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Abstract: The total synthesis of (+)-10-keto-oxycodone was attained from phenethyl acetate in a
stereoselective manner. Absolute stereochemistry was established via enzymatic dihydroxylation of
phenethyl acetate with the recombinant strain JM109 (pDTG601A) that furnished the corresponding
cis-cyclohexadienediol whose configuration corresponds to the absolute stereochemistry of the ring
C of (+)-10-keto-oxycodone. Intramolecular Heck reaction was utilized to establish the quaternary
carbon at C-13, along with the dibenzodihydrofuran functionality. The C-14 hydroxyl and C-10
ketone were installed via SmI2-mediated radical cyclization, and oxidation of a benzylic alcohol
(obtained from an intermediate nitrate azide), respectively. The synthesis of (+)-10-keto-oxycodone
was completed in a total of 14 operations (21 steps) and an overall yield of ~2%. Experimental and
spectral data are provided for key intermediates and new compounds.

Keywords: enzymatic dihydroxylation; total synthesis; 10-keto-oxycodone; CAN-mediated
hydroxyazidation; aminohydroxylation; pinacol-type coupling

1. Introduction

Interest in the preparation of 10-keto opiates and related derivatives such as the
10-hydroxy-morphinans was aimed at pursuing κ-selective analgesics [1]. Of the three types of
opioid receptors (µ, δ, κ), the κ-opioid receptor has been especially interesting because its activation
produces analgesia with minimal physical dependence [2]. A highly selective κ-opioid agonist may
provide a useful analgesic free from abusive potential [3]. Among the efforts directed toward
the preparation of the afore-mentioned 10-keto opiates are those aimed at the preparation of
10-keto, 10α-, 10β-hydroxy-TRK-820 [4], 10-keto-naltrexone, 10-keto-oxymorphone, 10-keto-oxycodone
(Figure 1) [5], 10-keto-naloxone, and 10-keto-naloxone 3-methyl ether [6] from the corresponding opiates.
These preparations are all conducted from natural morphinans by semi-syntheses. Furthermore,
the above 10-keto opiates were also identified as purported intermediates in the decomposition of the
parent opiates upon storage [6]. As part of our continuing program in the preparation of morphine
alkaloids and related compounds [7,8], we recently had the opportunity to access a suitable intermediate
that could potentially be converted to ent-10-keto-oxycodone.

The published methods for the preparation of 10-keto-oxycodone and 10-hydroxy-oxycodone
involve the direct oxidation of oxycodone with chromium [5,9,10], or selenium dioxide [11] reagents.
Recently, the use of ceric ammonium nitrate (CAN) for such an oxidation led exclusively to the
10-hydroxy product, further oxidized to the C-10-ketone with the use of stronger oxidants such
as Dess–Martin periodinane [9,10]. Oxycodone, on the other hand, is prepared in two-steps from
thebaine by the oxidation of the diene moiety with a peroxyacid to an enone and subsequent
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hydrogenation [12–16]. The amount of available thebaine, itself a minor constituent of opium, limits the
production of oxycodone. Recently, thebaine and oripavine have become available from genetically
modified poppies that produce much higher percentages of these alkaloids [17–20], now supplied by
Tasmanian Alkaloids, Inc. [21]. Since the milestone synthesis of morphine by Gates [22] in 1952, there
have been more than 30 total syntheses of morphine and related alkaloids and the academic pursuit
continues unabated [23–27]. None of the reported syntheses are practical, however, for an industrial
scale production. Even the most efficient academic synthesis, published by Rice [28], may not be
amenable for scale-up in the industrial preparation of morphinans. Although the development of
a truly practical total synthesis of any morphinan or an opiate-derived agent on a commercial scale
seems to be not feasible in the near future, we have attempted to develop methods for the synthesis
of oxycodone and derivatives from readily available starting materials. A de novo preparation of
oxycodone and related medicinal opiate-derived agents for medicinal use could alleviate the negative
impacts of any future unfavorable events that may limit the supply of natural sources—such as climate
or political changes in the opium-producing areas.
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Figure 1. Structure of (−)-10-keto-oxycodone (natural series enantiomer, with morphine numbering
system shown).

