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Abstract: Acoustic emission (AE) source localization is one of the important purposes of
nondestructive testing. The localization accuracy reflects the degree of coincidence between the
identified location and the actual damage location. However, the anisotropy of carbon fiber
three-dimensional braided composites will have a great impact on the accuracy of AE source location.
In order to solve this problem, the time-frequency domain characteristics of AE signals in a carbon
fiber braided composite tensile test were analyzed by Hilbert–Huang transform (HHT), and the
corresponding relationship between damage modes and AE signals was established. Then, according
to the time-frequency characteristics of HHT of tensile acoustic emission signals, the two-step method
was used to locate the damage source. In the first step, the sound velocity was compensated by
combining the time-frequency analysis results with the anisotropy of the experimental specimens,
and the four-point circular arc method was used to locate the initial position. In the second step,
there is an improvement of the Drosophila optimization algorithm, using the ergodicity of the chaotic
algorithm and congestion adjustment mechanism in the fish swarm algorithm. The smoothing
parameters and function construction in the probabilistic neural network were optimized, the number
of iterations was reduced, the location accuracy was improved, and the damage mode of composite
materials was obtained. Then, the damage location was obtained to achieve the purpose of locating
the damage source.

Keywords: carbon fiber braided composites; location of damage source; two step method; four-point
arc method; probabilistic neural network

1. Introduction

Carbon fiber composites have the characteristics of high strength and modulus, small thermal
expansion coefficient and fatigue resistance [1–3]. Such composites have excellent performance in
crack resistance, impact resistance, and damage tolerance [4]. In the long-term use process, due to
the excessive tension operating load, the composite may have debonding, edge damage (including
fracture), and other defects [5,6]. Common nondestructive testing methods for composite materials
include infrared thermography [7], ultrasonic C-scan technique [8], eddy current testing [9] and
penetrant testing [10], etc. These technologies are widely used in the experimental research, device
monitoring and failure analysis of composite materials. Although these technologies are relatively
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mature, they also have the following shortcomings. Firstly, the total volume of the detection device
needs to change with the volume of the detected object. For example, the working principle of
ultrasonic testing and radiographic testing is to generate ultrasonic and radiographic excitation through
an external energy supply device. The existence of defects can be found according to the discontinuity
of the corresponding physical properties of the defect of the detected body. When testing composite
materials, in order to avoid the occurrence of ultrasonic, radiation cannot penetrate, or signal deviation
leading to the receiver cannot receive, the general method is to increase the excitation power and
receiver receiving area. This leads to the detection device increases with the increase of the volume
of the object being examined, and even requires a specific detection device, which cannot achieve
versatility. Secondly, the selection of testing methods has limitations on the material types and defect
types. For example, penetration testing can only detect defects on the surface and near the surface of
the material. Ultrasound scanning requires a smooth surface of the object to be inspected for placement
of an ultrasound probe, etc. Conventional nondestructive testing techniques may not be able to detect
specific materials or defects. Thirdly, conventional nondestructive testing techniques need to recognize
defect signals only when the defect reaches a certain level. The breakage of fibers in the bundles and
the debonding of fibers in a small area cannot be found in time. Compared with damage, detection
has hysteresis. Fourth, the detection signal has no characteristic. For fiber reinforced composites,
conventional nondestructive testing cannot distinguish whether the damage is fiber breakage or matrix
cracking by testing signal. Moreover, it is not possible to quantitatively analyze the percentage of each
injury to the total damage, and the detection signal can only reflect the presence of the injury and the
extent of the damage.

Acoustic emission (AE) testing is a non-destructive testing technology, which is different from
the conventional non-destructive testing technology. It belongs to the AE method without external
excitation. Compared with the traditional nondestructive testing technology, AE technology has the
following two characteristics. First, the dynamic information of material and structure damage can
be detected in real time. It can monitor the generation and propagation of cracks. Secondly, the AE
signal detected is emitted by the material itself, rather than the excitation signal introduced by the
outside world. Therefore, AE technology has the following advantages. First, it has initiative. For large
components, active signal output can reduce the number of detection equipment and save detection
time. Through a large number of wiring and a single loading in the early stage, AE signals will be
generated at the damaged parts of the components. From this, the location and types of damage can be
determined, and the detection efficiency can be improved. Secondly, the AE signal is used to identify
the type of damage and the location of damage. The location of the AE signal is based on the location
of the signal receiver, but the geometric shape of the workpiece itself is not required. Thirdly, the AE
signal is received by the receiver, which can be regarded as the real-time production of the workpiece
damage. It can be applied to real-time and rapid monitoring of damage and its development. Fourthly,
the signals of different failure modes in the AE signal source can be separated by spectral analysis
technology. According to the dominant AE signal, the type and degree of internal damage and failure
of the specimens are judged. AE nondestructive testing technology has become a research hotspot for
defect and damage detection in composite materials [11,12].

