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Abstract: Pinus eldarica (Pinaceae), an evergreen plant, is distributed across the warm and dry
climates of western Asia, including Asia Minor, the Middle East, and land surrounding the
Caspian Sea. Essential oils (EOs) from different aerial parts of this tree have been used in
traditional medicine. We aimed to investigate the chemical profile and antimicrobial activity
of the EO from P. eldarica grown in northwestern Iran. EO from the needles, bark, and pollen were
extracted with boiling water using a Clevenger apparatus at yield of 0.7–1.2 cm3/100 g of dry plant
material. The main chemical components of the EO from the needles were D-germacrene (18.17%),
caryophyllene (15.42%), γ-terpinene (12.96%), and β-pinene (10.62%); those from the bark were
limonene (16.99%), caryophyllene oxide (13.22%), and drimenol (13.2%); and those from the pollen
were α-pinene (25.64%) and limonene (19.94%). In total, 83 constituents were characterized in the
EOs, using gas chromatography mass spectrometry analysis; mainly, sesquiterpene hydrocarbons in
needle EO and monoterpene hydrocarbons in pollen and bark EOs. β-Pinene, β-myrcene, limonene,
and caryophyllene were identified in the EOs from all three plant parts. The antibacterial and
antifungal properties of the EOs were examined: pollen EO exhibited antibacterial activity against
Escherichia coli; bark EO inhibited the growth of Candida albicans and Staphylococcus aureus; and the
needle EO inhibited the growth of S. aureus. Thus, the EOs from aerial parts of P. eldarica can benefit
the EO industry and antibiotic development.

Keywords: Pinus eldarica; essential oil; chemical profile; antimicrobial activity; β-pinene; β-myrcene;
caryophyllene; limonene

1. Introduction

Pinus eldarica, also known as the Tehran pine, is a coniferous tree of the family Pinaceae. The trees
grow to a height of 12–15 m and have a brownish-gray or light gray bark. The needles are paired,
medium green, and reach a length of 6–9 cm. The cones may be either solitary or in pairs. P. eldarica is
native to west Asia and is adapted to warm and dry climates. The trees grow on a wide variety of soil
types and have been extensively planted in Iran [1,2]. Pines have been used in medicine and industry
throughout human life. Pine needle essential oils (EOs) are used to add odors to products in the soap
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and perfume manufacturing industry. Previously, the analgesic, anti-inflammatory, and antiseptic
effects of pine EOs have been reported [3].

P. eldarica has been used for the treatment of asthma [4]; moreover, it is useful in treating eczema
and other skin wounds and irritations [5]. In previous studies, it has been shown that the EO from the
bark of P. eldarica contains polyphenolic compounds, such as taxifolin and catechin, which have a wide
range of pharmacological activities [6]. Owing to the important therapeutic applications of P. eldarica in
traditional medicine, the composition of the EOs from the needles, fruits, and bark of P. eldarica grown
in Isfahan and Iran has been investigated [2,7]. It was found that D-germacrene, β–caryophyllene,
α-pinene, and longifolene were the main components of the EOs of the needles, fruits, and bark of
P. eldarica, respectively. The composition of resins and needle EOs from P. sylvestris, which is native
to Europe and Asia, has also been assessed in previous studies [3,8]. The main constituents were
δ-3-carene, α-pinene, δ-cadinene, β-pinene, and camphene. The biological activities of the essential EOs
of pines have been reported in different parts of the world [9]. The main components of pine extracts,
such as α-pinene and β-pinene, have displayed a wide spectrum of antimicrobial activities [10,11].
Previous studies have shown that pine extracts also have potential antifungal properties [12,13].

The composition and content of the EOs of P. eldarica may differ depending on the area where
these pines are grown. To the best of our knowledge, this is the first study to analyze the EOs from
the needles, bark, and pollen of the P. eldarica grown in northwestern Iran. The present study was
designed to elucidate the chemical profile and antimicrobial activity of these EOs. With growing
interest surrounding the use of EOs in the pharmaceutical industry, the results of this study may reveal
a new horizon for the development of new pharmaceutical products.