2. Results and Discussion

Scheme 1 outlines our retrosynthesis of (+)-10-keto-oxycodone. Disconnection of ring D leads
to highly functionalized lactone 2. In the forward sense, Fukuyama’s lactamization approach to
oxycodone [29] can be utilized to construct the C-9 stereogenic center. The amino group required for the
cyclization reaction is derived from hydroxyazidation of alkene lactone 3 [30,31], which is envisioned to
be prepared from the keto acetal 4 following a deprotection of acetal and a SmI2-mediated pinacol-type
coupling reaction. The key intermediate 4 can be obtained from alkene 5 via dihydroxylation followed
by selective mesylation of the less hindered hydroxyl group and the elimination of the mesylate to
reveal the ketone functionality in 4. Alkene 5 is available in two steps from alcohol 7 via a sequence of
steps that involves a Mitsunobu coupling with an iodo phenol acetal to furnish aryl ether 6, followed
by an intramolecular Heck reaction. The absolute stereochemistry in 7 is incorporated via microbial
dihydroxylation of phenethyl acetate 8 in the whole-cell fermentation with toluene dioxygenase,
overexpressed in E. coli JM109(pDTG601A) [32]. The enzymatically derived arene cis-dihydrodiols
such as 7 have found widespread use in enantioselective synthesis of natural products [33–51].
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Scheme 1. Retrosynthetic analysis of the route to ent-10-keto-oxycodone.

As previously described in our earlier publications on the preparation of ent-oxycodone [30,31],
the synthesis began with the microbial dihydroxylation of phenethyl acetate 8 (Scheme 2) via a whole
cell fermentation with E. coli JM109 (pDTG601A) to afford the known intermediate cyclohexadiene diol
7 (obtained in 5gL−1 yield) [52,53], which was subjected to a selective reduction of the more accessible
alkene to afford the known diol 9 (85% yield) [54,55]. The distal, less hindered, hydroxyl in diol 9 was
protected with tert-butyl dimethylsilyl chloride and the free allylic alcohol was then subjected to a
Mitsunobu reaction with iodo phenol 10 [56], derived from isovanillin, to furnish the coupled product
ether 6 (45% yield over two steps). A subsequent intramolecular Heck reaction of 6 resulted in the
formation of olefin 5 (87% yield) whose osmium tetroxide-catalyzed dihydroxylation led to diol 11
(81% yield). This compound possesses the features of the three (ACE) rings of 10-keto-oxycodone.
The diol functionality was converted to ketone 4 via mesylation of the less hindered hydroxyl group
followed by elimination with excess 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). The mechanism may
also be viewed formally as a 1,2-hydride shift. [57] of the resulting mesylate (63% yield over two steps).
With the attainment of 4, deprotection of the acetal with aqueous TFA followed by a pinacol-type
coupling of the intermediate keto aldehyde using SmI2 afforded diol 12, tentatively assigned as the
cis isomer (65% yield over two steps) [58]. Mesylation of the less hindered hydroxyl group of diol 12
followed by treatment with excess DBU resulted in the formation of styrene alcohol 13 (56% yield over
two steps). Hydrolysis of the acetate followed by oxidation with tetrapropylammonium perruthenate
(TPAP) in the presence of N-methylmorpholine N-oxide (NMO) resulted in the formation of the key
intermediate lactone 3 (91% over two steps).
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Scheme 2. Synthesis of lactone 3.