Three-dimensional braided composite materials, first of all, it uses three-dimensional braiding
technology to braid reinforced fibers into three-dimensional monolithic fabric (preform). Then,
the preform is compounded with the matrix to make composite. The reinforcing fibers in
three-dimensional braided composites have a spatial interweaving structure. Therefore, in addition to
the advantages of high specific strength and high specific modulus, it also has better impact resistance,
higher damage tolerance and energy absorption [13]. During the tensile process of three-dimensional
braided composites, part of the strain energy release forms acoustic signals in the form of stress
waves [14]. Acoustic emission (AE) technology can acquire the acoustic emission signals of these
internal damages [15]. AE technology can be used to establish a corresponding relationship between
the collected signals and the development of internal damage of materials [16]. Through a series of
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signal analysis methods, AE signal denoising, and acoustic source waveform recognition, the damage
source location is finally obtained [17].

In the research of AE detection technology, Barile proposed a method to detect and identify
different types of damage in carbon fiber composites (CFRP) using AE technology [18]. Nair A et al.
used advanced pattern recognition technology to identify failure mechanisms in CFRP reinforced beams
by collecting AE data [19]. The correlation between the main failure modes of glass fiber reinforced
composites (GFRP) and their AE in tensile test and double cantilever beam (DCB) test was evaluated
by Bohmann [20]. Rescalvo et al. proposed a method to detect wood beams modified with CFRP by
AE technology [21]. Matvienko et al. developed a program for monitoring degradation processes and
predicting the residual strength of polymer composite packaging multilayers [22]. Saeedifar et al. found
that, under quasi-static and dynamic transverse loads, AE is a powerful tool for studying the barely
visible impact damage (BVID) of laminated composites [23]. Bashkov et al. introduced the method of
estimating damage accumulation of GFRP prepared by vacuum and vacuum-high pressure moulding
in AE parameter processing technology [24]. Qingwen You et al. carried out drop hammer impact test
and small mass impact test on composite laminates, and found that AE signal combined with empirical
mode decomposition (EMD) can be used for real-time health monitoring [25]. Shahkhosravi et al.
proposed a very promising method based on AE and finite element (FE) techniques to evaluate the
initiation and propagation of damage in high-speed drilled composite laminates [26]. Barile et al.
tested the ability of AE technology to detect unidirectional delamination of carbon fibre composites
under double cantilever loads and found out the possible correlation between the frequency content of
acoustic signals and damage evolution [27]. Based on acoustic emission (AE) detection technology in
industrial environments, Esola Shane et al. introduced a multi-dimensional assessment method for
wing beam components identification of composite fixed-wing aircraft using composite structure and
non-destructive assessment method, which can analyze and identify key damage areas [28].

Since there are dozens of characteristic parameters of AE events, there is a certain correlation
between them in clustering the analysis of signals, so it is necessary to optimize the characteristics of
data. In recent years, with the rapid development of artificial intelligence, neural network has been
used to model data. The trained model is used to classify and judge unknown data, which improves
the modeling speed and recognition efficiency. Kalafat et al. present an alternative localization method
based on the use of neural networks, using experimental training data as a modeling basis. It was
shown that the neural-network-based method is not only superior by a factor of six in accuracy, but
also results in a lower scattering of the localized source positions by a factor of 11 [29]. Han et al.
proposed an extraction method of damage modes in composite laminates from (AE) signal based on
ensemble empirical mode decomposition (EEMD) and decorrelation algorithm. The results showed
that DEEMD is the more effective solution for extracting all damage modes existing in a single AE
signal than EMD, can eliminate mode mixing [30]. Tabrizi et al. used the experimental and numerical
investigation on fracture behavior of glass/carbon fiber hybrid composites. Damage occurrence is
recorded using AE method and then damage types are classified by means of K-means algorithm.
Results showed four clusters of acoustic data corresponding to four failure types, i.e., matrix cracking,
interface failure, fiber pullout, and fiber breakage [31]. Fatih et al. used the acoustic emission (AE)
registration technique and its location detection capability to identify and locate the damage modes
during the tension tests. The k-means ++ algorithm is applied to cluster similar AE events and obtain
reliable correlations between the damage modes and AE characteristics. The correlations between the
AE clusters and damage modes are validated with the finite element model [32].

The premise of traditional AE source location is to determine the propagation speed of acoustic
wave in solid medium, and to determine the location of acoustic emission source by the time difference
between the acoustic wave arriving at the two sensors. However, carbon fiber braided composites have
anisotropic properties [33]. Sound wave velocity is not only related to material characteristics, thickness
and propagation angle, but also to the change of material characteristics caused by environmental
factors such as temperature and humidity, thus changing the propagation speed of stress wave and
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affecting the location results of damage sources [34]. In order to reduce the location error of damage
sources, the time-frequency relationship of AE signals is compensated when tensile damage occurs in
carbon fiber braided composites. The damage of carbon fiber braided composites is identified and
the initial location of damage sources is formed. The chaos algorithm and fish swarm algorithm are
used to improve the Drosophila algorithm and improve its recognition accuracy. The key parameters
of probabilistic neural network are further optimized, and the improved Drosophila optimization
algorithm is used to locate the damage source of braided composites accurately. Through the numerical
analysis of the tensile damage signal of carbon fiber braided composites, the results show that the
improved Drosophila algorithm optimizes the smoothing parameters and function construction of
probabilistic neural network, reduces the number of iterations, and improves the identification and
location accuracy of different damage of carbon fiber braided composites.