2. Results & Discussion

2.1. Chemical Composition

EOs were extracted from the aerial parts of P. eldarica via hydrodistillation. The yields of the EOs
obtained were 1.2 cm3/100 g of dried needles, 0.7 cm3/100 g of dried pollen, and 0.9 cm3/100 g of dried
bark (Table 1). These very low yields were consistent with those obtained in previous studies conducted
on other species within the genus Pinus [14]. Therefore, it seems that this tree is an EO-poor plant.

Table 1. Yield of essential oils from aerial parts of Pinus eldarica.

Plant Materials Yield of EO *

Needles 1.2
Pollen 0.7
Bark 0.9

* (cm3/100 g of dry plant material).

The chemical compositions of the EOs from the needles, bark, and pollen of P. eldarica were
analyzed using gas chromatography mass spectrometry (GC/MS) and are shown in Table 2 (The Gas
chromatogram, condition and method are showed in the Supplementary Materials). The experimental
retention indices (RI) of the chemicals in non-polar column and their percentage peak areas are also
shown. The differences between the EOs of the needles, bark, and pollen were studied, and the main
components of the EOs were identified. Fifty-eight constituents representing 99.98% of the needle EO,
11 components representing 99.94% of the pollen EO, and 33 components representing 99.79% of the
bark EO were identified (Table 2). The main fraction of the EO derived from the dried needles was
found to consist of sesquiterpene hydrocarbons (49.25% of the EO), which is in agreement with the
results of previous studies [2,15]. Monoterpene hydrocarbons (32.91% of the EO) made up the main
fraction of the EO derived from dried bark; this was also found in a previously reported study [7].
In the pollen EO, monoterpene hydrocarbons (61.44% of the EO) made up the main fraction, which has
not been reported previously. The EOs of the three different aerial parts of P. eldarica were mostly
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composed of hydrocarbon compounds (Figure 1); caryophyllene, limonene, caryophyllene oxide,
α-pinene, and β-pinene were identified in all parts.

Table 2. The results of gas chromatography mass spectrometry (GC/MS) analysis of the chemical
composition of essential oils obtained from the aerial parts of Pinus eldarica using hydrodistillation.

Needles Bark Pollen

No. Component a Content, % RI b

1 n-Hentriacontane 0.59 - - 472
2 α-Pinene t - 25.64 928
3 Camphene 2.95 1.87 - 940
4 Verbenene - 1 - 949
5 β-Pinene 10.62 2.82 3.12 967
6 β-Myrcene 2.85 1.35 4.34 981
7 α-Phellandrene t - - 994
8 Carene 0.12 - 2.98 1017
9 β-Phellandrene 0.2 - - 1019

10 Limonene 4.79 16.99 19.94 1020
11 Cis-Ocimene 0.11 - - 1025
12 β-Ocimene 2.07 - - 1036
13 γ-Terpinene 12.96 - - 1047
14 α-Terpinolene 0.23 - - 1063
15 α-Pinene oxide - 0.62 - 1065
16 Linalool t 0.85 - 1082
17 α-Campholenal t - - 1097
18 α-Campholene aldehyde - 1.72 - 1119
19 Verbenol - 2.46 5.42 1132
20 Pinocarvone - 1.15 - 1145
21 Myrtenal - 1.65 - 1166
22 α-Phellandren-8-ol - 2.22 - 1167
23 Myrtenol - 1.71 - 1182
24 T-Carveol - 1.28 - 1204
25 Carvone - 1.17 - 1220
26 2-Cyclopropylidene-1,7,7-trimethylbicyclo[2.2.1]heptane 0.15 - - 1254
27 Bornyl acetate 3.09 - - 1264
28 Thymol t - - 1270
29 α-Terpinyl acetate 1.68 - - 1338
30 Neryl acetate 0.16 - - 1343
31 α-Cubebene 0.25 - - 1360
32 α-Copaene 0.49 - - 1387
33 Longifolene - 3.44 11.66 1393
34 β-Elemene 0.38 - - 1398
35 β-Cubebene 0.82 - - 1420
36 Caryophyllene 15.42 9.43 3.52 1426
37 Aromadendrene 0.23 - - 1440
38 α-Caryophyllene 3.36 - - 1454
39 α-Humulene - 2.26 - 1463
40 α–Amorphene 0.81 - - 1466
41 D-Germacrene 18.17 0.93 - 1473
42 Valencene 0.51 - - 1486
43 Tridecanal 0.23 - - 1489
44 γ –Muurolene 2.07 - - 1501
45 α–Cadinene 0.13 - - 1522
46 δ–Cadinene 2.42 - - 1522
47 γ–Cadinene 0.93 - - 1525
48 α–Muurolene 0.73 - - 1537
49 Epiglobulol 0.16 - - 1548
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Table 2. Cont.