Based on our earlier work on a similar CAN-mediated functionalization of styrene to deliver
ent-oxycodone [31], it was envisioned that the lactone 3 could be readily converted to a hydroxy lactam
en route to ent-10-keto-oxycodone (Scheme 3). It was previously reported [31] that hydrogenation
of azido nitrate 14 intermediate in methanol as solvent resulted in the formation benzylic methoxy
ether lactam 15. Therefore, it seemed logical that switching to non-nucleophilic solvent (e.g., EtOAc,
THF) would afford the benzylic alcohol instead. To our surprise and disappointment, the reduction of
azide functionality did not occur and it appears that the benzylic alcohol derived by hydrogenation
of the nitrate was slowly oxidized to the ketone 16 on exposure to air during workup and further
manipulation [59]. To achieve the desired reduction of the azide to amine and subsequent lactamization,
the solvent had to be changed to methanol. The desired lactam formation did occur, but the product
was the hemiketal 17. This route was not followed through as this would necessitate deprotecting
the hemiketal to the ketone prior to reduction with borane reagent. The hemiketal, when subjected to
reduction with sodium borohydride, resulted in the formation of an ether, tentatively assigned as the
C-10 epimeric benzylic methoxy ether (epi-15).
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To address the above issue of the premature oxidation of C-10, the intermediate azido nitrate 14 was
subjected to nucleophilic substitution with acetate to afford an intermediate acetate azide 2 (Scheme 4),
with the acetate serving as a “protecting group” against premature oxidation of C-10. An overall
inversion of stereochemistry of benzylic (C-10) carbon was tentatively assigned as in 2, in contrast
with the formation of 15 (retention). It is believed that 15 was formed from an intermediate benzylic
alcohol upon hydrogenolysis of the nitrate ester followed by lactamization and then nucleophilic
displacement of OH by methoxy group. The stereochemical properties of the intermediate benzylic
alcohol lactam favored a beta face attack by methanol as nucleophile. The facile displacement of OH
in the benzylic position was facilitated by the highly activating methoxy group at the para position.
For the formation of epi-15, on the other hand, the hydride served as the nucleophile and thus in the
product the methoxy group ended up on the alpha face. The assignment of 15 and epi-15 as beta and
alpha epimers was based on the coupling constants (J9-10) between the H-10 (benzylic C-H) and H-9 on
similar systems [4,60]. For compounds similar to 15, J values are approximately 5.0 Hz and for epi-15,
J values are around 0 Hz. The acetate azide 2 was hydrogenated to the amine, which underwent a
spontaneous lactam formation to afford the acetate lactam 18 (63% yield over three steps). Reduction of
the lactam 18 with borane followed by reductive amination with formaldehyde converted the lactam
to the N-methyl amine 19. Because of the sensitivity (to basic and acidic reagents needed for the
deprotection of C-6 hydroxyl) of the benzylic alcohol functionality in 19, it was first oxidized with
manganese dioxide to the corresponding ketone to increase stability. It has been suggested by one
of the referees that the benzylic alcohol 19 may be subject to a Grob-type fragmentation under basic
conditions. Deprotection of the TBS group using TBAF and oxidation of the C-6 hydroxyl afforded
ent-10-keto-oxycodone (61% yield over four steps).
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In conclusion, a relatively short chemoenzymatic total synthesis of ent-10-keto-oxycodone has
been accomplished in 14 operations from phenethyl acetate. To the best of our knowledge this
accomplishment constitutes the first synthesis of ent-10-keto-oxycodone.

3. Experimental Section

3.1. General Methods

Inoculum was obtained from viable cells stored −78 ◦C in cryovials. They were grown in suitable
media as previously described [28]. The substrate was fed in 5 mL increments over the course of ~3 h
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with metabolites being harvested in the usual manner. All non-aqueous reactions were conducted in an
argon atmosphere using standard Schlenk techniques for the exclusion of moisture and air. Methylene
chloride was distilled from calcium hydride, THF and toluene were dried over sodium/benzophenone.
Analytical thin layer chromatography was performed on Silicycle 60 A◦ 250 mm TLC plates with
F-254 indicator. Flash column chromatography was performed using Kieselgel 60 (230–400 mesh).
Melting points were recorded on a Hoover Unimelt apparatus (Hoover, VA, USA) and are uncorrected.
IR spectra were obtained on a Perkin-Elmer One FT-IR spectrometer (PerkinElmer, Waltham, MA,
USA) Optical rotation was measured on a Perkin-Elmer 341 polarimeter (PerkinElmer, Waltham, MA,
USA) at a wavelength of 589 nm. 1H and 13C spectra were recorded on a 300 MHz and 400 MHz
Bruker spectrometer (Bruker, Billerica, MA, USA). All chemical shifts are referenced to TMS or
residual nondeuterated solvent. Data of proton spectra are reported as follows: chemical shift in ppm
(multiplicity: singlet (s), doublet (d), triplet (t), quartet(q) and multiplet (m)), coupling constants [Hz],
integration). Carbon spectra were recorded with complete proton decoupling and the chemical shifts
are reported in ppm (δ) relative to solvent resonance as internal standard. Mass spectra and high
resolution mass spectra were performed by the Analytical Division at Brock University. The 1H and
13C NMR spectra of some compounds are in the Supplementary Materials.