2. Tension Damage Detection Test of Carbon Fiber Braided Composites

2.1. Materials and Equipment

In this paper, carbon fibre braided composites by four-step 1× 1 three-dimensional four-directional
braiding process are taken as the research object for tensile test. The braided yarn of the test sample is
T700−12K carbon fiber with a density of 1.76 g/cm3 and a linear density of 0.8 g/m. Its technological
parameters are as follows: surface braiding angle is 22.60◦; internal braiding angle is 32.14◦; pitch
length is 6.0 mm; fiber volume content is 45.00%; size is 250 mm × 25 mm × 4 mm. The internal
structure sketch and physical diagram of three-dimensional four-directional carbon fiber braided
composites are shown in Figure 1.
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Figure 1. Three-dimensional four-directional carbon fiber braided composites: (A) Structural sketch
of internal reinforcement; (B) Surface morphology of carbon fiber braided composites; (C) Side
morphology of carbon fiber braided composites.

Before the tensile test, the sound velocity was determined by the standard lead-breaking test at
the position near the sensor. When the measured sound wave amplitude is greater than 85 db, it is
considered to meet the requirements. In the tensile test, the AE signals during the tensile process are
obtained by AE testing technology (SAEU2S Acoustic Emission Signal Acquisition System), and the
corresponding mechanical properties parameters are obtained by Shimadzu Universal Material Testing
Machine for analysis. To avoid testing error, specimens with each parameter were tested five times.
The tensile process of a 3D braided composite is shown in Figure 2.
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Figure 2. The tensile process of the 3D braided composites.

2.2. Analysis of the Relationship between Mechanical Properties and Acoustic Signals

In the process of tensile test, mechanical properties such as tensile stress-strain curve and
acoustic signal parameters such as energy, ringing count, and RMS voltage can be collected.
The load-displacement curves of the specimens correspond to the energy parameters of acoustic
emission signals as shown in Figure 3.
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Figure 3. Change in the load-displacement curve corresponding with the acoustic emission (AE) ignal
energy parameter of carbon fiber braided composites.

From the load/KN-displacement/mm (red) curve in Figure 3, it can be seen that at the beginning
of the tensile process, the tensile stress along the tensile direction of the sample increased rapidly, and
then gradually presented a linear trend until the final fracture. The non-linear change in the initial
stage may be caused by the micro-defects in the experimental specimen, such as impurities and voids
in the material. With the process of tension, the effect of internal defects on the specimen becomes
smaller and smaller.

It can be seen from the energy/eu-displacement/mm (blue) curve in Figure 3, as the tensile load
increases, the failure of the samples were also accumulating. Energy release occurs in all time periods,
the energy parameters of AE signals can clearly distinguish the tensile process of the sample. Different
source signals existed in sequence of time. There were several important mutation points, which
indicated that energy was released centrally after a long period of accumulation. When these energies
were released centrally, it was also the time when the crack of the sample changed strongly. That was
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to say, at the critical loading point where the crack of the sample increased to the next stage, the release
of energy in the AE signal increased rapidly.

In Figure 3, according to the energy and amplitude changed of AE signal peak parameters,
load-displacement curves, and crack growth patterns, the tensile process of samples can be basically
divided into three stages: Section 1, micro-crack generation (initial damage); Section 2, micro-crack
propagation (damage evolution); and Section 3, instability failure (damage and failure) stages.
In the micro-crack generation stage, with the increased of tension load and displacement, the energy
parameters of AE signal continued to accumulate, and the load curve gradually increased. This indicated
that a small amount of damage occured with the increase of load in the initial stage of loading. At this
time, the main damage was the original defect of the sample, the crack of the resin matrix with very thin
surface of the material and the degumming of the weak bonding interface. At the stage of microcrack
propagation, the energy parameters of the AE signal fluctuated only slightly. This indicated that
the damage development of sample was gradual. Because the change of AE energy parameters was
basically stable, the damage types can be judged to be basically the same. The damage was mainly
caused by matrix crack propagation and debonding at the interface between fiber bundles and matrix.
In the stage of instability and failure, the cumulative energy of the acoustic emission signal changed
abruptly. At this time, the failure mode was fiber bundle breaking, accompanied by fiber bundle
pulling out, which leaded to the final failure of the sample.

