
molecules

Article

A Green Water-Soluble Cyclophosphazene as a Flame
Retardant Finish for Textiles

Thomas Mayer-Gall 1,2,* , Dennis Plohl 1, Leonie Derksen 1, Dana Lauer 1,2, Pia Neldner 1,2,
Wael Ali 1,2, Sabine Fuchs 3, Jochen S. Gutmann 1,2,* and Klaus Opwis 1

1 Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, D-47798 Krefeld, Germany
2 University Duisburg-Essen, Institute of Physical Chemistry and Center for Nanointegration, Duisburg-Essen,

Universitätsstraße 2, D-45117 Essen, Germany
3 Hochschule Hamm-Lippstadt—University of Applied Sciences, Marker Allee 76-78,

D-59063 Hamm, Germany
* Correspondence: mayer-gall@dtnw.de (T.M.G.); jochen.gutmann@uni-due.de (J.S.G.);

Tel.: +49-2151-843-2015 (T.M.G.); Tel.: +49-201-183-2566 (J.S.G.)

Academic Editor: Guillaume Delaittre
Received: 7 June 2019; Accepted: 20 August 2019; Published: 26 August 2019

����������
�������

Abstract: Poly- and cyclophosphazenes are excellent flame retardants but currently, are not used as
textile finishing agents because water-soluble and permanent washing systems are missing. Here,
we demonstrate for the first time, the successful usage of a water-soluble cyclotriphosphazene
derivative for textile finishing for cotton, different cotton/polyester, and cotton/polyamide blend
fabrics. A durable finish was achieved using a photoinduced grafting reaction. The flame retardant
properties of the various fabrics were improved with a higher limiting oxygen index, a reduced
heat release rate, and an exhibition of intumescent. Furthermore, the finished textiles passed several
standardized flammability tests.
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1. Introduction

Cotton (CO), polyester (PET), and polyamide (PA) based textiles are omnipresent and irreplaceable
in our day-to-day life. Typical applications are curtains, carpets, bedding, or upholstered furniture.
These materials represent a potential hazard due to their high flammability [1]. Flame retardant
textiles are produced by polymer blending or finishing with inorganic salts, such as aluminum or
magnesium hydroxide, organohalogens, for example, chlorinated paraffins, bromobiphenyl ethers
or bromobisphenols, or formaldehyde-based flame retardants [1–4]. Due to their toxic potential,
REACH has banned all low molecular weight halogenated flame retardants. Exceptional cases are
given for special applications, for example, aircraft and trains [5–9]. To keep up safety standards,
new halogen-free flame retardants are required [8]. Substitutes, such as inorganic compounds, for
example, polyphosphates or organic phosphates, or nitrogen compounds, have been developed [10]
with a focus on nitrogen and phosphor-containing chemicals due to a P-N synergistic flame retardant
effect [11–15]. A drawback, however, is the low stability with respect to washing and mechanical
abrasion, [16,17] which limits the applicability of such flame retardants for textile finishing. Other
studied approaches for flame retardant textiles include layer-by-layer coating of, for example, cationic
polyelectrolytes, such as polyallylamine, [18–20] chitosan [21–24] or polyethylenimine [25,26], with
anionic nanoclays [18,24,26–28], polyphosphates [18,21,25,29] or DNA [30]. Further investigations
concentrated on sol–gel chemistry [31–36], carbon nanotubes [29,37,38], polycarboxylic acids [39–42],
protein-based coatings [43] and photo-[44–46] or plasma-grafting [27,47,48]. An overview of
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phosphorous based flame retardants is given by Salmeia et al. [49]. Further information can be
found in many reviews [49–52] and books [2,9,16,53].

Due to their high limiting oxygen index (<60) [54,55] phosphazenes are promising flame retardants.
Although their utility was proven with good flame retardant properties in polymer blends, [56–60]
very few results have been reported for their use for textile finishing. Shukal and Arya [61] showed
that poly(fluorophosphazenes) in combination with nowadays undesired organo-bromine compounds
improve flame retardant properties of PET. The individual contribution of bromine-compounds
and polyphosphazene to the total effect remains unclear. Other examples have been described in
various patents, where the phosphazene derivatives are used for textile finishing [62,63] or fiber
polymer blending [64–67] or in a polyurea coating for textiles [67]. Up to now, no commercial
textile finishing agent based on phosphazenes is available. The reason for this is the lack of existing
phosphazenes with anchor groups for the durable fixation on the fiber surface and an appropriate process
technology. Motivated by this situation and our experience in the application of photo-grafting for
textile finishing [44,68–70], we developed a flame retardant based on allyloxy-polyphosphazenes, which
covalently bound to cotton and cotton/polyester blends using photochemical reaction conditions [71].
This finish displayed good durability and good flame retardant properties, but industrial application
failed due to the lack of water solubility of the allyloxy-polyphosphazenes. Wang et al. [72] combined
a cyclophosphazene with an aminosilane and needed an add-on of 19% on the cotton to obtain and
limiting oxygen index (LOI) of 24.5%. On the other hand, three studies about cyclotriphosphazenes
bearing an allylamino group were published, in which the authors demonstrated the photo-curing [73]
of allylamino cyclotriphosphazene and its applicability as a flame retardant for cotton fabrics [74] with
a 30 wt% add-on and further, for polyester resin [75]. In terms of synthetic routes, cyclotriphosphazene
derivatives are highly interesting as they can be readily synthesized in high yields in comparison
to polyphosphazenes, which need one more polymerization step with low yield and have a high
energy consumption. However, finishing of different textiles with cyclotriphosphazenes has not been
studied in great detail. For this reason, an allylamino cyclotriphosphazenes (CPZ) was synthesized
and tested with regard to its efficiencies as a flame retardant for CO, PET, PA, and CO/PET- or
COPA-blended textiles in the presented study. Inspired by the work of Qian et al. [76,77] who
demonstrated thiol-ene reactions in water with allylamine and propargylamine polyphosphazenes,
water-soluble cyclotriphosphazene derivatives were thus adapted for textile finishing. Up to now, no
work has been reported on the utilization of CPZ as a green flame retardant in water-based finishing
protocols of textiles. Our previous work established polyphosphazenes as a solvent-based flame
retardant finishing for textiles [71]. Based on this work, a water-based finishing for textiles based on a
reactive CPZ was developed.

2. Results and Discussion

2.1. Synthesis and Characterization of CPZ

Hexa (allylamino) cyclotriphosphaze was synthesized following the procedure of Ahn et al. [73]
(Scheme 1). The NMR data were in full agreement with those reported. To obtain a water-based
solution of CPZ, the method of Qian et al. [76,77] for allylamino-polyphosphazenes was adopted,
which proved that the phosphazenes remained stable under acid conditions. Therefore, the solubility
of the CPZ was tested in different aqueous acids (H3PO4, H2SO4, HCl). In comparison to the work
of Qian et al., a good solubility not only using phosphoric acid but also in hydrochloric acid and in
sulfuric acid was found. Depending on the pH value of the acid solution, the solubility of the CPZ
changed. The solubility in the range of 0.1 to 1 M of the acids with 1 to 30 wt% of CPZ was tested.
The solubility of CPZ in aqueous acid solutions is obtained by protonation of NH-groups. Table 1
shows the solubility of the CPZ at different acid concentrations. For instance, a concentration of 15 wt%
CPZ is only soluble in water at an acid concentration of 0.5 mol/L.



Molecules 2019, 24, 3100 3 of 23

Scheme 1. Synthesis of the hexa (allylamino) cyclotriphosphazene (CPZ).

Table 1. Hexa(allylamino)cyclotriphosphazene (CPZ) solubility in aqueous H3PO4, H2SO4, and
HCl solutions.

CPZ (wt%)
Acid Concentration (mol/L)

0.1 0.25 0.5 1

1 + + + +
5 – + + +

15 – – + +
25 – – –* +
30 – – – * +

+: soluble, -: insoluble, * soluble in H2SO4.

To understand the thermal stability of the CPZ, differential scanning calorimetry (DSC) and
thermogravimetric analysis (TGA) measurements of photo crosslinked CPZ were conducted, results of
which are shown in Figure 1. The DSC curve shows that the crosslinked CPZ lost the incorporated
water, followed by a complex endothermic decomposition starting at 150 ◦C. The TGA curve of the
crosslinked CPZ displays a two-step weight loss with ~50% residual mass (char) after heating at 700 ◦C
while the DTG thermogram shows two maxima for each. Allcock et al. [78–80] described that these
reactions included decomposition of the side-chains, different thermal rearrangement reactions, and
pyrolytic cross-linking. The opening of the CPZ rings was also involved in the decomposition reactions
at a temperature higher than 250 ◦C.

Figure 1. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) thermograms
under nitrogen of the photo crosslinked CPZ polymer.