3.2. (4bR,5S,6S,8aR,9S)-9-azido-6-((tert-butyldimethylsilyl)oxy)-4,5-epoxy3-methoxy-10-oxo-
5,6,7,8,9,10-hexahydro-8a,4b-(epoxyethano)phenanthren-12-one (16)

To a stirred solution of lactone 3 (140 mg, 0.34 mmol) in AcN (5 mL) at 0 ◦C was added NaN3

(140 mg, 2.15 mmol) followed by CAN (616 mg, 1.12 mmol). After 30 min, the reaction mixture was
diluted with Et2O/satd. NaHCO3 (30 mL/15 mL). The layers were separated and the aqueous layer was
further extracted with Et2O (2 × 20 mL). The organic layers were combined, dried over MgSO4, filtered
and concentrated to afford a residue that was used as crude in the next step. To a stirred solution of
crude azido nitrate 14 (from previous step) in EtOAc (4.0 mL) was added NEt3 (200 µL, 1.0 mmol) and
Pd/C (10 mg, 0.004 mmol). The reaction mixture was evacuated and refilled (3×) with hydrogen gas
and was allowed to stir under an atmosphere of hydrogen for 12 h. (A small aliquot was taken, filtered
through a plug of Celite and concentrated to afford a solid whose 1H NMR spectrum was obtained.)
It was taken in its crude form to the next step.

16: 1H NMR (300 MHz, CDCl3) δ 7.63 (d, J = 8.4 Hz, 1H), 7.02 (d, J = 8.4 Hz, 1H), 4.45 (d, J = 7.8 Hz,
1H), 4.09 (s, 1H), 4.02 (s, 3H), 3.24–3.35 (m, 1H), 3.16 (d, J = 17.7 Hz, 1H), 3.01 (d, J = 17.7 Hz, 1H),
2.20–2.36 (m, 1H), 1.65–1.85 (m, 3H), 0.89 (s, 9H), 0.09 (s, 3H), 0.02 (s, 3H) ppm.

3.3. (5R,5aR,8S,8aS,13bR,14R)-8-((tert-butyldimethylsilyl)oxy)-5a,14-dihydroxy-10,14-dimethoxy-
1,2,5,5a,6,7,8,8a-octahydro-5,13-methanobenzo[2,3]benzofuro[4,3a-c]azepin-3(4H)-one (17)

The solvent (EtOAc) of the reaction from the previous step was exchanged (for MeOH) as follows:
EtOAc was removed via rotary evaporation and the resulting residue was diluted with MeOH (4.0 mL).
The reaction mixture was evacuated and refilled (3×) with hydrogen gas and was allowed to stir
under an atmosphere of hydrogen for another 12 h. The catalyst was separated by filtration through
Celite. The Celite was washed with MeOH (2 × 15 mL). The filtrate and washings were combined and
evaporated to dryness to afford a crude solid residue that was further purified by chromatography on
silica gel using DCM/MeOH (9:1) as eluent to afford the hemiketal lactam product 17 as a white solid
(90 mg, 59.8% yield).

17: 1H NMR (300 MHz, CDCl3) δ 7.47 (d, J = 8.4 Hz, 1H), 6.94 (d, J = 8.4 Hz, 1H), 6.73 (s, 1H), 4.55
(d, J = 6.3 Hz, 1H), 3.99 (s, 3H), 3.84 (s, 3H), 3.35–3.45 (m, 1H), 3.17 (d, J = 17.7 Hz, 1H), 2.80–2.90 (m,
1H), 2.59 (d, J = 17.7 Hz, 1H), 1.85–1.98 (m, 1H), 1.48–1.56 (m, 1H), 1.40–1.45 (m, 2H), 0.91 (s, 9H), 0.12
(s, 3H), 0.02 (s, 3H) ppm; 13C NMR (75 MHz, CDCl3) δ 189.6, 170.2, 150.8, 144.3, 137.3, 121.6, 120.2,
115.6, 95.7, 89.0, 73.7, 72.2, 56.9, 53.6, 48.5, 38.7, 27.3, 26.2, 25.7, 18.0, −4.8, −5.1 ppm; HRMS (CI+) calcd
for C24H34O7NSi [M − H] 476.2099 found 476.2090.
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3.4. (5S,5aR,8S,8aS,13bR,14S)-8-((tert-butyldimethylsilyl)oxy)-5a-hydroxy-10,14-dimethoxy-
1,2,5,5a,6,7,8,8a-octahydro-5,13-methanobenzo[2,3]benzofuro[4,3a-c]azepin-3(4H)-one (epi-15)