2.3. HHT Analysis of Acoustic Emission Signals

Samples produced different AE signals at different damage stages. These AE signals at different
damage stages tended to overlap and presented random and non-stationary distribution [35].
This brought difficulties to the recognition of AE signals. The Hilbert–Huang transform (HHT)
is suitable for the analysis of non-linear and non-stationary acoustic emission signals [36,37]. In this
paper, HHT was used to analyze the time-frequency characteristics of acoustic emission signals, and
the mode expression of damage evolution process of carbon fiber braided composites was obtained.
The HHT method consists of empirical mode decomposition (EMD) and the Hilbert transform [38].
The HHT spectra of AE signals of carbon fiber braided composites were shown in Figure 4.
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Figure 4. AE signal Hilbert–Huang transform (HHT) spectrum of carbon fiber braided composites.

In Figure 4, the energy of the AE signal was mainly concentrated below 5kHz. With the increase
of time, the change of frequency showed some oscillation. The vibration of AE signal wave increases
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with the increase of frequency. In the initial stage of micro-crack generation (damage initiation),
the acoustic signals in the three stages of micro-crack propagation (damage evolution) and instability
failure (damage destruction) had obvious burst characteristics. In view of the changes of these acoustic
signals, the location of the tensile damage source can be further located.

3. Preliminary Positioning by Four-Point Arc Method

According to the HHT time-frequency characteristics of AE signals of carbon fiber braided
composites in tensile damage mode, on the basis of determining the damage stage and signal type,
a two-step method was used to locate the damage source. In the first step, the sound velocity was
compensated by the time-frequency analysis results and the anisotropy of the sample. The initial
location was performed by the four-point circular arc method. In the second step, after the initial
damage location, the Drosophila algorithm in probabilistic neural network was used to calculate the
damage location accurately. The Drosophila optimization algorithm was improved by ergodicity of
chaotic algorithm and congestion adjustment mechanism of fish swarm algorithm. In this way, the
smoothing parameters of probabilistic neural network were optimized, the number of iterations was
reduced, and the accuracy of locating the fixed damage source was further improved.

3.1. Acoustic Velocity Correction

Through the analysis of the tensile process and HHT marginal spectrum of carbon fiber braided
composites, it can be seen that the acoustic signals of the micro-crack generation stage and the
micro-crack propagation stage had obvious continuity characteristics during the tensile process.
The acoustic signals in the instability damage stage had obvious sudden characteristics. A number
of sensors were fixed on the surface of the object to form a certain geometric relationship, so that
the damage source can be initially located by using the time difference of different acoustic waves
received by the sensor array. Therefore, the four-point circular arc location algorithm based on the
two-dimensional plane location method was used to locate the damage source preliminarily.

Four acoustic emission sensors were placed on the sample to form a rectangular plane detection
area. Because of the anisotropy of carbon fibre braided composites, the acoustic velocity varies greatly,
so it is necessary to correct the acoustic velocity to eliminate or reduce the location error caused
by the difference of acoustic velocity [39]. Taking the origin as the source of acoustic emission, the
lead-breaking experiment was used to calculate the time when the acoustic wave arrived at the
sensors. Then, based on the set sensor 1, the time difference of t′2, t′3, t′4, was calculated. After many
measurements, the average value of each time difference was taken as a correction parameter. The
corrected values of acoustic velocity were shown in Table 1. In the subsequent location calculation, the
arrival time of the acoustic wave was corrected by using the modified parameters.

Table 1. Corrected parameters of acoustic velocity.

Sensor Velocity (103m/s)
Relative

Distance(mm) Relative Time (s) Modified
Parameters

Sensor 1 5.143 25 4.861 0
Sensor 2 5.069 25 4.932 0.071 × 10−6

Sensor 3 4.781 25 5.229 0.368 × 10−6

Sensor 4 4.826 25 5.180 0.319 × 10−6

3.2. Four-Point Arc Location of Damage Source

Lead breaking experiments were carried out on the samples. The sample was divided into four
quadrants by equal ratio. Two points in each quadrant were taken and 10 lead-breaking experiments
were carried out at the same point to correct the sound velocity. The actual location of the acoustic
emission source was compared with the calculated location of four-point circular arc location by taking
the experimental results of eight different locations. The comparison results are shown in Table 2.
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Table 2. Comparison of the actual location of AE source with the calculated location of four-point
circular arc.

Lead Break Location (mm) Calculated Location (mm) Error (%)

X Y X Y X Y

3.000 4.000 3.296 4.334 9.857 8.346
5.000 3.000 5.463 3.239 9.267 7.953
−3.000 5.000 −3.270 5.489 8.998 9.785
−6.000 7.000 6.554 7.660 9.231 9.428
−5.000 −6.000 −5.469 6.503 9.389 8.389
−8.000 −4.000 −8.679 −4.382 8.482 9.542
6.000 −9.000 6.590 −9.890 9.833 9.889

10.000 −8.000 11.012 −8.820 10.123 10.251

As can be seen from Table 2, the accuracy of the four-point arc location algorithm was low, and
the error range was about ±10%. Moreover, the closer to the boundary position of the experimental
specimen, the calculation error was larger. On the one hand, because of the heterogeneity of the
space structure of carbon fiber braided composites, the detection effect was not good. On the other
hand, the attenuation of wave velocity and the internal structure of the specimen were affected by the
positioning accuracy. It was necessary to improve the location accuracy of acoustic emission source of
carbon fiber braided composites by theoretical method.