2.2. Textile Finishing and Characterization

For the evaluation of a finish based on the synthesized reactive flame retardant, different kinds
of fabrics were chosen, which are commonly used for textile applications with a high demand for
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flame retardant properties (e.g., protective clothing, composites, car interiors, furniture). These fabrics
include: one cotton fabric and two PET/CO blends and one COPA 6.6 blend (also called NyCO); all
blended fabrics are 50/50 mixtures. Additionally, plain PA 6.6 and PET fabrics were also tested. PET/CO
1 was a warp sateen weave fabric with a CO and a PET side. Fabrics PET/CO 2 and COPA were
manufactured from core-shell yarns with a PET and PA core, respectively. The final textile finishing
was achieved by using the HCl solution of the CPZ. The loading with the flame retardant CPZ, also
termed the add-on value, was controlled exclusively by the concentration of the CPZ solution, while
the same amount of CPZ solution was applied to the samples throughout. Since the studied textiles
each had a different fabric weight per unit area, we tried to finish all fabrics with the same amount of
CPZ according to the area of the fabrics. This means that the obtained flame retardant loadings differ
as the fabrics had different area weights. Five different concentration were used for the finishing of six
different kinds of textile.

It should be noted here, that passing a certain standardized flame test strongly depends on the
flame retardant loading. On the other hand, the allowable amount of the deposited flame retardant is
actually limited to a certain degree by the desired application. For some textile applications, such as
personal protective equipment (PPE), the haptic properties should ideally stay unchanged. Thus, a
high add-on resulting in a change of the haptic properties of the textile is unfavorable.

After the application of the finishing solution, the textiles were irradiated with a broad-band
UV-lamp in the presence of a photosensitizer. To remove all unbound CPZ and remaining acid, the
textiles were washed before further analyses and all flame tests. In Table A1 (Appendix A) the CPZ
concentrations and pH-values of the used HCl solutions and the obtained add-ons before and after
washing are listed. The samples and conditions for analysis and external flame test are marked.
For TGA, ATR-IR, and microscale combustion calorimetry (MCC) studies, samples with about 10 wt%
add-on were used. In the case of PET/CO1, a double coating was necessary.

Figure 2a shows the add-on value measured gravimetrically as a function of the applied amount
of gram CPZ per square meter of textile and the used concentration of CPZ after one washing cycle (for
the unwashed samples see Figure A1 in the Appendix A). It can clearly be observed that the add-on
value increased with an increasing amount of offered CPZ. As stated above, the different add-ons
were observed on the different fabrics at a fixed FR. PET/CO 1 displayed the lowest add-on value,
while both PET/CO 2 and PA fabrics showed the highest. This depended on the different area weight
(PET/CO 1: 340 g/m2, PET/CO 2: 170 g/m2) and suction properties of the fabric.
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Figure 2. Add-on and washing stability of the finished textiles. (a) add-on as CPZ concentration per 
square meter textile after the first washing test, and (b) washing stability after six washing cycles. 

Figure 2. Add-on and washing stability of the finished textiles. (a) add-on as CPZ concentration per
square meter textile after the first washing test, and (b) washing stability after six washing cycles.

From an application point of view, washing resistance is essential. Therefore, the modified textiles
with a coated with 3 g/m2 CPZ or 15 g/L were washed in a Linitester according to EN ISO 105-C06.
The washing stability measured after one, three, and six washing cycles is shown in Figure 1. After the
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first washing cycle, a weight loss of the grafted CPZ for all textiles was observed, while the add-on
values for all fabrics stayed constant for the next washing cycles resulting in a stable finishing of CPZ.

The SEM images of the treated fabrics after one washing cycle show that a smooth CPZ film
coating uniformly dispersed on the surface and around the fibers. It can also clearly be observed that
the treated CO and PA fabrics almost retain their original structure, indicating the infiltration of CPZ
into the inner fibers rather than coating only onto the surface of those fabrics (Figure 3).Molecules 2018, 23, x FOR PEER REVIEW  1 of 2 

 

 

Figure 3. SEM micrographs of the original textile (left), textile finished with CPZ after one washing 
cycle (right)  

Figure 3. SEM micrographs of the original textile (left), textile finished with CPZ after one washing
cycle (right).
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2.3. Thermal Stability

The thermal stability and the flame retardant mechanism of CPZ were investigated using TGA
and microscale combustion calorimetry (MCC). With the TGA measurement, the thermal behavior of
the CPZ in the solid phase during the char formation can be assessed, while using MCC information
about the behavior of the material in the gas phase can be obtained by measuring the heat release.
Lyon et al. [81] reported that the heat release capacity (HRC) measured by MCC can be correlated with
the flame retardant properties, for example, the UL 94 flame test. Important indicators for a good
flame retardant are the reduction of both the heat release rate and heat release capacity of the modified
fabrics upon combustion.

2.3.1. Thermal Properties

The thermal stability was measured by TGA with a heating rate of 20 K/min under nitrogen.
The results are listed in Table 2. The add-on value for all measured samples was ~10 wt%. Many
authors reported that good flame retardant properties of finishing textiles correspond with a lower
decomposition temperature, which is determined at a 5% weight loss (T–5%), and an increase of the
remaining residue or char (Res) compared to the unfinished textile. Figure 4 shows the (derivative)
thermograms of both finished and unfinished fabrics. Around 100 ◦C, about 1% of adsorbed water
evaporated. Cotton fabric showed one single thermal decomposition step at 380 ◦C, which is related to
the depolymerization by trans-glycosylation reactions of cotton [32]. In contrast, the decomposition
reactions of PA and PET were found to take place at higher temperatures ~450 ◦C. As expected,
the blended textiles exhibited two independent decomposition steps, where the first represents the
depolymerization of CO at 380 ◦C and the second is attributed to PET or PA, respectively (~450 ◦C).

Table 2. Overview of the Thermogravimetric analysis (TGA) parameters measured under nitrogen
with 20 K/min heating rate. Tmax is obtained by the derived TGA curve. The add-on was for all samples
around 10 wt%.

Sample ResH2O
[%]

T−5%
[◦C]

Tmax1 (Res)
[◦C (%)]

Tmax2 (Res)
[◦C (%)]

Tmax3 (Res)
[◦C (%)]

Tmax4 (Res)
[◦C (%)]

Res
[%]

CPZ 1.5 168 163 (95.6) 212 (89.5) 391 (68.4) 440 (58.7) 49.5
CO 0.7 320 382 (44.5) 10.7

CPZ@CO 0.9 303 314 (82.6) 26.8
COPA 0.5 351 395 (65.6) 456 (28.7) 9.1

CPZ@COPA 1.2 295 321 (82.4) 401 (52.0) 462 (31.9) 21.1
PET/CO 1 0.5 333 367 (71.1) 445 (32.2) 13.3

CPZ@PET/CO 1 0.9 280 316 (79.7) 449 (38.6) 18.2
PET/CO 2 0.5 336 379 (73.1) 451 (27.9) 10.0

CPZ@PET/CO 2 0.5 300 311 (87.6) 398 (65.9) 445 (43.6) 24.0
PET 0.1 413 449 (56.6) 13.3

CPZ@PET 0.0 365 385 (86.5) 447 (40.8) 14.9
PA 0.6 404 466 (42.3) 1.5

CPZ@PA 0.2 280 381 (79.7) 449 (38.6) 10.6

For the CPZ finished textiles an earlier decomposition (T−5%) in comparison to the untreated
materials was observed (see Table 2). In the case of CPZ-modified CO (Figure 5a), the decomposition
started at ~300 ◦C and reached a maximum at a temperature between 310 ◦C and 320 ◦C with a higher
residual mass at 700 ◦C compared to the pristine CO, which decomposed faster with higher mass
loss. This increase in the char formation is typically related to the effect of the flame retardant, which
forms phosphoric acid upon thermal decomposition and which is capable of inducing a catalytic water
elimination leading to a graphitization of cotton [32,82].
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Figure 4. TGA and derived TGA thermograms of native textile and CPZ finished textiles measured
under N2, where (a) CO; (b) PET; (c) PET/CO 1; (d) PET/CO 2; (e) COPA and, (f) PA 6.6. The add-on
value for all samples is around 10 wt%.

For PET (Figure 5b) and PA (Figure 5f), two steps of decomposition in the presence of the CPZ
were observed, whereby the first step exhibited a decomposition at about 380 ◦C and 450 ◦C for
PET and PA, respectively. The second decomposition step of PET at 450 ◦C had a higher weight
loss (~40%), while the higher weight loss of PA (~60%) was observed in the first decomposition step.
The first decomposition reactions could be induced by the decomposition of the CPZ, which had a
decomposition step at 391 ◦C. The decomposing CPZ seemed to react with the (decomposing) PET and
PA, changing both mass losses and residual masses for the corresponding compounds, whereby the
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weight losses in this decomposition step indicated that PA had a higher reactivity than PET. For PET,
these reactions have no significant influence on the total amount of decomposed fabric as the residue
formed is just 1% higher than the unmodified PET, while for PA, ~11% residue is obtained. It should
be noted that low weight loss of about 2% was also observed for CPZ@PET at a temperature of 230 ◦C.
At this temperature, the CPZ itself showed a decomposition reaction, as seen in Figure 1. Therefore, it
may be assumed that this initial decomposition reaction has no influence on the decomposition of PET.
However, based on the assumption that a good textile flame retardant gives a higher residual mass, it
can be concluded that the CPZ is not an effective flame retardant for PET.