To as stirred solution of hemiketal 17 (10 mg, 0.02 mmol) in MeOH (1.0 mL) at 0 ◦C was added
NaBH4 (10 mg, 0.26 mmol). The reaction mixture was stirred at this temperature of 15 min, then it
was diluted with acetone (1.0 mL), water (1.0 mL), and Et2O (5 mL). The layers were separated and
the aqueous phase was further extracted with Et2O (2 × 5 mL). The combined organic extracts were
washed with brine, dried over anhydrous MgSO4, filtered and concentrated to afford a crude solid
product (7 mg, 72.5% yield). Comparison of 1HNMR data for 15 and epi-15 clearly indicated their
relationship as epimeric compounds.

epi-15: 1H NMR (300 MHz, CDCl3) δ 6.95 (d, J = 8.4 Hz, 1H), 6.88(d, J = 8.4 Hz, 1H), 6.62 (br s,
1H), 4.88 (s, 1H), 4.43 (d, J = 6.6 Hz, 1H), 3.89 (s, 3H), 3.43–3.49 (m, 1H), 2.97 (d, J = 17.4 Hz, 1H), 2.43
(d, J = 17.4 Hz, 1H), 1.74–2.04 (m, 1H), 1.52–1.65 (m, 3H), 0.90 (s, 9H), 0.10 (s, 3H), 0.00 (s, 3H) ppm.

3.5. (4bR,5S,6S,8aR,9S,10R)-9-azido-6-((tert-butyldimethylsilyl)oxy)-4,5-epoxy3-methoxy-12-oxo-
5,6,7,8,9,10-hexahydro-8a,4b-(epoxyethano)phenanthren-10-yl nitrate (14)

To a stirred solution of lactone 3 [17b] (50 mg, 0.12 mmol) in AcN (5 mL) at 0 ◦C was added NaN3

(50 mg, 0.77 mmol) followed by CAN (220 mg, 0.40 mmol). After 30 min, the reaction mixture was
diluted with Et2O/satd. NaHCO3 (10 mL/5 mL). The layers were separated and the aqueous layer
was further extracted with Et2O (2 × 10 mL). The organic layers were combined, dried over MgSO4,
filtered and concentrated to afford a residue that was used as crude in the next step. A small sample of
azido nitrate 14 was subjected to purification by preparative TLC (SiO2 gel, 2:1 hex/EtOAc as eluent)
for characterization purposes. It was found to have limited stability.

14: [α]20
D = −35.8 (c = 0.6, CH2Cl2); Rf = 0.44 (4:1; hexanes/EtOAc); IR (film) v 3434, 2955, 2929,

2855, 2116, 1796, 1645, 1508, 1440, 1274, 837 cm−1; 1H NMR (300 MHz, CDCl3) δ 6.99 (d, J = 8.4 Hz,
1H), 6.96 (d, J = 8.4 Hz, 1H), 6.30 (d, J = 1.8 Hz, 1H), 4.40 (d, J = 7.8 Hz, 1H), 4.10 (d, J = 1.8 Hz, 1H),
3.95 (s, 3H), 3.25–3.29 (m, 1H), 3.04 (d, J = 17.7 Hz, 1H), 2.94 (d, J = 17.7 Hz, 1H), 2.13–2.17 (m, 1H),
1.68–1.77 (m, 3H), 0.89 (s, 9H), 0.10 (s, 3H), 0.00 (s, 3H) ppm; 13C NMR (75 MHz, CDCl3) δ 173.6, 151.8,
146.2, 128.9, 122.6, 116.5, 115.3, 99.4, 82.9, 80.5, 69.8, 67.5, 56.8, 49.6, 43.4, 29.7, 28.7, 26.7, 25.7, 18.0, −4.8,
−5.2 ppm; MS (EI) m/z (%) 416(15), 386(60), 358(100), 328(30), 288(75), 272(45); HRMS (EI) calcd for
C19H21O8N4Si [M − C4H9-H2O], 461.1123 found 461.1118.

