHbenzoimidazol), 6.96 (1H, t, J = 7.4 Hz, CHbenzoimidazol), 7.46–7.57 (3H, m, CH-8,
7 and benzoimidazol), 7.78 (1H, t, J = 7.9 Hz, CH-6), 8.03 (1H, d, J = 7.7 Hz, CH-5), 8.95 (1H, s, CH-4),
10.10 (s, 1H, NHamide); 13C (100 MHz, DMSO-d6, ppm): δ 52.6, 116.3, 116.3, 116.5, 117.0, 118.6, 119.9,
123.4, 124.5, 125.4, 126.3, 130.5, 134.4, 141.5, 147.4, 154.7, 159.9, 163.3; LRMS ASAP [2d + H2O + H+]
338.34; HRMS ASAP [2d]− calculated m/z C18H13N3O3 319.0990, found = 319.0955.

3.2.5. Synthesis of N-(2-aminoethyl)-2-oxo-2H-chromene-3-carboxamide (2e)

The crude product received by the reaction of coumarin-3-carboxylic acid and 3e following the
general procedure was purified by column chromatography on silica gel using 50% ethyl acetate
in hexane to give desired product Boc-2e (yield 46%). Boc-2e (0.50 g, 1.5 mmol) was treated with
trifluoroacetic acid (TFA, 5 mL) over an ice bath for 2 h. The volatiles were removed under vacuum,
and the residues were taken up in water (10 mL). The mixture was neutralized with 1 M aqueous NaOH
and extracted with DCM (50 mL), twice. The organic residues were washed with a saturated solution of
Na2CO3 (aq) (50 mL), then brine (50 mL), and afterwards, dried over Na2SO4, filtered, and concentrated
under reduced pressure to give 2e (0.23 g, 1.0 mmol, 66%) as a white solid. Overall yield of 2e: 30%;
white solid; FT-IR (neat, cm−1): C=O 1678, N–H 3318 and 1566, C–N 1512; 1H-NMR (400 MHz,
DMSO-d6, ppm): δ 2.98 (2H, t, J = 6.1 Hz, CH2-2′), 3.55 (2H, t, J = 6.1 Hz, CH2-1′) 7.46 (1H, t, J = 7.6
Hz, CH-6), 7.54 (1H, d, J = 8.4 Hz, CH-8), 7.74-7.89 (3H, m, CH-7 and NH2), 8.01 (1H, d, J = 7.8 Hz,
CH-5), 8.89 (1H, s, CH-4), 8.93 (1H, t, J = 6.0 Hz, NH). 13C-NMR (100 MHz, DMSO-d6, ppm): δ 37.2,
38.5, 116.3, 118.5, 118.9, 125.4, 130.5, 134.4, 147.8, 154.0, 160.2, 162.1; LRMS ASAP [2e + H+] 233.09;
HRMS ASAP [2e]− calculated m/z C12H12N2O3 232.0880, found = 232.0846.

3.2.6. Synthesis of 2b-Cu2+ Complex for IR Study

Coumarin 2b was dissolved in acetonitrile, and then an aqueous solution of 0.5 or 1 equivalent of
CuCl2 was added and left to stir until fully dissolved. The volatiles were reduced under vacuum to
give the desired Cu2+ complexes used without further purification to record IR and mass spectra.

3.2.7. The preparation of a Single Crystal of 2b and 2b–Cu2+ Complex

2b was dissolved in acetonitrile first and the crystal was grown under vapour diffusion into EtOH.
One equivalent of 2b and CuCl2 were dissolved in a solution of acetonitrile and water. The single
crystal was grown under vapour diffusion into EtOH.
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3.3. Optical Properties of 2a–e

CuCl2 stock solution (1.00 mM) was prepared in aqueous solution of DMSO/HEPES buffer (20 mM,
pH = 7) (v/v, 1/9), and stock solutions of 2a–e (0.9 mM) were prepared in DMSO/HEPES buffer (20 mM,
pH = 7) (v/v, 1/9).

3.3.1. Fluorescence Intensity of 2a–e

Fluorescence intensity of 2a–e was recorded at pH 7 at concentrations in the range of 5–80 µM,
diluted from the stock solution using DMSO/HEPES buffer on Varian Cary Eclipse spectrophotometer,
with excitation and emission slit widths of 5 nm at their corresponding excitation maxima.

3.3.2. pH Dependence of Fluorescence Intensity

Fluorescence intensities of 2a–e (30 µM) with slit widths of 5 nm were recorded across the pH
range of 3–13 at their corresponding excitation maxima.

3.3.3. The Optical Properties of 2a–e in the Presence of 1 eq. of Cu2+

UV-Vis and fluorescence spectra were recorded for 2a–e (30 µM) and 2a–e (30 µM) in the presence
of CuCl2 (30 µM) in DMSO/HEPES buffer (20 mM, pH = 7) in the 250–600 nm region for the UV-Vis
and with slit widths of 5 nm for fluorescence studies.