Needles Bark Pollen

No. Component a Content, % RI b

50 Lauric acid 0.34 - - 1552
51 Isopatchoulane 0.15 - - 1552
52 Spathulenol 0.91 - - 1570
53 4(14)-Salvialen-1-one 0.34 - - 1580
54 Cedrol 0.33 - - 1585
55 Caryophyllene oxide 1.03 13.22 12.21 1595
56 Humulane-1,6-dien-3-ol - 0.88 - 1619
57 γ–Eudesmol - 0.62 - 1624
58 α–Cadinol 0.51 - - 1630
59 Viridiflorol 0.25 - - 1636
60 Cadalene 0.36 - - 1641
61 Widdrene 0.15 - - 1644
62 Aromadendrene oxide 0.63 - - 1650
63 Pinocarveol - 2.82 - 1654
64 Isospathulenol 0.12 - - 1667
65 Tumerone 1.76 - - 1680
66 6-Isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydro-naphthalen-2-ol 0.61 - - 1690
67 1,5-Epoxysalvial-4(14)-ene 0.27 - - 1945
68 18-Norabieta-8,11,13-triene - 0.73 - 1969
69 Phenethyl isovalerate - 0.71 - 1986
70 Palmitinic acid 0.97 - - 2001
71 Humulene oxide - 1.61 - 2038
72 13(16),14-Labdien-8-ol - 1.51 - 2120
73 Hexahydrofarnesyl acetone 0.45 1.6 - 2131
74 Linalyl anthranilate 0.4 - - 2157
75 Manoyl oxide - 1.37 7.32 2376
76 Drimenol - 13.2 - 2494
77 α-Campholenic aldehyde t - -
78 Pinocarveylacetate 0.18 - -
79 3-Ethyl-3-hydroxyandrostan-17-one 0.23 - -
80 tricyclo[4.3.0.07,9]nonane,2,2,5,5,8,8-hexamethyl - 1.02 - -
81 Acetic acid, bornyl ester - 4.96 - -
82 Isopimaric acid - 0.62 - -
83 Acetic acid, 1,7,7-trimethyl-bicyclo[2.2.1]hept-2-yl ester - - 3.79 -

Total 99.98 99.79 99.94
Monoterpene hydrocarbons 37.572 32.91 61.44
Oxygenated monoterpenes 0.22 7.92

Sesquiterpene hydrocarbons 49.25 17.08 15.18
Oxygenated sesquiterpenes 5.05 28.65 12.21

Diterpenoids 0.23 4.23 7.32
a Compounds listed in order of elution from a DB-1 column; b RI-retention index on non-polar column;
t = trace (<0.1%).

The main constituents of the needle EO were the sesquiterpene hydrocarbons D-germacrene
(18.17%) and caryophyllene (15.42%) and the monoterpene hydrocarbons β-pinene (10.62%) and
γ-terpinene (12.96%). The most abundant compound, d-germacrene, has been known to exert
cytotoxic activity against cancer cell lines, fungicidal activity, and antibacterial properties against both
gram-positive and gram-negative bacteria [16,17]. In a previous study, the main constituents of the
P. eldarica needle EO were determined to be d-germacrene and β-caryophyllene [15]. This is consistent
with the results of our study.