3.6. (4bR,5S,6S,8aR,9S,10S)-9-azido-6-((tert-butyldimethylsilyl)oxy)4,5-epoxy-3-methoxy-12-oxo-
5,6,7,8,9,10-hexahydro-8a,4b-(epoxyethano)phenanthren-10-yl acetate (2)

To the crude azido nitrate 14 (obtained from the previous step) dissolved in HOAc (1.5 mL)
was added NaOAc (150 mg, 1.83 mmol) and the reaction mixture was heated to 100 ◦C for 2 h.
After cooling to room temperature, the mixture was carefully diluted with satd NaHCO3/EtOAc
(5 mL/5 mL). The layers were separated and the aqueous phase was further extracted with EtOAc
(2 × 5 mL). The combined organic extracts were washed with brine, dried over anhydrous MgSO4,
filtered and concentrated to afford a residue that was subjected to chromatography on silica gel using
hexanes/EtOAc (2:1) as eluent to afford the product 2 as an oil (52 mg, 84% yield over two steps).

2: [α]20
D = −2.4 (c = 1.0, CH2Cl2); Rf = 0.50 (2:1; hexanes/EtOAc); IR (film) v 2954, 2928, 2855, 2113,

1796, 1747, 1632, 1507, 1441, 1264, 1125, 838, 738 cm−1; 1H NMR (300 MHz, CDCl3) δ 6.92 (d, J = 8.4 Hz,
1H), 6.87 (d, J = 8.4 Hz, 1H), 6.20 (d, J = 2.7 Hz, 1H), 4.42 (d, J = 7.8 Hz, 1H), 3.94 (s, 3H), 3.90 (d, J = 2.7
Hz, 1H), 3.28–3.36 (m, 1H), 3.13 (d, J = 17.7 Hz, 1H), 3.04 (d, J = 17.7 Hz, 1H), 2.19–2.25 (m, 1H), 2.12 (s,
3H), 1.66–1.79 (m, 3H), 0.90 (s, 9H), 0.12 (s, 3H), 0.02 (s, 3H) ppm; 13C NMR (75 MHz, CDCl3) δ 173.9,
169.9, 145.8, 145.7, 127.8, 121.4, 120.4, 116.3, 99.3, 83.5, 71.3, 70.3, 69.1, 56.8, 49.8, 43.7, 29.7, 29.3, 26.8,
25.7, 21.1, 18.0, −4.7, −5.2 ppm; MS (EI) m/z (%) 458(80), 430(20), 398(40), 370(100), 343(40), 328(80),
300(45), 254(45), 117(90); HRMS (EI) calcd for C21H24O7N3Si [M − C4H9], 458.1378 found 458.1373.
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3.7. (4S,4aR,7S,7aS,12bR,13S)-7-((tert-butyldimethylsilyl)oxy)-4a-hydroxy-9-methoxy-2-oxo-
2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-13-yl acetate (18a)

To a stirred solution of azido acetate 2 (20 mg, 0.04 mmol) in MeOH (0.5 mL) was added NEt3

(30 µL, 0.15 mmol) and Pd/C (2.5 mg, 0.001 mmol). The reaction mixture was evacuated and refilled
(3×) with hydrogen gas and was allowed to stir under an atmosphere of hydrogen for 12 h. The catalyst
was separated by filtration through Celite. The Celite was washed with MeOH (2 × 5 mL). The filtrate
and washings were combined and evaporated to dryness to afford a crude solid residue that was
further purified by chromatography on silica gel using DCM/MeOH (9:1) as eluent to afford the
desired acetate lactam product 18a and the corresponding alcohol lactam 18b in a ratio of 8:1 as white
solids (13 mg, 75% yield). A small sample of acetate lactam was hydrolyzed to the alcohol lactam for
characterization purposes.