Figure 5. Microscale combustion calorimetry (MCC) of native and CPZ finished textiles, (a) CO; (b) PET;
(c) PET/CO 1; (d) PET/CO 2; (e) COPA, and (f) PA 6.6 measured following ASTM D 7309 Method A.
The add-on value for all samples is around 10 wt%.
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The CPZ-coated blend fabrics exhibited an individual thermal decomposition of the relative
component (Figure 5c–e). Regarding the PET/CO blends (both 1 and 2), two decomposition steps were
observed with a shift in the temperature of the cotton decomposition as was already observed for the
CO fabric. An increase in the char formation of about 18% and 24% was also obtained for PET/CO
1 and PET/CO 2, respectively. This difference in the mass loss may be related to the differences in
the textile fabrication of both blends; CO/PET 2 is a core-shell fabric, where the PET core is shielded
to a certain degree by the decomposing cotton fibers. For CPZ@COPA, three decomposition steps
were observed (Figure 5e), where the PA component displayed two thermal decompositions. The CO
decomposition in the blend fabric was not influenced by PA.

From the MCC measurement, the dependence of the thermal decomposition of the fabrics on
the energy of the decomposed products in the gas phase was obtained. Although the heating rate
of the MCC measurement (1 K/s) is higher in comparison to TGA (0.3 K/s), similar observations
regarding the decomposition steps, as well as the decomposition temperatures, were obtained from
MCC measurements (Figure 6). As observed in the TGA, pristine CO, PET, and PA showed just one
heat release peak indicating one decomposition reaction, while the blends showed two peaks belonging
to each fiber polymer. In addition, in the presence of CPZ, similar decompositions were observed with
a broad peak of the CO component. All CPZ-finished textiles showed a reduced HRC and THR with a
higher char yield. For CO, PET/CO 1 and 2, and COPA the HRC was <160 J g−1 K−1, which means that
the material was self-extinguishing and could obtain a UL 94-V0 rating as suggested by Lyon et al. [81].
However, the precise correlation of MCC-parameters with the textile standard flame retardant test is
not known. Figure 5 displays char yield, HRC, and THR measured by MCC. Table A2 (Appendix A)
displays the peak of heat release, the peak of the heat release rate, and the peak of temperatures. As is
clearly observed, the HRC, as well as the THR (Figure 6a,b), decreased for all coated fabrics indicating
that CPZ decelerated a developing fire by the promotion of char formation (Figure 6c).

Figure 6. Overview of the MCC key parameters. (a) HRC: heat release capacity; (b) THR: total heat
release, and (c) char yield obtained after MCC measurements. The add-on value for all samples is
around 10 wt%.
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2.3.2. Flame Test

Depending on the desired application, different flame retardant tests are requested. Therefore, the
flammability was examined by four different standard textile tests, which are summarized in Table 3.
The limiting oxygen index value (LOI) provides information about the oxygen amount required to
keep a sample burning for 180 s. High LOI values indicate a high required oxygen concentration, and
therefore, the sample is harder to burn/oxidize. DIN 75,200 is a test which is relevant to the automotive
section, DIN EN ISO 15,025 is required for protective clothing (PPE), and EN ISO 11925-1 is required for
building materials in public buildings including textiles. With the changing sample orientation from
horizontal to vertical and changing the flame application from the face of the sample to the bottom
edge, the difficulty of these tests increases, because the position of the tested material is more and
more orientated in the direction of the heat flux. For the first evaluation, we followed the DIN EN
15,052 flame test with a reduced sample size of 50 × 100 mm to require less CPZ for the coatings. Our
experience showed that we obtained to standard comparable results [71].

Table 3. Comparison of the test conditions and the passing requirements.

LOI
(DIN-EN-ISO-4589) DIN 75200 DIN EN ISO 15025 EN ISO 11925-1

Flame gas propane propane propane propane
Flame size 16 mm 38 mm 25 mm 20 mm

Flame contact time 5 s steps to max. 30 s 15 s 10 s 15 s
Ignition area top edge edge face Bottom edge
Sample size 40 x 120 mm 100 x 356 mm 150 x 200 mm 90 × 190 mm

Sample alignment vertical horizontal vertical vertical

Passed: LOI value Burn rate:
<102 mm/min

e.g., DIN EN ISO 11611:
no afterburning after

burn time ≤2 s
after glow time ≤2 s

no dripping
no hole formation

DIN 4102-1 B2 or
EN ISO 13501-1 E:
Flame tip does not
reach measuring
mark at 150 mm

within 20 s

To measure the flame retardant properties of CPZ-modified textiles, samples coated with different
concentrations of CPZ solution (Figure 1) were tested according to DIN EN ISO 15025, whereby smaller
samples sizes of 5 × 10 cm were used. In Figure 7, the time of burning after flame application (after
flame time (af )) and the add-on is shown (Table A3 of the supporting materials gives the values).
Only for PET/CO 2 was an after glow observed. For CO, PET/CO 1 and 2, and COPA, it can be observed
that by increasing the add-on, the af dropped to zero, and the fabrics passed the test. These four fabrics
have in common an already a low amount of the CPZ (5–10% add-on), which reduced the after-flame
time to 0. For PA and PET, an increase of the after-flame time was observed. This can be explained by
the fact that finishing with a flame retardant changes the melting behavior in that the coating prevents
the polymer melting from the flame. The prevention/changing of the melting behaviors accordingly
leads to an increase in flammability of CPZ@PA and CPZ@PET with add-ons of up to 10%. With a
higher add-on, the after-flame time dropped again, because the CPZ finish works as a flame retardant
as was expected by the reduced HRC. The same flame test was also used to evaluate the washing
resistance. The flame test for finishing solutions with 30 g/m2 after one, three, and six and for 40 g/m2

after six washing cycles was evaluated. The flame test after washing is shown in Figure 8. The flame
retardant works even after six washing cycle for CO and the blended fabrics.
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Figure 7. Evolution of after-flame time in the flame test according to DIN EN ISO 15,025 after one
washing cycle in dependency of the gravimetrically measured add-on.

Figure 8. Photographs represent the flame test of the blank fabrics and the fabrics with two different
add-ons of flame retardant after different washing cycles. The add-ons after the washing test in
the images.
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The results obtained from the flame test, according to DIN EN ISO 15,025, were used to select
samples for the flame test following other standard tests. Due to the fact that the CPZ only showed a
promising flame retarding effect for CO and the blend fabrics, only these materials were examined
in the following. To represent different application areas LOI, DIN 75,200 (automotive), DIN 15,025
protective clothes (PSA), and DIN 4102-1-B2 building materials were chosen as standard measurements.
The add-on for LOI and DIN 75,200 was in the range of 5% to 6 %. For DIN EN ISO 15,025 and DIN
4102-1-B2 an add-on between 9% and 11 % was used. The results for all test are given in Table 4.

Table 4. Results of the limiting oxygen index (LOI) measurements and the standardized burning tests
on CPZ-modified textiles.

CO PET/CO 1 PET/CO 2 COPA

LOI

untreated 16.5–17.0 18.5–19.0 16.5–17.0 18.0–18.5
PPZ 25.5–26.0 26.0–26.5 23.0–24.0 23.0–23.5

DIN 75200

burning rate
[mm/min] 60 0 0 0

comment carbonization carbonization carbonization carbonization
test passed yes yes yes yes

burning behavior
of untreated

material

burns down
completely, burning

rate 98 mm/min

burns down
completely, burning

rate 59 mm/min

burns down
completely, burning

rate 119 mm/min

burns down completely
burning rate
126 mm/min

DIN EN ISO 15,025

Flame reaches
upper or lateral

edge
no no no no

after flame time [s] 0 0 0 0
test passed yes yes yes yes

burning behavior
of untreated

material

burns down
completely within 8 s

burns down
completely within 22 s

burns down
completely within 11 s

burns down completely
within 13 s

EN ISO 11925-2

max. flame height >25 cm >25 cm >25 cm >25 cm

self-extinguished
0 s

(during flame
impingement)

0 s 5 s 15 s

dripping no no no no
test passed no no no no

burning behavior
of untreated

material

burns down
completely

burns down
completely

burns down
completely burns down completely

Results may be summarized as follows: The LOI measurement showed a significant increase
in all cases. All fabrics finished with CPZ passed the DIN 75,200 test for automotive textiles, which
specifies a burning speed below 120 mm/min. The PSA-test was passed, while the challenging DIN
4102-1-B2 standard for building materials indicated an improvement of flame retardant properties, but
the standard was not passed by any of the samples. It is assumed that the decisive factor is the edge
impingement performed in this test in contrast to the other testing methods applied.