4. Accurate Location of Damage Source Based on Probabilistic Neural Network with Optimized
Drosophila Algorithms

Due to the anisotropy of carbon fiber braided composites, the propagation law of acoustic wave
in materials was complex, which made it difficult to locate and detect AE damage. In this paper,
Drosophila optimization algorithm was selected to optimize the key parameters of the network,
taking full account of the propagation medium material, the geometry of the propagation medium,
the interweaving of fibers in three-dimensional space and the convergence accuracy and speed of
different intelligent optimization algorithms in the calculation of probabilistic neural networks.

4.1. Improved Drosophila Optimization Algorithm

The optimization mechanism of the Drosophila optimization algorithm is to simulate the process
of Drosophila foraging, which is divided into two stages: olfactory search and visual location.
The mechanism of Drosophila optimization algorithm is simple; it has small computational complexity
and is easy to implement, and the population can quickly approach the optimal individual, thus
ensuring the fast convergence of the algorithm. However, because Drosophila individuals focus on
the optimal individuals for random search, it is easy to lead to the premature phenomenon of the
algorithm, which reduces the global search ability of the algorithm. Therefore, based on the Drosophila
optimization algorithm, combined with ergodicity of chaos algorithm and congestion adjustment
mechanism of fish swarm algorithm, an improved Drosophila hybrid optimization algorithm was
proposed to locate the damage source of carbon fiber braided composites.

When the chaos optimization algorithm is used to improve the shortcomings of random search,
chaos generation mechanism can directly replace random number generator mechanism to improve
the efficiency of random search. Therefore, the chaotic search method is used to improve the random
search method of Drosophila individuals in order to improve the Drosophila optimization algorithm.
Logistic mapping is one of the most commonly used chaos generation mechanisms, which has the
characteristics of simple form. This paper chose logistic map as the mechanism of chaotic sequence
occurrence, as shown in formula (1):

zn+1 = µ · zn · (1− zn) (1)
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When the parameter µ = 4, the map is full of chaos between 0 and 1. Its chaotic bifurcation
diagram and corresponding Lyapunov exponent are shown in Figure 5. As can be seen from Figure 5,
with the increase of µ, the iteration value of Logistic map goes through a period-doubling bifurcation
process of one, two, and four periods, and finally enters into chaotic state. When the logistic map is in
chaotic state, its corresponding Lyapunov exponent is larger than 0. The advantages of randomness
and ergodicity of chaotic sequence make its search efficiency much higher than that of random search
method. Logistic mapping was used to generate the chaotic sequence, which replaced the random
sequence generated by a random number generator, so as to realize chaotic search.

Molecules 2019, 24, 3524 9 of 17 

 

When the parameter μ = 4, the map is full of chaos between 0 and 1. Its chaotic bifurcation 
diagram and corresponding Lyapunov exponent are shown in Figure 5. As can be seen from Figure 
5, with the increase of μ, the iteration value of Logistic map goes through a period-doubling 
bifurcation process of one, two, and four periods, and finally enters into chaotic state. When the 
logistic map is in chaotic state, its corresponding Lyapunov exponent is larger than 0. The advantages 
of randomness and ergodicity of chaotic sequence make its search efficiency much higher than that 
of random search method. Logistic mapping was used to generate the chaotic sequence, which 
replaced the random sequence generated by a random number generator, so as to realize chaotic 
search. 

 
Figure 5. Logistic mapping Lyapunov exponential graph. 

In Drosophila algorithm, all Drosophila have the same behavior criteria and aggregate near the 
food source. As a result, Drosophila cannot search globally, which reduces the global search 
performance of the algorithm. In the fish swarm algorithm, similar behavior exists in the foraging 
process, so the concept of crowding degree is set up. That is to say, the fish cannot gather too much 
in the same place to prevent the algorithm from convergence too fast. In this paper, the concept of 
crowding degree in the fish swarm algorithm was introduced into the Drosophila algorithm, so that 
Drosophila did not have the only criterion of action. The optimal initial position is paid according to 
random probability. Drosophila individuals search around (x_best, y_best) with probability, and 
search randomly with small probability. 

Therefore, the improvement measures of Drosophila optimization algorithm were as follows: 
Step 1—initialization parameters: The main parameters involved in Drosophila optimization 

algorithm were initialized. Specifically, it includes the maximum number of iterations (MaxGen), the 
size of Drosophila population (Size), the initial optimal location of drosophila (x_best, y_best), and the 
initial congestion probability (P). 

Step 2—setting up chaos generation mechanism: It was shown in formula (2). After selecting the 
initial value, the chaotic initial value of Drosophila optimization algorithm was obtained after 2000 
iterations, which can eliminate the influence of the initial value of chaotic mechanism on the search 
process. 