18a: [α]20
D = 48.0 (c = 0.4, CH2Cl2); m.p. 140–141 ◦C; Rf = 0.42 (9:1; CH2Cl2/MeOH); IR (film) v

3336, 2929, 2855, 1733, 1632, 1608, 1366, 1234, 1021, 837, 755 cm−1; 1H NMR (300 MHz, CDCl3) δ 6.88
(s, 2H), 6.77 (d, J = 4.5 Hz, 1H), 5.95 (d, J = 2.0 Hz, 1H), 4.49 (d, J = 6.0 Hz, 1H), 3.92 (s, 3H), 3.68 (dd,
J = 4.5 Hz, 2.0 Hz, 1H), 3.50–3.53 (m, 1H), 2.90 (d, J = 17.7 Hz, 1H), 2.48 (d, J = 17.7 Hz, 1H), 2.10 (s, 3H),
1.8–1.97 (m, 2H), 1.63–1.68 (m, 1H), 1.50–1.53 (m, 1H), 0.92 (s, 9H), 0.15 (s, 3H), 0.05 (s, 3H) ppm; 13C
NMR (75 MHz, CDCl3) δ 171.1, 170.5, 146.0, 144.3, 133.7, 122.1, 119.5, 115.9, 96.0, 73.1, 72.2, 69.0, 60.9,
56.8, 46.7, 39.9, 29.6, 26.3, 25.7, 21.1, 18.0, −4.7, −5.1 ppm; MS (EI+) m/z (%) 433(25), 432(80), 373(40),
372(100), 354(20), 330(20), 285(65), 274(75); HRMS (EI) calcd for C25H36O7NSi [M + H], 490.2256 found
490.2261.

3.8. (4S,4aR,7S,7aS,12bR,13S)-7-((tert-butyldimethylsilyl)oxy)-4a,13-dihydroxy-9-methoxy-4,4a,5,6,7,7a-
hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-2(3H)-one (18b)

18b: [α]20
D = 135.8 (c = 0.3, CH2Cl2); m.p. 135–137 ◦C; Rf = 0.37 (9:1; CH2Cl2/MeOH); IR (film) v

3391, 2954, 2929, 2856, 1644, 1634, 1440, 1258, 838 cm−1; 1H NMR (300 MHz, CDCl3) δ 7.73 (br s, 1H),
6.87 (d, J = 8.4 Hz, 1H), 6.82 (d, J = 8.4 Hz, 1H), 4.88 (br s, 1H), 4.44 (d, J = 6.0 Hz, 1H), 3.89 (s, 3H), 3.69
(s, 1H), 3.43–3.49 (m, 1H), 2.88 (d, J = 17.7 Hz, 1H), 2.63 (d, J = 17.7 Hz, 1H), 1.98–2.15 (m, 1H), 1.79–1.91
(m, 1H), 1.55–1.59 (m, 1H), 1.41–1.44 (m, 1H), 0.91 (s, 9H), 0.12 (s, 3H), 0.02 (s, 3H) ppm; 13C NMR (75
MHz, CDCl3) δ 172.7, 145.5, 144.4, 132.6, 123.2, 121.9, 115.7, 96.5, 72.4, 69.2, 66.6, 63.4, 56.7, 46.6, 39.6,
29.7, 26.5, 25.8, 18.0, −4.8, −5.1 ppm; MS (EI) m/z (%) 390(70), 372(100), 330(25), 285(95), 274(60), 259(25);
HRMS (EI) calcd for C19H24O6NSi [M − C4H9], 390.1367 found 390.1370.

3.9. (4S,4aR,7S,7aS,12bR,13S)-7-((tert-butyldimethylsilyl)oxy)-9-methoxy-3-methyl-1,2,3,4,5,6,7,7a-
octahydro-4aH-4,12-methanobenzofuro[3,2-e]isoquinoline-4a,13-diol (19)

To a stirred solution of acetate lactam 18a (60 mg, 0.12 mmol) in THF (1.5 mL) at 0 ◦C was added
BH3 in THF (6.8 mL, 6.6 mmol). After stirring at this temperature for 10 min, the mixture was heated
to 65 ◦C for 16 h. The reaction mixture was allowed to cool to room temperature and quenched by
the dropwise addition of MeOH (5 mL) and acetic acid (500 µL). To the reaction mixture was added
30% aq. CH2O (1.2 mL, 11.2 mmol) and NaBH(OAc)3 (650 mg, 3.03 mmol) at room temperature.
After 1.5 h, the reaction mixture was diluted with DCM/satd. NaHCO3 (30 mL/30 mL). The layers were
separated and the aqueous phase was further extracted with DCM (2 × 30 mL). The organic layers
were combined, dried over MgSO4, filtered and concentrated to afford a residue that was used as crude
in the next step. A small sample was taken whose 1H NMR spectrum was obtained. This compound
has limited stability so it was taken as a crude product to the next step.