2.3.3. Char Analysis

By analyzing the residual char of the fabrics with 10wt% add-on after the flame test, according to
DIN EN ISO 15,025, some additional conclusions on the flame retardant mechanism could be obtained.
IR spectra of CPZ finished fabrics exhibited a characteristic peak at ~1450 and ~1100 cm–1 assigned to
the P-N-C and P-N-P-bond (cf. also Figures 9 and 10a,b). The broad absorption bands in the range of
3000 to 3600 cm–1 were due to the H–N stretching, which belongs to both CPZ and amide groups of
PA. For PET and PA samples, the IR-spectra of the charred area were not changed in comparison to
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the original material, while charred CO showed a significant change in the IR-spectrum (Figure 9a,c).
The behavior of PET and PA is explainable by the fact that both materials melt away. For the CPZ@CO,
the IR spectrum of the char differed strongly from the unfinished fabric (Figure 9b,d). For the CPZ@PET,
the charred IR-spectrum was similar to PET (Figure 9c,d). For the PET/CO 1 and 2, the IR spectra
of the char of the untreated and treated fabrics were similar to each other (Figure 9c,d) and similar
to the unburnt PET (Figure 9a). This behavior has also been observed for textiles finished with a
polyphosphazene [71]. This finding can be explained by the melting of the PET. After the flame was
removed, the PET was still liquid and flowed to the surface of the textile.

Figure 9. ATR-IR spectra of the pure fabrics after finishing with CPZ and after the flame test, according
to DIN EN ISO 15025.

The same observation can be made for the PA. The IR spectrum of the PA char was similar to
the spectrum of the unburned PA. The char of CPZ@PA showed IR signals of PA (between 1500 and
4000 cm−1) and new IR-signals comparable with charred CPZ@CO (between 600 and 1250 cm−1).

The relevant IR-spectra of the blend fabrics are summarized in Figure 10. Significant differences
were found in the char of untreated and finished COPA fabric (Figure 10c,d). The char spectrum of
the untreated sample showed a mixture of the CO char product (peaks between 600 and 1250 cm−1)
and a contribution of PA (band between 1500 and 4000 cm−1) (cf. Figures 9c and 10c for the CO
and PA spectra). In case of the burnt CPZ@COPA fabric, a similarity to the char of CPZ@CO (cf.
Figures 9d and 10d) was found. The important signals of charred CPZ@CO, CPZ@COPA, and CPZ@PA
were around 1600 cm−1, which can be assigned to a C=C absorption, and the broad signals at 1200 cm−1,
which can be assigned to different groups, such as P=O, P-O-P (symmetrical stretching,) and P=N.
The signal at 900 cm−1 belongs to P-O-P (symmetrical stretching). Based on these observations, we can
conclude that in the presence of CPZ charring reactions of both PA and CO can be induced. The char
spectrum of PET/CO 1 and 2 @CPZ was similar to the char of the unfinished blends. In both cases, the
char spectra showed the presence of PET. This behavior has also been observed for textiles finished
with a polyphosphazene [71]. This finding can be explained by the melting of the PET. After the flame
was removed, the PET was still liquid and flowed to the surface of the textile. The decomposition of
PET remained mainly unchanged in the solid state. The charring reaction with CO and PA led to the
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formation of phosphoroxinitrids (1200 and 900 cm−1), a glass-like compound, which formed a layer
passivating the fire. Due to the melting of the PET, the underlying of the phosphoroxynitride was
not detectable.

Figure 10. ATR-IR spectra of the modified blended fabrics after the flame test, according to DIN EN
ISO 15025.

The char morphology was studied by SEM. The SEM images of the treated fabrics show a smooth
CPZ film coating uniformly dispersed on the surface and around the fibers. The finished fabrics
almost retain their original structure, indicating the infiltration of CPZ into the inner fibers. (Figure 11)
After burning, all fabrics showed a different morphology compared to the treated fabrics before burning,
but almost similar behavior could be observed in the burning area. All fabrics that contained CO
showed a char formation resulting from the reaction of CPZ with cellulose, while the PET fabric formed
a bulkier rougher film compared with that of untreated fiber, which may be related to the melting of
PET. On PA, a rougher surface was observed. For the different blends, a film formation on the surface
with a formation of gas bubbles which were released during the combustion was observed. This bubble
formation was verified by comparing the cross-sections of the charred areas (Figure 11). In the case of
CPZ@CO, the typical formation of hollow fibers was observed, and this behavior was also conserved
in the CPZ@blend fabrics (PET/CO1, PET/CO2, and COPA). This hollow fiber formation depended
on the charring reaction, whereby the protective glassy layer forms the hollow fibers. The observed
higher roughness of CPZ@PA also originated in foaming. The char of CPZ@PET was too brittle for
a cross-section measurement. The film formation in case the PET/CO blends correlated with the IR
observation, where mainly PET was observed on the surface.
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3. Materials and Methods

3.1. Textiles and Chemicals

The experiments were carried out using a commercial cotton woven fabric (twill 3/1, 230 g/m2,
white, CHT R. Beitlich GmbH, Tübingen, Germany), a commercial 50/50 CO/PET woven fabric
(warp sateen 4/1, 340 g/m2, orange, Huntsman Textile Effects GmbH, Langweid am Lech, Germany
(PET/CO1)), a commercial 50/50 CO/PET core yarn fabric (twill 2/1, core PET, CO shell, 170 g/m2,
camouflage, Bluecher GmbH, Erkrath, Bluecher GmbH, Germany d(PET/CO1)), and a 50/50 COPA core
yarn fabric (twill 2/1, core PA, CO shell, 190 g/m2, camouflage, Bluecher GmbH, Erkrath, Germany).
Hexachlorotriphosphazene was obtained from Eurolabs Limited (Crawley, UK) and allyl amine
(≥99%) from Merck (Germany). Tetrahydrofuran (THF, ≥99.9%) were obtained from Carl Roth
(Karlsruhe, Germany). Triethylamine (Et3N, ≥99%), was obtained from Sigma-Aldrich (St. Louis, USA).
All solvents were dried before use.

3.2. Instrumentation

Fourier transform infrared spectroscopy (FT-IR) was carried out using an IR Prestige by Shimadzu
(Europe); for the attenuated total reflection (ATR) mode, a Golden Gate, diamond crystal, Specac
(UK) with a resolution of 4 cm−1 was used. Differential scanning calorimetry was measured using a
DSC Q20 (TA Instruments, New Castle, USA) under 50 mL/min N2 and a heating rate of 20 K/min.
Thermogravimetric analyses (TGA) were performed with a Discovery TGA55 (TA Instruments,
New Castle, USA) under 50 mL/min N2 and a heating rate of 20 K/min in aluminum oxide crucibles
and with a Mettler Toledo TGA/SDTA 851 in N2 (gas flow rate of 30 mL/min) and a heating rate of
10 K/min in aluminum oxide crucibles. Microscale combustion calorimetry (MCC) were measured
with FAA Micro Calorimeter (FTT Fire Testing Technology, West Sussex, UK) following ASTM. 1H and
31P nuclear magnetic resonance spectroscopy (NMR) was conducted using a Bruker DMX300 (USA)
and a deuterated solvent as internal standard. Scanning electron microscopy (SEM) was done using an
SEM S-3400 N II, Hitachi High-Technologies Europe. An Ultraviolet A (UVA) print system lamp (Type
100–200, HPV-E2, H emitter with dichroitic reflector for IR reduction, power 200 W/cm, Hoenle UV
Technology, Gräfling, Germany) served as a broadband UV-source. Standardized washing tests were
carried out using a linitester by Atlas Material Testing Technology (Rock Hill, USA).

3.3. Synthesis and Characterization of Hexa (allylamino) Cyclotriphosphazene (CPZ)

Freshly sublimated hexachlorotriphosphazene (20 g, 58 mmol) was solved in 200 mL dry THF
under argon atmosphere. A mixture of 8 eq. (63.1 g, 700 mmol) triethylamine and 8 eq. allylamine
was solved in 100 mL THF and dripped into the hexachlorotriphosphazene solution over 2 h and
refluxed for further 2 h. Afterward, the reaction mixture was poured into 300 mL of water, and the
product was extracted with CHCl3. After evaporation of the solvent, a yellow solid with a yield of 92%
was obtained.

1H NMR (300 MHz, CDCl3): δ 3.04 (s, 1 H), 3.38 (s, 2 H), 5.81 (ddt, J=17.2, 10.5, 5.4 Hz, 2 H) 4.91
(dq, J=17.2, 1.8 Hz, 1 H) ppm. 31P NMR (122 MHz, CDCl3): δ 18,96 (s) ppm. IR (ATR): 783 (P-N-C),
848, 912, 995, 1005 (P-N-backbone), 1080 (P-O-R), 1170 (P=N-backbone), 1415 (P-N-C), 1647 (C=C),
2951 (C-H, sp3), 2980 (C-H, sp3), 3015 (C-H, sp2), 3066 (C-H, sp2), 3170 (N-H) cm−1.