Among the monoterpene hydrocarbons that were found in needle EO, γ-terpinene (12.96%) and
β-pinene (10.62%) were the most abundant. It has been reported that γ-terpinene possesses potent
antioxidant and anti-inflammatory activity. Treatment with γ-terpinene has been shown to reduce
inflammatory parameters, such as edema and cytokine production [18]. In a previous study, α-pinene
and β-pinene were determined to be the main compounds in P. eldarica [2]. Moreover, α-pinene
(0.1–30.8%) and δ-3-carene (1.0–25.5%) were found to be the major components of the Lithuanian
P. sylvestris needle EO [19]. It can hence be concluded that γ-terpinene has not been found in high
amounts in other pines in previous studies. According to previous studies, even EOs from plants of
the same species can differ in their composition according to the geographical location and age of the
plant [20,21].
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Figure 1. Some chemical components of essential oils obtained from the aerial parts of Pinus eldarica
using hydrodistillation.

In the present study, in the pollen EO, α-pinene (25.64%) and limonene (19.94%) were the
most abundant compounds (Table 2). Pharmacological studies have suggested that low exposure
to α-pinene leads to anti-inflammatory activity via the suppression of mitogen-activated protein
kinases (MAPKs) [22]. It has also been shown that α-pinene has potential anti-osteoarthritic [23],
antimicrobial [24], antiulcerogenic, and gastroprotective properties [25]. According to the results of the
analysis of the bark EO, there was a high proportion of the monoterpene hydrocarbon limonene (16.99%);
moreover, oxygenated sesquiterpenes, such as caryophyllene oxide (13.22%) and drimenol (13.2%),
were the next most abundant components. Limonene has been reported to possess potent antioxidant
and anti-inflammatory properties [26] and inhibit the growth of cancer cells by interfering with the action
of G proteins involved in cell signaling pathways [27]. Caryophyllene oxide, an oxygenated terpenoid
has been shown to exert significant antifungal [28] and anticancer activities via the suppression of
cellular growth and induction of apoptosis [29]. In a previous study of the bark of P. eldarica from
Isfahan and Iran, α-pinene and caryophyllene oxide were the main constituents of the EO [7]. This result
differed from that of the current study, possibly due to difference in the area the studied pines were
grown. A classification of the samples based on structure type of EOs obtained from different aerial
parts of P. eldarica is summarized in Figure 2. A large number of sesquiterpene hydrocarbons (49.25%),
monoterpene hydrocarbons (37.57%), and oxygenated sesquiterpenes (5.05%) were detected in the
needle EO in this study, whereas the content of diterpenoids was significantly lower (0.23%). The pollen
and bark EO had a large abundance of monoterpene hydrocarbons (61.44% and 32.91%, respectively).
Considering all these data together has shown that there is quantitative variation between species and
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between different aerial parts of Pinus. This information could be valuable for the chemotaxonomic
study of Pinus species.

Figure 2. Chemical groups identified in the essential oils obtained from different aerial parts of
Pinus eldarica.