)1(1 nnn zzz −⋅⋅=+ μ  (2) 

Step 3—setting random search direction for Drosophila: Random initial x_axis and y_axis were 
set. There were two ways to set the search direction for the ith Drosophila individual in the 
population. Random number generator was used to generate random number r between 0 and 1. If r 
< p, set the random search direction of the ith Drosophila near the locations of x_axis and y_axis. It 
was shown in formula (3):  

Figure 5. Logistic mapping Lyapunov exponential graph.

In Drosophila algorithm, all Drosophila have the same behavior criteria and aggregate near
the food source. As a result, Drosophila cannot search globally, which reduces the global search
performance of the algorithm. In the fish swarm algorithm, similar behavior exists in the foraging
process, so the concept of crowding degree is set up. That is to say, the fish cannot gather too much
in the same place to prevent the algorithm from convergence too fast. In this paper, the concept of
crowding degree in the fish swarm algorithm was introduced into the Drosophila algorithm, so that
Drosophila did not have the only criterion of action. The optimal initial position is paid according
to random probability. Drosophila individuals search around (x_best, y_best) with probability, and
search randomly with small probability.

Therefore, the improvement measures of Drosophila optimization algorithm were as follows:
Step 1—initialization parameters: The main parameters involved in Drosophila optimization

algorithm were initialized. Specifically, it includes the maximum number of iterations (MaxGen), the
size of Drosophila population (Size), the initial optimal location of drosophila (x_best, y_best), and the
initial congestion probability (P).

Step 2—setting up chaos generation mechanism: It was shown in formula (2). After selecting
the initial value, the chaotic initial value of Drosophila optimization algorithm was obtained after
2000 iterations, which can eliminate the influence of the initial value of chaotic mechanism on the
search process.

zn+1 = µ · zn · (1− zn) (2)

Step 3—setting random search direction for Drosophila: Random initial x_axis and y_axis were
set. There were two ways to set the search direction for the ith Drosophila individual in the population.
Random number generator was used to generate random number r between 0 and 1. If r < p, set the
random search direction of the ith Drosophila near the locations of x_axis and y_axis. It was shown in
formula (3):

zn+1 = µ · zn · (1− zn)

zn = zn+1

zn+1 = µ · zn · (1− zn)

x(i) = x_axis + zn

y(i) = y_axis + zn

(3)
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If r ≥ p, the random search direction of the ith.
Drosophila was set near the positions of x_best and y_best. It was shown in formula (4):

zn+1 = µ · zn · (1− zn)

x(i) = x_best + zn

y(i) = y_best + zn

(4)

Step 4—calculated concentration determination value: The distance between the location and the
point of the i-th Drosophila individual was calculated.

The distance (Disti) between the location and the point of the first Drosophila individual is
calculated, as shown in formula (5):

Disti =

√
(x(i))2 + (y(i))2 (5)

According to the distance, the concentration determination value Si was calculated, as shown in
formula (6):

Si = 1/Disti (6)

Step 5—calculating the concentration (Smell(i)) of the ith Drosophila: The concentration evaluation
function was the optimization function, which was set as fit(Si), the relationship of Smell(i) and fit(Si),
as shown in formula (7):

Smell(i) = f it(Si) (7)

Step 6—preserving the current optimal individuals: Drosophila with the highest odor concentration
will be retained as the current optimal individual, as shown in formula (8):

[bestSmell, bestindex] = min(smell(i)) (8)

Step 7—preserve the optimal concentration and coordinates: The concentration determination
values (bestSmell) and position coordinates of the optimal individual were preserved. Drosophila
were directed to fly quickly to that location depending on visual perception, which was shown in
formula (9): 

Smellbest = bestSmell
x_best = x(bestindex)
y_best = y(bestindex)

(9)

The coordinates (x_best, y_best) were taken as the optimal initial position for the next optimization,
and the probability of congestion degree was reduced, as shown in formula (10):

p = λ · p (10)

In which, 0 < λ < 1, λ is the probability attenuation coefficient of congestion degree.
Step 8—iterative optimization: Steps 3 to 6 were repeated, and the current optimal concentration

was determined to be updated. If so, Step 7 was performed; if not, Steps 3 to 6 were iterated directly.
The specified number of iterations was reached, or the algorithm was converged.

In the improved Drosophila optimization algorithm, through the congestion adjustment
mechanism of fish swarm algorithm, the initial phase of the congestion probability can be set
as a larger probability value, which ensured that Drosophila individuals can carry out sufficient
random search to find the optimal location in the global scope. This increased the dispersion of
Drosophila individuals and overcame the phenomenon of early maturity in the population. At the
same time, the ergodicity of the chaotic algorithm improved the search speed of the algorithm, reduced
the number of repeated searches, and thus improved the search efficiency. As the search process
proceeds, the probability of congestion decreased gradually. The probability of Drosophila individuals
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aggregating to the optimal location increased, and the search times near the optimal location increased,
which ensured that the algorithm had good convergence characteristics and stability.