3.4. UV Treatment and Characterization of the Modified Fabrics

The textiles were immersed in the CPZ solution. For a flame test sample of 5 x 10 cm (0.005 m2),
1 mL of the hydrochloric aqueous CPZ solution with 0.4% Irgarcure 2959 (see supporting information
Table A1 for all concentration and add-on values) was used. For bigger samples the amount of CPZ
solution was scaled, for 1 m2 of textile 0.2 L of CPZ-solution was needed. Samples with about 10 wt%
CPZ add-on after washing of PET/CO1 were obtained by double coating with 20% CPZ-solution in
1 mol/L HCl (PET/CO1 9.6 wt%). The immersed samples were irradiated for 10 min in an argon
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atmosphere. The distance between the light source and the sample was 20 cm. Subsequently, each
sample was washed once in a textile linitester to remove non-bonded CPZ; afterwards the textiles were
dried at RT and weighed. The add-on (A [wt%]) was calculated using equation 1, with W0 = before
irradiation, W1 = after irradiation and washing.

A =
W1 −W0

W0
× 100%. (1)

3.5. Measuring of the Thermostability

TGA was carried out under nitrogen (50 mL/min) with a heating rate of 20 K/min in an aluminum
oxide crucible with precisely weighted sample sizes between 7 and 20 mg.

MCC measurements were done following ASTM D 7309 Method A. Sample weights were selected
between 15 and 30 mg to obtain an O2 concentration drop of 10%. Samples were pyrolyzed under
N2 with a heating rate of 1 K/s up to 750 ◦C and a combustor temperature of 900 ◦C. The data were
analyzed by Microcal Origin 2018b Professional.

3.6. Washing Resistance

To evaluate the washing fastness of the modified textiles, the materials were washed up to six times
in a linitester according to EN ISO 105-C06 (liquor volume 150 mL, liquor ratio 1:80, ECE detergent
4.0 g/L, 30 min, 40 ◦C). The samples were then dried at room temperature and weighed.

3.7. Evaluation of the Flame Retardant Properties

All flame tests and LOI measurements were carried out after at least one washing cycle. The flame
retardant properties were measured according to DIN EN ISO 15,025 (protective clothing—protection
against heat and flame—method of test for limited flame spread), with a reduced sample size of
5 cm × 10 cm and a Proxxon lighter (combustion gas butane). In addition, selected samples were
tested externally by Staatliches Pruefamt fuer das Textilgewerbe, University of Applied Science Hof
(Germany). One sample set was tested according to DIN EN ISO 15025, two sets according to DIN
75,200, respectively, US FMVSS 302 or ISO 3795 (motor vehicle safety standard), five sets according
to EN ISO 11925-2 German “Kleinbrenner“ method and five sets according to DIN EN ISO 4589-2
(limiting oxygen index (LOI, 0.5% steps)).

4. Conclusions

Different phosphazenes are proposed as flame-retardant materials in literature, but the
investigation of such compounds as broadly applicable flame retardants for textile finishing is
scarce to date. With this paper, we demonstrated the usefulness of a cyclotriphosphazene derivative as
a flame retardant for textile finishing. The reported CPZ can be processed from water and by UV-cross
linking, whereby a washing resistant coating is obtained. Thus, two important conditions for industrial
application—finishing from aqueous systems and durability—are met. A further important advantage
of the CPZ is that only a single step synthesis is required to obtain the product. The used CPZ is an
effective flame retardant for CO and CO blends with PA and PET. For pure PA and PET fabrics, a
reduced HRC was observed, but flammability still occurred. Depending on the application, an add-on
between 5% and 10% was necessary to obtain the required flame-retardancy.

With regard to the mechanistic aspect of the CPZ, two potential mechanisms of action are proposed.
The first is the formation of an acid, which catalyzes graphite formation for cellulosic materials and
an acid-catalyzed decomposition for PA. It, furthermore, improves char formation of these materials.
The second mechanism is the formation of a glassy insulating layer of phosphoroxynitrides. For a
better understanding of the complete flame retardant mechanism of the presented phosphazene-based
flame retardant, in-depth mechanistic studies are currently in progress, which include the comparison
between different types of poly- and cyclophosphazens.
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Appendix A

Table A1. Used concentration of CPZ and pH-value of the HCl solution for finishing of the textiles.

CPZ pH FR CO PET/CO 1 PET/CO 2 PET COPA PA

% g/m2 % ± % ± % ± % ± % ± % ±

unwashed

5 0.3 10 4.5 0.2 3 0.1 6 0.6 5.2 0.2 5.1 0 7.5 0

7.5 0.3 15 7.9 2 5.4 0.1 11.9 0.2 7.5 0 10.7 0.4 11.9 0.3

10 0.3 20 8 0 5.7 0.2 13.6 0.4 9.5 0.1 11.7 0,1 13.8 0.2

15 0 30 13 0.1 8.8 0.1 20.7 0 13.6 0.4 17 0.2 20.1 0.2

20 0 40 26.2 1.1 17.2 1.2 29.5 0.8 19.4 0.3 30.7 1.8 32.1 0.2
5 0.3 10 4.9 1.9 0.5 0.2 4 1 4.8 0.2 2.6 0.3 6.5 0

7.5 0.3 15 3.5 1.2 1.6 0.1 6.2 0.7 5.4 0.1 3.2 0.1 7.4 0
10 0.3 20 6.5 0.2 2.5 0.1 11.4 1.5 9.4 0.1 5.7 0.3 12.1 0.1
15 0 30 11.6 0.3 3.6 0.2 16.1 0.2 13.1 0.1 6.2 0.4 13 0.5

washed

20 0 40 14.6 1.1 5.1 0.4 18 0.8 13.4 0.3 8.3 0.8 13.1 0.1
Green: conditions and samples chosen for TGA, IR, MCC, DIN EN 15025 and DIN 4102-B2. For the chosen COPA
sample the add-on was 9.2 wt%. For PET/CO 1 an add-on of 10% was achieved by a double coating. Red: conditions
and samples chosen for LOI, DIN EN 15025 & DIN 75200.

Table A2. Full MCC date. Figure 5 is based on the green column.

Char HRC THR P1HR P1HRR T1 P2HR P2HRR T2
[%] [J/K/g] [kJ/g] [J/g] [W/g] [◦C] [J/g] [W/g] [◦C]

CO 11.2 ± 0.5 200.2 ± 6.5 10.2 ± 0.1 10.2 ± 0.1 200.2 ± 6.5 381.3 ± 2
CPZ@Co 32.9 ± 1.9 116.2 ± 2.3 3.4 ± 0.2 3.4 ± 0.2 116.2 ± 2.3 309.3 ± 3.2
PET/CO 1 14.6 ± 0.6 222.4 ± 28.3 14.6 ± 1.6 7.8 ± 0.8 107.8 ± 13.2 347.1 ± 0.9 6.8 ± 0.8 114.6 ± 15.1 429.5 ± 4.2

CPZ@PET/CO
1 21.6 ± 0.3 143.3 ± 1.6 11 ± 0.2 1.8 ± 1.1 23.1 ± 7.4 275.8 ± 23.4 0.9 ± 0.9 16.7 ± 12 295.4 ± 9.3

PET/CO 2 11.4 ± 0.5 220.8 ± 6.5 14.8 ± 0.1 7.2 ± 0.5 90.1 ± 1.7 359.1 ± 2.7 7.7 ± 0.4 130.7 ± 6.2 435.1 ± 1.6
CPZ@

PET/CO 2 27.3 ± 0.2 159.9 ± 9.8 10.5 ± 0.1 1.3 ± 0 7.6 ± 1.7 291 ± 25.5 0.4 ± 0.1 19.6 ± 9.2 269.5 ± 4.8

PET 12.6 ± 0.2 418.8 ± 10.4 16.2 ± 0.2 16.2 ± 0.2 418.8 ± 10.4 455.8 ± 0.9
CPZ@PET 21.3 ± 0.2 253.9 ± 42.2 13.8 ± 1.9 1.4 ± 0.2 7 ± 1 304.6 ± 0.9 12.4 ± 1.7 246.9 ± 41.1 420.3 ± 1.6

PA 1.4 ± 1 572.2 ± 3.3 27.6 ± 0.3 27.6 ± 0.3 572.2 ± 3.3 473.7 ± 1.2
CPZ@PA 8.8 ± 0.7 392 ± 14.8 25.1 ± 0.1 0.5 ± 0 2.7 ± 0.5 306.4 ± 24.6 17.9 ± 1.4 231.4 ± 1.6 389.8 ± 6.5

COPA 10.5 ± 0.3 328.7 ± 0.9 18.8 ± 0.2 9.2 ± 0.3 143.1 ± 0.1 399.4 ± 37.5 9.7 ± 0.1 185.6 ± 0.8 463 ± 21.6
CPZ@COPA 22.9 ± 1.3 137.9 ± 15.3 12.5 ± 3.2 0.4 ± 0 4.3 ± 0.7 196.5 ± 6.1 2.4 ± 2.7 16.8 ± 11.5 308 ± 46.1
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Table A3. Full MCC date.