2.2. Antimicrobial Activity

Recently, the antibiotic-resistant bacterial pathogens are increasing and resulting in a reduction
in the efficiency of clinical treatments. Staphylococcus aureus and Escherichia coli have a high ability
to become resistant to antibiotics. Latest reports of vancomycin-resistant S. aureus have shown that
effective antibiotics against the organism may not be readily available for a long time [30]. It was
demonstrated that 71.6% of E. coli strains isolated from children’s stool and water samples in South
Africa were multi-antibiotic resistant [31]. Several studies have focused on natural plant products with
potent anticancer, antibacterial, antifungal, and antioxidant effects, and the efficacy of EOs have been
emphasized [32–34]. According to our study, the EOs of P. eldarica contain monoterpene hydrocarbons,
sesquiterpene hydrocarbons, and oxygenated hydrocarbons. In this study, the antibacterial and
antifungal properties of the EOs of P. eldarica were examined. The results of the antimicrobial assay are
presented in Table 3. Both needle and bark EOs displayed antibacterial activity against S. aureus (ATCC
29213) and pollen EO exhibited a bactericidal effect against E. coli (ATCC 25922). Candida albicans
(ATCC 10231) was most sensitive to the bark EO, with a minimum inhibitory concentration (MIC)
value of 125 µg/mL. These EOs of P. eldarica contain major compounds, such as α-pinene, germacrene,
caryophyllene, and limonene, which have been reported to display antimicrobial activity against
important pathogens. Rivas da Silva et al. [35] tested the biological activities of α-pinene and β-pinene
enantiomers against C. albicans, Cryptococcus neoformans T1-444 Serotype A, Rhizopus oryzae UCP1506,
and S. aureus using the MIC and the minimal microbicidal concentration (MMC). They reported
that the (+)-enantiomers showed high antifungal activity and that the synergistic effects of these
compounds combined with microbicides reduced the MIC of the combined materials [35]. In the
similar study performed by Scalas et al. [36], the EO of P. sylvestris and α-pinene displayed good
inhibitory activities against C. neoformans. In addition, combination of itraconazole with the EO of
P. sylvestris showed a good synergistic action against C. neoformans. The EO of Liquidambar styraciflua leaf,
which includes α-pinene as its major compound, also showed a good synergistic effect with tetracycline
and ciprofloxacin against Bacillus subtilis (ATCC 6633) [37]. In the present study, EO of pollen was
rich in α-pinene (25.64%) and exhibited moderate antibacterial activity against E. coli with MIC level
of 225 µg/mL. Recently, one study reported the moderate antifungal activity of Thimus algeriensis
EO against C. glabrata (ATCC22553) and C. albicans and a total of 29 compounds were identified in
the EO of T. algeriensis, with α-terpinyl acetate (47.4%), neryl acetate (9.6%), and α-pinene (6.8%)
as the major compounds [38]. Moreover, the antimicrobial activity of Juniperus oxycedrus EO was
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found against S. aureus subs. aureus (CCM 4223) and predominant constituent of J. oxycedrus EO was
also identified as α-pinene [39]. In a study of the antifungal activity of P. pinaster bark, its ethanolic
extract displayed high antifungal activity against Trametes versicolor and moderate antifungal activity
against Coniophera puteana [40]. It was shown that limonene has antibacterial activities against
S. aureus (gram-positive), Pseudomonas aeruginosa (gram-negative), and the yeast, C. neoformans [41].
The antibacterial activities of P. elliottii resin-oil against multidrug-resistant strains were evaluated using
the minimum inhibitory concentration (MIC) method. The MIC varied between 25 and 100 µg/mL,
and the drug-resistant mutant of Staphylococcus epidermidis was more sensitive to the oils [42].

Table 3. The minimum inhibitory concentrations (MICs) of essential oils from different aerial parts of
Pinus eldarica against three microorganisms using gentamicin as a positive control.

Microorganisms MIC * (µg/mL)

Needles Pollen Bark Gentamicin

C. albicans na 1000 125 16
E. coli na 225 na 16

S. aureus 125 na 125 16

na—no activity.

3. Materials and Methods

3.1. Plant Material

Pine needles, bark, and pollen were collected from the Tabriz district in Iran. The samples
were collected in June 2018 and identified (No. 4036) by the Herbarium of the School of Pharmacy,
Tabriz University of Medical Sciences. The specimens were air dried at room temperature, powdered,
and stored in airtight bottles at 4 ◦C.

3.2. Essential Oil Preparation

P. eldarica bark, needles, and pollen powders (100 g) were hydro-distilled (with 1.2 L of water) in
a Clevenger-type apparatus by recirculating the condensed water. The distillation was terminated
after 240 min. The resulting EOs were dissolved in diethyl ether, collected, and treated with anhydrous
sodium sulfate to remove excess water. The diethyl ether was removed carefully at room temperature,
and the remaining EOs were stored in sealed vials at 4 ◦C until analysis.