3.3.4. Fluorescence Spectra of 2b and 2d in the Presence of Cu2+ at Various Concentrations

Fluorescence spectra of 2b and 2d (30 µM) were recorded in the presence of CuCl2 (0–80 µM)
in DMSO/HEPES buffer (20 mM, pH = 7) with slit widths of 5 nm at their corresponding excitation
maxima, respectively. The kinetics study was conducted using 100 µL of 60 µM solutions of compound
2b and 2d in DMSO/HEPES buffer (20 mM, pH = 7, v/v, 1/9) with the automatic pipetting of 100 µL of
120 µM Cu2+ solution to form the complexes of 2b–Cu2+ and 2d–Cu2+ at 25 ◦C. After 3.5 s shaking
time, the changes in time of the fluorescence for 2b–Cu2+ and 2d–Cu2+ complexes were recorded on
CLARIOstar plate reader.

3.3.5. Interference Studies

The fluorescence intensities of 2b and 2d (30 µM) were recorded in the presence of following metal
chlorides: Al3+, Ca2+, Cd2+, Co2+, Fe3+, Mn2+, Pb2+, Hg2+, Ni2+, Fe2+, Cu+, Mg2+, and Zn2+ (20 eq.,
600 µM) in DMSO/HEPES buffer (20 mM, pH = 7), both in the absence and presence of CuCl2 (30 µM).
Firstly, an aliquot of selected potentially interfering metal ions (60 µM, 1 mL) and 2b or 2d (60 µM, 1
mL) was mixed together to reach a final concentration of 30 µM. The fluorescence of this solution was
recorded. Then, a stock solution of CuCl2 (60 µL) was added to those, and optical properties were
again measured. Fluorescence spectra were recorded with slit widths of 5 nm at their corresponding
excitation maxima.

3.3.6. Fluorescence Signal Recovery Study

The fluorescence intensity of 2b (30 µM) was recorded in DMSO/HEPES buffer (20 mM, pH = 7)
upon the alternating addition of 1 equivalent of CuCl2, followed by 1 equivalent of ethylene diamine
tetraacetic acid (EDTA) in repeat cycles.

3.3.7. Cu2+ Sensing in Aqueous Soil Extracts

Soil samples were collected from the roadside in the western parts of Melbourne, Victoria,
Australia. Soil samples (2.5 g) were dispersed in water (25 mL) and shaken for one week to extract
water-soluble copper. The extracts were filtered through a 0.45 mm pore-size nylon filter membrane.
Each extract was analysed for their copper content via ICP-MS [37] and by recording the fluorescence



Molecules 2019, 24, 3569 14 of 17

quenching using 60 µM solution of 2b (1 mL in DMSO/HEPES, v/v, 2:8) mixed with the soil extract
(and 1 mL of water) for the quantitation of Cu2+ in soil using a pre-recorded standard curve.

4. Conclusions

A series of five coumarin derivatives were systematically designed, synthesized, and evaluated
for their potential use for Cu2+-sensing in aqueous media. Coumarins 2b and 2d exhibited selectivity
towards Cu2+ in the presence of other multivalent metal ions. The linear ranges of the sensing signal
versus Cu2+ concentration were 0–80 µM for 2b, and 0–10 µM for 2d, falling into the relevant and
desired concentration range for environmental sensing techniques. Limits of detection in aqueous
media were 0.14 µM and 0.38 µM for 2b and 2d, respectively, satisfactory for the potential application
of these molecular optical probes. Probe 2b exhibited superior applicable sensing performance towards
Cu2+ when compared to the other coumarins presented in this work, hence it was further studied to
gain understanding on its interaction with Cu2+. Solid state ATR-FTIR, single crystal X-ray diffraction,
and mass spectrometry, revealed a 1:1 stoichiometric complex as the responsible species for the
displayed quenching of the fluorescence of 2b. The formation of this coordination complex resulted
in a Cu2+-concentration dependent sensing signal, while offered good recovery of the probe signal
based on the fluorescence recovery study using EDTA. As a proof-of-concept for its applicability,
2b provided results in the Cu2+ quantitation of soil extracts which were comparable with the standard
ICP-MS method. Furthermore, by assessing structurally related coumarins 2a–e (owning slightly
different Cu2+-coordinating moieties), we gained valuable information on the required size of the
coordination-site, relative spatial and atomic arrangement, and electron distribution of the coordinating
heteroatoms. The fluorescence responses of 2a–c suggested that the size of the coordination site has
a significant impact on the Cu2+ coordination. Finally, the fluorescence titration of 2b and 2d suggested
that the lone pair’s availability of the heteroatoms at the same relative position also affects the sensing
properties, both in coordination speed and selectivity. These results will be used in our future work
for the systematic design and development of metal-ion coordinating optical sensing probes, owning
enhanced selectivity and sensitivity.
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