4.2. Performance Analysis of Improved Algorithms

The standard Drosophila optimization algorithm and the improved Drosophila optimization
algorithm proposed in this paper were used to optimize the typical test function to verify the
effectiveness of the improved algorithm. The optimization performance of the improved Drosophila
optimization algorithm is shown in Table 3.

Table 3. Improvement of optimization performance of Drosophila optimization algorithm.

Function Optimal Point Global Extremum

Average Absolute Error of Global Extremum

Standard Drosophila
Optimization

Algorithm

Improved Drosophila
Optimization

Algorithm

F1 (1.0, 1.0) 0.0 0.0031 0.0002
F2 (0.0, −1) 3.0 0.0574 0.0261

F3
(−31.9783,
−31.9783) 0.998004 0.1717 0.0862

F4 (0.0, 0.0) −1.0 0.0279 0.0086

F5
(−0.0898, 0.7126)
(0.0898, −0.7126) −1.031628 0.087 0.0139

F6 (0.0, 0.0) 0.0 0.0548 0.0102

From Table 3, it can be seen that the improved Drosophila optimization algorithm had a higher
optimization efficiency than the standard Drosophila optimization algorithm. In the optimization
calculation, the improved function can search the global optimal solution more accurately and obtain
better optimization performance. The average error index performance of the optimization results of
each function improved. This showed that the method in this paper had stronger global optimization
ability. The improved Drosophila optimization algorithm had good optimization performance. Using
the improved Drosophila optimization algorithm to optimize the key parameters of the probabilistic
neural network can improve the pattern recognition ability of the probabilistic neural network.

4.3. Accurate Location of Damage Sources in Carbon Fiber Braided Composites

For the AE detection of carbon fiber braided composites, the output waveform of the sensor was
very complex due to the influence of the characteristics of the acoustic emission source, the propagation
path of the signal, the environmental noise and the measurement system, etc. If waveform information
such as amplitude, rise time and duration was directly used as input, the convergence speed of
the network and the accuracy of the output results would not be very high. Therefore, the initial
positioning coordinates calculated from the first four-point arc positioning were input as the precise
positioning values of the probabilistic neural network damage source of the second optimization
Drosophila algorithm, so as to improve the convergence speed and positioning accuracy.

The selection of smoothing coefficients directly affected the performance of probabilistic neural
networks. If the smoothing coefficient was too small, the network mainly isolated the training samples,
and the probabilistic neural network was equivalent to the nearest neighbor classifier. If the selection
of smoothing coefficient was too large, the discrimination of training samples was not large, and
the probabilistic neural network was equivalent to the linear classifier. Therefore, the smoothing
coefficient directly affects the information processing performance of the network. Because the
improved Drosophila optimization algorithm had good global optimization performance, this paper
used the improved Drosophila optimization algorithm to optimize the smoothing coefficient of the
probabilistic neural network to improve the performance of the probabilistic neural network.

(1) Construction of Optimal Function
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For probabilistic neural networks, the selection of appropriate smoothing coefficients was
to improve the network’s ability to classify samples correctly. Therefore, the fitness function
(optimization function) for solving the smoothing coefficients of probabilistic neural networks by using
the optimization algorithm was set as follows (11):

f itness = f (σ1, σ2, . . . , σs) =
Predict the correct number of samples

Total sample number
(11)

For known samples, training samples and test samples were divided. The training samples were
only used to construct or determine the structure of probabilistic neural networks, not to optimize the
smooth coefficients of networks. The test samples were not used for network construction, but only for
optimizing network parameters and evaluating network performance.

(2) Parameter optimization of probabilistic neural network based on the improved Drosophila
optimization algorithm

The specific steps of optimizing probabilistic neural network with the improved Drosophila
optimization algorithm proposed in this paper were as follows:

Step 1—constructing probabilistic neural network: According to the specific problems to be
solved and the number of known samples, a probabilistic neural network model was constructed.
If the number of modes was s, the parameters to be optimized for probabilistic neural networks were
determined to be σ1, σ2, . . . σs. In the definition domain of optimization parameters, optimization
parameters were initialized

Step 2—setting parameters of the Drosophila optimization algorithm: According to the complexity
of probabilistic neural network, the optimum algorithm (MaxGen) was chosen to maximize the number
of iterations and the size of Drosophila population. Optimal location parameters and crowding
probability values of Drosophila optimization algorithm were set.

Step 3—setting up the mechanism of chaos generation: logistic mapping was selected as the
generation mechanism of chaotic sequence, and 2000 iterations are carried out to eliminate the influence
of initial value selection on the optimization results.