3.3. Gas Chromatography Mass Spectrometry (GC/MS) Analysis of the Essential Oils

Analysis of the EOs was carried out using a Shimadzu QP5050A GC/MS instrument (Shimadzu,
Kyoto, Japan) at the following conditions: the volume of sample injected was 1 µL; the helium carrier
gas flow rate was 1.3 mL/min, with a split ratio 1:8; the injection site temperature was 270 ◦C; a DB-1
capillary column (60 m × 0.25 mm) was used, with a film thickness of 0.25 µm; the column temperature
was 50 ◦C increasing at 4 ◦C/min to 300 ◦C; an ionization potential of 70 eV was used; the source
temperature was 300◦C; and the mass range was 30–600 m/z.

3.4. Identification of Components

The identification of the components was conducted using computer matching against library
spectra (Library Database Wiley 229, NIST 21, NIST 107), obtaining their retention indices with reference
to an n-alkane series (C8-C20) in a temperature-programmed run, interpreting their fragmentation
pattern, and comparing the mass spectra with relevant reference samples and the literature [43,44].
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3.5. Microbial Strains and Culture Media

All microbial strains were obtained from the Microbiology Laboratory, Drug Applied Research
Center, Tabriz University (Tabriz, Iran) of Medical Sciences. Stock cultures of gram-positive S. aureus
(ATCC 29213), gram-negative E. coli (ATCC 25922), and C. albicans (ATCC 10231) were sub-cultured
and maintained on nutrient agar at 37 ◦C for 24 h; subsequently, they were diluted in sterile saline
solution (0.85% w/v) to reach a final concentration of 0.5 McFarland (~1.5 × 108 colony-forming units
[CFUs]/mL).

3.6. Determination of the Minimum Inhibitory Concentration

Briefly, the EOs were dissolved in dimethyl sulfoxide and 180 µL was serially diluted from
2000 µg/mL to 10 µg/mL (up to eight dilutions) in Mueller-Hinton broth (Merck KGaA, Darmstadt,
Germany). These dilutions were added to 96-well microplates, and 20 µL of the microbial cultures
were added at a concentration of 1.5 × 108 CFU/mL to reach a final volume of 200 µL/well. Gentamicin
was used as the positive control as it is a broad-spectrum antibiotic, and normal saline/dimethyl
sulfoxide (DMSO) was used as the negative control. To complete the test, each organism was suspended
separately in 200 µL of Mueller–Hinton broth. C. albicans (ATCC 10231) was cultured in Mueller–Hinton
agar supplemented with 1% glucose. All the tests were performed in triplicate to ensure reliability
of the results. The sealed microplates were mixed on a plate shaker at 300 rpm for 30 s. They were
then incubated at 37 ◦C for 24 h and observed for growth or turbidity; subsequently, the MIC was
determined. The MIC was defined as the lowest concentration of the EO that inhibited the visible
growth of a microorganism after overnight incubation [45]. For each well showing no growth, a loopful
of broth was then sub-cultured on a nutrient agar plate (Merck KGaA, Darmstadt, Germany) to verify
if the growth of the microorganism had been inhibited. The growth of the microorganism on the
solid media indicated that the specific concentration of the EO was unable to inhibit the growth of
the microorganism.

4. Conclusions

This is the first study, to our knowledge, that investigated the chemical composition and
antimicrobial activity of EOs from the aerial parts of P. eldarica grown in northwestern Iran. The main
components of the EOs were sesquiterpene hydrocarbons in the needles and monoterpene hydrocarbons
in the pollen and bark. In particular, β-pinene, β-myrcene, limonene, and caryophyllene were the most
abundant chemicals identified in the EOs of all three plant parts. The EOs demonstrated antimicrobial
activity against some highly susceptible strains, E. coli, C. albicans, and S. aureus. The results of the
study provide experimental evidence that EOs from aerial parts of P. eldarica can be useful in the EO
industry and in the development of antibiotics. In addition, P. eldarica, which is widely grown in Iran,
can be used to provide low-cost therapies in land surrounding the Caspian Sea.

Supplementary Materials: Gas chromatograms from the GC/MS analysis are available free of charge on
the Internet.
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