P3HR P3HR T3 P4HRR P4HR T4 P5HRR P5HR T5

[J/g] [W/g] [◦C] [J/g] [W/g] [◦C] [J/g] [W/g] [◦C]

CO
CPZ@Co
PET/CO 1

CPZ@PET/CO
1

PET/CO 2
CPZ@

PET/CO 2 0.8 ± 0.1 29.5 ± 15.6 291.4 ± 2.2 8 ± 0.1 103.2 ± 1.6 419.6 ± 0.8

PET
CPZ@PET

PA
CPZ@PA 5 ± 1.1 102.6 ± 11.8 449.5 ± 3.9 1.6 ± 0.1 55.3 ± 0.9 468.9 ± 1.1

COPA
CPZ@COPA 0.8 ± 0.5 15.9 ± 11.1 293.3 ± 18.4 4.2 ± 4.7 38.1 ± 21.5 372.2 ± 35.2 4.6 ± 1.7 62.9 ± 5 413,4 ± 24,2

Table A4. Evolution of after-flame time in the flame test, according to DIN EN ISO 15025 after one
washing cycle.

0 g/m2 1 g/m2 1.5 g/m2 2 g/m2 3 g/m2 ** 4 g/m2 **
add-on/af. [%] [s] [%] [s] [%] [s] [%] [s] [%] [s] [%] [s] **

CO 0 31 3.1 22 4.7 6 6.3 5 9.8 0 13.8 0
PET/CO 1 0 61 0.6 37 1.6 25 2.6 25 3.5 0 5.3 0
PET/CO 2 0 26 (21) * 4.7 7 6.7 4 10.3 0 15.6 0 17.4 0

PET 0 31 4.7 36 4.7 47 9.5 48 11.2 6 13.2 4
COPA 0 63 2.4 5 2.8 2 5.5 0 5.7 0 7.8 0

PA 0 12 6.5 21 6.5 35 12.0 36 8.2 29 12.5 25
* after-glow time [s]; ** after 6 washing cycles.

Figure A1. Add-on of the unwashed textiles.

References

1. Horrocks, A.R.; Price, D. Fire Retardant Materials; Woodhead Publishing Limited: Cambridge, UK, 2001.



Molecules 2019, 24, 3100 20 of 23

2. Horrocks, A.R.; Kandola, B.K. Textiles. In Plastics Flammability Handbook: Principles, Regulations, Testing, and
Approval; Troitzsch, J., Ed.; Hanser Publischers: Munich, Germany, 2004; pp. 173–188.

3. Guckert, D.J.; Lovasic, S.L. Fibers and Fabrics. In Handbook of Building Materials for Fire Protection;
Harper, C.A., Ed.; McGraw-Hill Education: New York, NY, USA, 2003; pp. 5.0–5.51.

4. Troitzsch, J. Plastics Flammability Handbook: Principles, Regulations, Testing, and Approval; Hanser Verlag:
Munich, Germany, 2004.

5. National Research Council (US) Subcommittee on Flame-Retardant Chemicals. Toxicological Risks of Selected
Flame-Retardant Chemicals; National Academies Press (US): Washington, DC, USA, 2000.

6. Purser, D. Toxicity of fire retardants in relation to life safety and environmental hazards. In Fire Retardant
Materials; Horrocks, A.R., Price, D., Eds.; Woodhead Publishing: Cambridge, UK, 2001; pp. 69–127.

7. Law, R.J.; Allchin, C.R.; De Boer, J.; Covaci, A.; Herzke, D.; Lepom, P.; Morris, S.; Tronczynski, J.; De Wit, C.A.
Levels and trends of brominated flame retardants in the European environment. Chemosphere 2006, 64, 187–208.
[CrossRef] [PubMed]

8. Cordner, A.; Mulcahy, M.; Brown, P. Chemical Regulation on Fire: Rapid Policy Advances on Flame
Retardants. Environ. Sci. Technol. 2013, 47, 7067–7076. [CrossRef] [PubMed]

9. Alongi, J.; Horrocks, A.R.; Carosio, F. Update on Flame Retardant Textiles: State of the Art, Environmental Issues
and Innovative Solutions; Smithers Rapra Technology: Shropshire, UK, 2013.

10. Morgan, A.B.; Wilkie, C.A. The Non-Halogenated Flame Retardant Handbook; Scrivener Publishing:
Beverly, MA, USA, 2014.

11. Bakoš, D.; Košík, M.; Antoš, K.; Karolyová, M.; Vyskočil, I. The role of nitrogen in nitrogen-phosphorus
synergism. Fire Mater. 1982, 6, 10–12. [CrossRef]

12. Lewin, M. Synergistic and Catalytic Effects in Flame Retardancy of Polymeric Materials—An Overview.
J. Fire Sci. 1999. [CrossRef]

13. Lewin, M. Synergism and catalysis in flame retardancy of polymers. Polym. Adv. Technol. 2001, 12, 215–222.
[CrossRef]

14. Levchik, S.V.; Weil, E.D. Flame retardancy of thermoplastic polyesters—A review of the recent literature.
Polym. Int. 2004, 54, 11–35. [CrossRef]

15. Gaan, S.; Sun, G.; Hutches, K.; Engelhard, M.H. Effect of nitrogen additives on flame retardant action of
tributyl phosphate: Phosphorus–nitrogen synergism. Polym. Degrad. Stab. 2008, 93, 99–108. [CrossRef]

16. Horrocks, A.R. Flame-retardant finishes and finishing. In Textile Finishing; Heywood, D., Ed.; Society of
Dyers and Colourists: Bradford, UK, 2003.

17. Schindler, W.D.; Hauser, P.J. Flame-retardant finishes. In Chemical Finishing of Textiles; Woodhead Publishing:
Cambridge, UK, 2003; pp. 98–116.

18. Laachachi, A.; Ball, V.; Apaydin, K.; Toniazzo, V.; Ruch, D. Diffusion of Polyphosphates into
(Poly(allylamine)-montmorillonite) Multilayer Films: Flame Retardant-Intumescent Films with Improved
Oxygen Barrier. Langmuir 2011, 27, 13879–13887. [CrossRef]

19. Apaydin, K.; Laachachi, A.; Fouquet, T.; Jimenez, M.; Bourbigot, S.; Ruch, D. Mechanistic investigation of
flame retardant coatings made by Layer-by-Layer. RSC Adv. 2014. [CrossRef]

20. Li, Y.-C.; Mannen, S.; Morgan, A.B.; Chang, S.; Yang, Y.-H.; Condon, B.; Grunlan, J.C. Intumescent All-Polymer
Multilayer Nanocoating Capable of Extinguishing Flame on Fabric. Adv. Mater. 2011, 23, 3926–3931.
[CrossRef]

21. Carosio, F.; Alongi, J.; Malucelli, G. Layer by Layer ammonium polyphosphate-based coatings for flame
retardancy of polyester–cotton blends. Carbohyd. Polym. 2012, 88, 1460–1469. [CrossRef]

22. Laufer, G.; Kirkland, C.; Morgan, A.B.; Grunlan, J.C. Exceptionally Flame Retardant Sulfur-Based Multilayer
Nanocoating for Polyurethane Prepared from Aqueous Polyelectrolyte Solutions. ACS Macro Lett.
2013, 2, 361–365. [CrossRef]

23. Laufer, G.; Kirkland, C.; Morgan, A.B.; Grunlan, J.C. Intumescent Multilayer Nanocoating, Made with
Renewable Polyelectrolytes, for Flame-Retardant Cotton. Biomacromolecules 2012, 13, 2843–2848. [CrossRef]
[PubMed]

24. Laufer, G.; Kirkland, C.; Cain, A.A.; Grunlan, J.C. Clay–Chitosan Nanobrick Walls: Completely Renewable
Gas Barrier and Flame-Retardant Nanocoatings. ACS Appl. Mater. Interfaces 2012, 4, 1643–1649. [CrossRef]
[PubMed]

http://dx.doi.org/10.1016/j.chemosphere.2005.12.007
http://www.ncbi.nlm.nih.gov/pubmed/16434081
http://dx.doi.org/10.1021/es3036237
http://www.ncbi.nlm.nih.gov/pubmed/23713659
http://dx.doi.org/10.1002/fam.810060104
http://dx.doi.org/10.1177/073490419901700101
http://dx.doi.org/10.1002/pat.132
http://dx.doi.org/10.1002/pi.1663
http://dx.doi.org/10.1016/j.polymdegradstab.2007.10.013
http://dx.doi.org/10.1021/la203252q
http://dx.doi.org/10.1039/C4RA08500K
http://dx.doi.org/10.1002/adma.201101871
http://dx.doi.org/10.1016/j.carbpol.2012.02.049
http://dx.doi.org/10.1021/mz400105e
http://dx.doi.org/10.1021/bm300873b
http://www.ncbi.nlm.nih.gov/pubmed/22897635
http://dx.doi.org/10.1021/am2017915
http://www.ncbi.nlm.nih.gov/pubmed/22339671


