Supporting Information

A convenient synthesis of pentaporphyrins and supramolecular complexes with a fulleropyrrolidine

Joana I. T. Costa,^a Andreia S. F. Farinha,^b Filipe A. Almeida Paz,^c and Augusto C. Tomé ^{a,*} ^a QOPNA and LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal ^bKing Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Sciences (BESE), Thuwal, Saudi Arabia ^c Department of Chemistry, CICECO – Aveiro Institute of Materials, University of Aveiro,

3810-193 Aveiro, Portugal

INDEX

	Page
1. NMR and mass spectra	2
2. Absorption and fluorescence titrations with PyC_{60}	9

1. NMR and mass spectra

Figure S1: ¹H NMR spectrum of diporphyrin **3** (in CDCl₃).

Figure S2: ¹³C NMR spectrum of diporphyrin **3** (in CDCl₃).

Figure S3: ¹⁹F NMR spectrum of diporphyrin 3 (in CDCl₃).

Figure S4: High-resolution electrospray ionization mass spectrum (ESI MS) of diporphyrin 3.

Figure S5: ¹H NMR spectrum of diporphyrin **4** (in CDCl₃).

Figure S6: ¹⁹F NMR spectrum of diporphyrin 4 (in CDCl₃).

Figure S7: High-resolution electrospray ionization mass spectrum (ESI MS) of diporphyrin 4.

Figure S8: ¹H NMR spectrum of pentaporphyrin 5 (in CDCl₃).

Figure S9: ¹³C NMR spectrum of pentaporphyrin **5** (in CDCl₃).

Figure S10: ¹⁹F NMR spectrum of pentaporphyrin 5 (in CDCl₃).

Figure S11: High-resolution electrospray ionization mass spectrum (ESI MS) of pentaporphyrin **5**.

Figure S12: ¹H NMR spectrum of pentaporphyrin **6** (in CDCl₃).

Figure S13: ¹⁹F NMR spectrum of pentaporphyrin **6** (in CDCl₃).

8

2. Absorption and fluorescence titrations with PyC_{60}

Figure S14: Absorption spectra of Zn2 $(5.0 \times 10^{-7} \text{ M})$ upon addition of PyC₆₀ (0–113 equiv.) in toluene at ambient temperature (upper part) and experimental data at 421 nm fitted to a non-linear 1:1 binding model (lower part).

Figure S15: Fluorescence spectra ($\lambda_{exc} = 423 \text{ nm}$) of Zn**2** ($5.0 \times 10^{-7} \text{ M}$) upon the addition of PyC₆₀ (0–113 equiv.) in toluene at ambient temperature (upper part) and experimental data at 589 nm fitted to a non-linear 1:1 binding model (lower part).

Figure S16: Absorption spectra of diporphyrin **4** (2.0×10^{-7} M) upon addition of PyC₆₀ (0–116 equiv.) in toluene at ambient temperature (upper part) and experimental data at 421 nm fitted to a non-linear 1:1 binding model (lower part).

Figure S17: Fluorescence spectra ($\lambda_{exc} = 425 \text{ nm}$) of **4** ($2.0 \times 10^{-7} \text{ M}$) upon addition of PyC₆₀ (0–116 equiv.) in toluene at ambient temperature (upper part) and experimental data at 650 nm fitted to a non-linear 1:1 binding model (lower part).