19: 1H NMR (300 MHz, CDCl3) δ 6.94 (d, J = 8.4 Hz, 1H), 6.86 (d, J = 8.4 Hz, 1H), 5.08 (s, 1H),
4.45 (d, J = 6.3 Hz, 1H), 3.92 (s, 3H), 3.43–3.51 (m, 1H), 2.86 (s, 1H), 2.55 (s, 3H), 2.50–2.60 (m, 1H),
2.17–2.25 (m, 1H), 1.97–2.05 (m, 2H), 1.59–1.67 (m, 2H), 1.4–1.55 (m, 2H), 0.91 (s, 9H), 0.13 (s, 3H), 0.03
(s, 3H) ppm.
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3.10. ent-10-keto-oxycodone (ent-(1))

To the crude N-methyl amine alcohol 19 (obtained from the previous step) dissolved in DCM
(1.0 mL) was added MnO2 (191 mg, 2.2 mmol). The suspension was stirred vigorously at room
temperature for 1 day. The reaction mixture was filtered through a plug of Celite and the residue was
washed with DCM (5 mL). The filtrate was concentrated by rotary evaporation and the residue was
used as crude in the next step. To a stirred solution of N-methyl ketone (obtained from the previous
step) in THF (1 mL) was added TBAF (250 µL, 0.25 mmol). The reaction mixture was stirred at room
temperature for 5 h after which it was diluted with EtOAc/H2O (5 mL/5 mL). The layers were separated
and the aqueous layer was further extracted with DCM (2 × 5 mL). The organic layers were combined,
dried over MgSO4, filtered and concentrated to afford a residue that was used as crude in the next
step. To the crude alcohol dissolved in DCM (3 mL) was added Dess-Martin periodinane (93.3 mg,
0.22 mmol). The reaction mixture was stirred at rt for 2 h. It was diluted with satd. Na2S2O3 (1 mL),
followed by satd. NaHCO3 solution (1 mL). The layers were separated and the aqueous phase was
further extracted with DCM (2 × 10 mL). The organic layers were combined, dried over MgSO4, filtered
and concentrated to afford a residue that was chromatographed on silica gel using DCM/MeOH as
eluent (9:1) to afford the product ent-(1) as a solid (24 mg, 0.07 mmol, 60.7% yield over four steps).

ent-(1): [α]20
D = 156.8 (c = 0.3, CH2Cl2); m.p. 239–241 ◦C, lit. [5] m.p. 242–243 ◦C Rf = 0.57 (9:1;

CH2Cl2/MeOH); IR (film) v 3434, 2924, 2851, 1727, 1674, 1619, 1443, 1291, 1115 cm−1; 1H NMR (300
MHz, CDCl3) δ 7.46 (d, J = 8.4 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 4.84 (br s, 1H), 4.77 (s, 1H), 4.03 (s,
3H), 3.09 (dd, J = 14.4, 4.8 Hz, 3.02 (s, 1H), 2.57–2.72 (m, 2H), 2.49 (s, 3H), 2.20–2.38 (m, 2H), 1.92–1.96
(m, 1H), 1.65–1.77 (m, 1H), 1.45–1.63 (m, 1H) ppm; 13C NMR (75 MHz, CDCl3) δ 207.2, 192.5, 150.2,
144.9, 136.8, 123.8, 119.5, 115.0, 89.9, 73.7, 71.2, 56.9, 52.0, 45.7, 43.3, 35.9, 31.6, 29.6 ppm; MS (EI) m/z (%)
329(100), 273(25), 244(25), 217(30), 112(10); HRMS (EI+) calcd for C18H19O5N, 329.1258 found 329.1258.

Supplementary Materials: Copies of spectral data (1H NMR and 13C NMR) are provided for the following
compounds: 2, 18a, 18b, 14, ent-(1).
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