Molecules 2019, 24, 3100 21 of 23

25. Zhang, T.; Yan, H.; Wang, L.; Fang, Z. Controlled Formation of Self-Extinguishing Intumescent Coating on
Ramie Fabric via Layer-by-Layer Assembly. Ind. Eng. Chem. Res. 2013, 52, 6138–6146. [CrossRef]

26. Li, Y.-C.; Schulz, J.; Mannen, S.; Delhom, C.; Condon, B.; Chang, S.; Zammarano, M.; Grunlan, J.C.
Flame Retardant Behavior of Polyelectrolyte−Clay Thin Film Assemblies on Cotton Fabric. ACS Nano
2010, 4, 3325–3337. [CrossRef] [PubMed]

27. Horrocks, A.R.; Nazaré, S.; Masood, R.; Kandola, B.; Price, D. Surface modification of fabrics for improved
flash-fire resistance using atmospheric pressure plasma in the presence of a functionalized clay and
polysiloxane. Polym. Adv. Technol. 2010, 22, 22–29. [CrossRef]

28. Gilman, J.W. Flame retardant mechanism of polymer-clay nanocomposites. In Flame Retardant Polymer
Nanocompostites; Morgan, A.B., Wilkie, C.A., Eds.; John & Wiley Sons, Inc.: Hoboken, NJ, USA, 2007;
pp. 67–87.

29. Zhang, T.; Yan, H.; Peng, M.; Wang, L.; Ding, H.; Fang, Z. Construction of flame retardant nanocoating on
ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate. Nanoscale
2013, 5, 3013. [CrossRef] [PubMed]

30. Carosio, F.; Di Blasio, A.; Alongi, J.; Malucelli, G. Green DNA-based flame retardant coatings assembled
through Layer by Layer. Polymer 2013, 54, 5148–5153. [CrossRef]

31. Alongi, J.; Malucelli, G. State of the art and perspectives on sol–gel derived hybrid architectures for flame
retardancy of textiles. J. Mater. Chem. 2012, 22, 21805–21809. [CrossRef]

32. Brancatelli, G.; Colleoni, C.; Massafra, M.R.; Rosace, G. Effect of hybrid phosphorus-doped silica thin films
produced by sol-gel method on the thermal behavior of cotton fabrics. Polym. Degrad. Stab. 2011, 96, 483–490.
[CrossRef]

33. Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta, J.M.; Dubois, P. New prospects in flame retardant
polymer materials: From fundamentals to nanocomposites. Mater. Sci. Eng. R Rep. 2009, 63, 100–125.
[CrossRef]

34. Liang, S.; Neisius, N.M.; Gaan, S. Recent developments in flame retardant polymeric coatings. Prog. Org. Coat.
2013, 76, 1642–1665. [CrossRef]

35. Alongi, J.; Ciobanu, M.; Tata, J.; Carosio, F.; Malucelli, G. Thermal stability and flame retardancy of
polyester, cotton, and relative blend textile fabrics subjected to sol-gel treatments. J. Appl. Polym. Sci.
2010, 119, 1961–1969. [CrossRef]

36. Alongi, J.; Ciobanu, M.; Malucelli, G. Sol–gel treatments for enhancing flame retardancy and thermal stability
of cotton fabrics: Optimisation of the process and evaluation of the durability. Cellulose 2010, 18, 167–177.
[CrossRef]

37. Gonçalves, A.G.; Jarrais, B.; Pereira, C.; Morgado, J.; Freire, C.; Pereira, M.F.R. Functionalization of textiles
with multi-walled carbon nanotubes by a novel dyeing-like process. J. Mater. Sci. 2012, 47, 5263–5275.
[CrossRef]

38. Liu, Y.; Wang, X.; Qi, K.; Xin, J.H. Functionalization of cotton with carbon nanotubes. J. Mater. Chem.
2008, 18, 3454. [CrossRef]

39. Wu, X.; Yang, C.Q. Flame Retardant Finishing of Cotton Fleece Fabric: Part III—The Combination of Maleic
Acid and Sodium Hypophosphite. J. Fire Sci. 2008, 26, 351–368.

40. Blanchard, E.J.; Graves, E.E.; Salame, P.A. Flame Resistant Cotton/Polyester Carpet Materials. J. Fire Sci.
2000, 18, 151–164. [CrossRef]

41. Wu, X.; Yang, C.Q.; He, Q. Flame retardant finishing of cotton fleece: Part VII. Polycarboxylic acids with
different numbers of functional group. Cellulose 2010, 17, 859–870. [CrossRef]

42. Cheng, X.; Yang, C.Q. Flame retardant finishing of cotton fleece fabric: Part V. Phosphorus-containing maleic
acid oligomers. Fire Mater. 2009, 33, 365–375. [CrossRef]

43. Carosio, F.; Di Blasio, A.; Cuttica, F.; Alongi, J.; Malucelli, G. Flame Retardancy of Polyester and
Polyester–Cotton Blends Treated with Caseins. Ind. Eng. Chem. Res. 2014, 53, 3917–3923. [CrossRef]

44. Opwis, K.; Wego, A.; Bahners, T.; Schollmeyer, E. Permanent flame retardant finishing of textile materials by
a photochemical immobilization of vinyl phosphonic acid. Polym. Degrad. Stab. 2011, 96, 393–395. [CrossRef]

45. Xing, W.; Jie, G.; Song, L.; Hu, S.; Lv, X.; Wang, X.; Hu, Y. Flame retardancy and thermal degradation of
cotton textiles based on UV-curable flame retardant coatings. Thermochim. Acta 2011, 513, 75–82. [CrossRef]

46. Yuan, H.; Xing, W.; Zhang, P.; Song, L.; Hu, Y. Functionalization of Cotton with UV-Cured Flame Retardant
Coatings. Ind. Eng. Chem. Res. 2012, 51, 5394–5401. [CrossRef]

http://dx.doi.org/10.1021/ie3031554
http://dx.doi.org/10.1021/nn100467e
http://www.ncbi.nlm.nih.gov/pubmed/20496883
http://dx.doi.org/10.1002/pat.1707
http://dx.doi.org/10.1039/c3nr34020a
http://www.ncbi.nlm.nih.gov/pubmed/23459988
http://dx.doi.org/10.1016/j.polymer.2013.07.029
http://dx.doi.org/10.1039/C2JM32513F
http://dx.doi.org/10.1016/j.polymdegradstab.2011.01.013
http://dx.doi.org/10.1016/j.mser.2008.09.002
http://dx.doi.org/10.1016/j.porgcoat.2013.07.014
http://dx.doi.org/10.1002/app.32954
http://dx.doi.org/10.1007/s10570-010-9470-2
http://dx.doi.org/10.1007/s10853-012-6412-4
http://dx.doi.org/10.1039/b801849a
http://dx.doi.org/10.1177/073490410001800205
http://dx.doi.org/10.1007/s10570-010-9416-8
http://dx.doi.org/10.1002/fam.1008
http://dx.doi.org/10.1021/ie404089t
http://dx.doi.org/10.1016/j.polymdegradstab.2010.02.022
http://dx.doi.org/10.1016/j.tca.2010.11.014
http://dx.doi.org/10.1021/ie202468u


Molecules 2019, 24, 3100 22 of 23

47. Tsafack, M.J.; Levalois-Grützmacher, J. Towards multifunctional surfaces using the plasma-induced
graft-polymerization (PIGP) process: Flame and waterproof cotton textiles. Surf. Coat. Technol.
2007, 201, 5789–5795. [CrossRef]

48. Çakmakçı, E.; Mülazim, Y.; Kahraman, M.V.; Apohan, N.K. Flame retardant thiol–ene photocured coatings.
React. Funct. Polym. 2011, 71, 36–41. [CrossRef]

49. Salmeia, K.; Gaan, S.; Malucelli, G. Recent Advances for Flame Retardancy of Textiles Based on Phosphorus
Chemistry. Polymers 2016, 8, 319. [CrossRef] [PubMed]

50. Richard Horrocks, A. Textile flammability research since 1980—Personal challenges and partial solutions.
Polym. Degrad. Stab. 2013, 98, 2813–2824. [CrossRef]

51. Horrocks, A.R. Flame retardant challenges for textiles and fibres: New chemistry versus innovatory solutions.
Polym. Degrad. Stab. 2011, 96, 377–392. [CrossRef]

52. Horrocks, A.R.; Kandola, B.K.; Davies, P.J.; Zhang, S.; Padbury, S.A. Developments in flame retardant
textiles—A review. Polym. Degrad. Stab. 2005, 88, 3–12. [CrossRef]

53. Kilinc, F.S. Handbook of Fire Resistant Textiles; Elsevier Science: Amsterdam, The Netherlands, 2013.
54. Gleria, M.; De Jaeger, R. Polyphosphazenes: A Review. In New Aspects in Phosphorus Chemistry V; Topics in

Current Chemistry; Springer: Berlin/Heidelberg, Germany, 2005; Volume 250, pp. 165–251.
55. Allen, C.W.; Hernandez-Rubio, D. The use of phosphazenes as flame retardants. In Applicative Aspects of

Poly(organophosphazenes); De Jaeger, R., Gleria, M., Eds.; Nova Science Publishers, Inc.: Hauppauge, NY, USA,
2004; pp. 119–137.