Step 4—random search of Drosophila: Drosophila individuals are used for chaotic search.
Step 5—calculated concentration determination value: The concentration determination value

was calculated.
Step 6—calculating individual concentration of Drosophila melanogaster: The fitness function

value was obtained to calculate the concentration value of Drosophila individual’s position.
Step 7—preserving the current optimal individual: Drosophila with the highest odor concentration

was retained as the current optimal individual.
Step 8—preserving optimal concentration and coordinates: The concentration determination value

(bestSmell) of the optimal individual and its location coordinates were preserved, and the probability
attenuation coefficient of congestion degree was adjusted adaptively.

Step 9—iterative optimization: Steps 4 to 7 were repeated to determine whether the current
optimal concentration is updated or not. The specified number of iterations was reached, or the
algorithm was converged.

The flow chart of optimizing probabilistic neural network with improved Drosophila optimization
algorithm was shown in Figure 6.
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Figure 6. Optimization of probabilistic neural network based on improved fruit fly optimization algorithm.

On the basis of four-point arc preliminary positioning, the initial position is used as the input
of probabilistic neural network. The standard Drosophila optimization algorithm and the improved
Drosophila optimization algorithm were used to locate the damage source. The results of damage
source localization are shown in Table 4.
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Table 4. Comparison of locations of tensile damage sources.

Lead Break Location
(mm) (x, y)

Standard
Drosophila

Computational
Position (mm)

Error (%)

Improved
Drosophila

Computational
Position (mm)

Error (%)

(x, y) (x, y)

(1.000, 0.500) (1.053, 0.525) (5.345, 4.967) (1.010, 0.505) (1.012, 0.934)

(3.000, 1.000) (2.880, 1.030) (−3.987, 4.023) (2.970, 1.009) (−0.986, 0.894)
(−1.000, 0.800) (−1.052, 0.762) (5.167, −4.793) (−1.011, 0.793) (1.078, −0.925)
(−6.000, 1.200) (−5.726 1.172) (−4.568, −3.368) (−5.946, 1.188) (−0.899, −0.967)

(−5.000, −0.700) (−5.248, −0.733) (4.962, 4.678) (−5.052, −0.707) (1.038, 0.978)
(−7.000, −0.900) (−6.782, −0.945) (−3.109, 3.991) (−6.932, −0.910) (−0.971, 1.058)
(6.000, −1.000) (6.254, −1.047) (4.239, 4.725) (6.053, −1.009) (0.891, 0.898)
(4.000, −0.600) (3.840, −0.569) (−3.993, −4.234) (3.957, −0.594) (−1.079, −0.983)

As can be seen from Table 4, the error range of positioning accuracy based on probabilistic neural
network and standard Drosophila optimization algorithm was about ±5%, after using the improved
Drosophila optimization algorithm, the positioning accuracy error was about ±1%. This showed that
the “two-step method” had a significant improvement in positioning accuracy compared with the
traditional single TDOA positioning method.

Furthermore, the HHT spectra of acoustic emission signals of carbon fiber braided composites
(Figure 4) were used to locate the damage at each stage. The localization diagram of the damage stage
in the tensile test was shown in Figure 7. As can be seen from Figure 7, the brittle breakpoint of the
fibers can be seen at the final break fracture. This was also the initial location of the internal damage of
the sample. With the increase of tensile load, damage cracks grew rapidly. Two damage points can be
located in the damage evolution stage and the damage failure stage. Combining with the location of
each point, the damage area of the sample can be basically locked, and the location results of each
stage appear near the fracture surface.
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Figure 7. Location of Damage Source in Tensile Test.

By transforming the problem of acoustic emission damage signal identification of carbon fiber
braided composites into a mathematical problem of objective function optimization, the problem of
damage source localization of three-dimensional braided composites was solved based on “two-step
method”. In order to overcome the shortcomings of the Drosophila algorithm in identifying the key
parameters of probabilistic neural network, the algorithm was improved based on the idea of chaos
optimization and fish swarm optimization. Through numerical calculation and experimental damage
source location of different specimens, the results showed that the improved method had significantly
improved the identification accuracy of different damage conditions. The optimized probabilistic
neural network can locate the damage source accurately in each damage stage of tensile test. In this
paper, an improved damage location method was proposed to reduce the error of the conventional
location method. This method can locate the damage of carbon fiber braided composite materials in
time and accurately, and improve the efficiency of nondestructive testing of composite materials.
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5. Conclusions

Through this study, the internal damage signal of carbon fiber braided composites under tensile
load can be obtained by acoustic emission detection technology. The time domain and frequency
domain characteristics of AE signals were analyzed by HHT, and the corresponding relationship
between tensile damage mode and AE signal was established. In the first step, the sound velocity was
compensated by combining the time-frequency analysis results with the anisotropy of the sample, and
the initial localization was carried out by using the four-point arc method of time difference localization.
In the second step, probabilistic neural network combined with the standard Drosophila optimization
algorithm was used to locate the target in an error range of about ±5%. The construction of smoothing
parameters and functions in probabilistic neural network was optimized to reduce the number of
iterations. The positioning accuracy error of the improved Drosophila optimization algorithm was
about ±1% and the positioning accuracy was improved.
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