56. Liang, S.; Neisius, M.; Mispreuve, H.; Naescher, R. Flame retardancy and thermal decomposition of
flexible polyurethane foams: Structural influence of organophosphorus compounds. Ploymer Degrad. Stab.
2012, 97, 2428–2440. [CrossRef]

57. Allcock, H.R. Recent developments in polyphosphazene materials science. Curr. Opin. Solid State Mater. Sci.
2006, 10, 231–240. [CrossRef]

58. Höhne, C.C.; Wendel, R.; Käbisch, B.; Anders, T.; Henning, F.; Kroke, E. Hexaphenoxycyclotriphosphazene as
FR for CFR anionic PA6 via T-RTM: A study of mechanical and thermal properties. Fire Mater. 2017, 41, 291–306.
[CrossRef]

59. Käbisch, B.; Fehrenbacher, U.; Kroke, E. Hexamethoxycyclotriphosphazene as a flame retardant for
polyurethane foams. Fire Mater. 2014, 38, 462–473. [CrossRef]

60. Levchik, G.F.; Grigoriev, Y.V.; Balabanovich, A.I.; Levchik, S.V.; Klatt, M. Phosphorus–nitrogen containing
fire retardants for Poly(butylene terephthalate). Polym. Int. 2000, 49, 1095–1100. [CrossRef]

61. Shukla, L.; Arya, P. Flame retardants based on Poly(fluorophosphazene) and organo-brominated compounds
for polyester-cotton sheeting. Text. Dyer Print. 1998, 31, 16–18.

62. Fukuoka, J.; Iguchi, Y. Fireproofing finishes for cellulose fibers. Jpn. Kokai Tokkyo Koho JP04002881A,
7 January 1992.

63. Ikehata, K.; Midori, K.; Uchida, S.; Nakacho, H.; Tada, Y. Phosphazene compounds, fireproofing agents, and
method for fireproofing of synthetic fibers. Jpn. Kokai Tokkyo Koho JP10298188A, 10 November 1998.

64. Iwaki, T.; Sasa, K. Phenoxy phosphazene fireproofing agents, fire-resistant polyester fiber articles containing
them, and their fireproofing method. Jpn. Kokai Tokkyo Koho. JP2005307396A, 4 November 2005.

65. Hamanaka, S.; Tsutsumi, K.; Mochizuki, K. Fire-resistant poly(ethylene terephthalate) fiber containing
phosphazenes and nitrogen-containing compounds and its fabric. Jpn. Kokai Tokkyo Koho JP2011042905A,
3 March 2011.

66. Saxena, A.K.; Nigam, V.; Kumar, S.; Kerketta, A. Flame retardant composition, fibers, processing and
applications of flame retardant composition. PCT Int. Appl. WO2014045308A1, 27 March 2014.

67. Sada, K.; Kitagawa, M. Fire-resistant coating materials and manufacture of fire-resistant sheet materials
using them with excellent handle and resistance to strike-through and hot water spots. Jpn. Kokai Tokkyo
Koho JP2014141598A, 7 October 2014.

68. Praschak, D.; Bahners, T.; Schollmeyer, E. Excimer UV lamp irradiation induced grafting on synthetic
polymers. Appl. Phys. A Mater. Sci. Process. 2000, 71, 577–581. [CrossRef]

69. Opwis, K.; Bahners, T.; Schollmeyer, E. Improvement of the alkali resistance of PET fibers by photochemical
modification using excimer-UV lamps. Chem. Fibers Int. 2004, 54, 116–119.

70. Gao, S.L.; Häßler, R.; Mäder, E.; Bahners, T.; Opwis, K.; Schollmeyer, E. Photochemical surface modification
of PET by excimer UV lamp irradiation. Appl. Phys. B 2005, 81, 681–690. [CrossRef]

http://dx.doi.org/10.1016/j.surfcoat.2006.10.027
http://dx.doi.org/10.1016/j.reactfunctpolym.2010.11.011
http://dx.doi.org/10.3390/polym8090319
http://www.ncbi.nlm.nih.gov/pubmed/30974592
http://dx.doi.org/10.1016/j.polymdegradstab.2013.10.004
http://dx.doi.org/10.1016/j.polymdegradstab.2010.03.036
http://dx.doi.org/10.1016/j.polymdegradstab.2003.10.024
http://dx.doi.org/10.1016/j.polymdegradstab.2012.07.019
http://dx.doi.org/10.1016/j.cossms.2007.06.001
http://dx.doi.org/10.1002/fam.2375
http://dx.doi.org/10.1002/fam.2190
http://dx.doi.org/10.1002/1097-0126(200010)49:10&lt;1095::AID-PI405&gt;3.0.CO;2-B
http://dx.doi.org/10.1007/s003390000614
http://dx.doi.org/10.1007/s00340-005-1928-9


Molecules 2019, 24, 3100 23 of 23

71. Mayer-Gall, T.; Knittel, D.; Gutmann, J.S.; Opwis, K. Permanent flame retardant finishing of textiles by
allyl-functionalized polyphosphazenes. ACS Appl. Mater. Interfaces 2015, 7, 9349–9363. [CrossRef]

72. Wang, S.; Sui, X.; Li, Y.; Li, J.; Xu, H.; Zhong, Y.; Zhang, L.; Mao, Z. Durable flame retardant finishing of
cotton fabrics with organosilicon functionalized cyclotriphosphazene. Polym. Degrad. Stab. 2016, 128, 22–28.
[CrossRef]

73. Ahn, K.-D.; Kim, U.Y.; Kim, C.H. Photocurable System of Polythiol and Polyphosphazene-Containing Allyl
Groups. J. Macromol. Sci. Part A—Chem. 1986, 23, 169–180. [CrossRef]

74. Edwards, B.; Rudolf, S.; Hauser, P.; El-Shafei, A. Preparation, Polymerization, and Performance Evaluation
of Halogen-Free Radiation Curable Flame Retardant Monomers for Cotton Substrates. Ind. Eng. Chem. Res.
2015, 54, 577–584. [CrossRef]

75. Kuan, J.-F.; Lin, K.-F. Synthesis of hexa-allylamino-cyclotriphosphazene as a reactive fire retardant for
unsaturated polyesters. J. Appl. Polym. Sci. 2003, 91, 697–702. [CrossRef]

76. Qian, Y.C.; Ren, N.; Huang, X.-J.; Chen, C.; Yu, A.-G.; Xu, Z.-K. Glycosylation of Polyphosphazene Nanofibrous
Membrane by Click Chemistry for Protein Recognition. Macromol. Chem. Phys. 2013, 214, 1852–1858.
[CrossRef]

77. Qian, Y.; Huang, X.; Xu, Z. Synthesis of Polyphosphazene Derivatives via Thiol-ene Click Reactions in an
Aqueous Medium. Macromol. Chem. Phys. 2015, 216, 671–677. [CrossRef]

78. Allcock, H.R.; McDonnell, G.S.; Riding, G.H.; Manners, I. Influence of different organic side groups on
the thermal behavior of polyphosphazenes: Random chain cleavage, depolymerization, and pyrolytic
cross-linking. Chem. Mater. 1990, 2, 425–432. [CrossRef]

79. Allcock, H.R.; Kolich, C.H.; Kossa, W.C. Pyrolysis of aminophosphazenes. Inorg. Chem. 1977, 16, 3362–3364.
[CrossRef]

80. Allcock, H.R.; Moore, G.Y.; Cook, W.J. The Thermal Breakdown of Poly(diphenoxyphosphazene).
Macromolecules 1974, 7, 571–575. [CrossRef]

81. Lyon, R.E.; Walters, R.N.; Stoliarov, S.I. Thermal analysis of flammability. J. Therm. Anal. Calorim.
2007, 89, 441–448. [CrossRef]

82. Jain, R.K.; Lal, K.; Bhatnagar, H.L. Thermal degradation of cellulose and its phosphorylated products in air
and nitrogen. J. Appl. Polym. Sci. 1985, 30, 897–914. [CrossRef]

Sample Availability: Samples of the compound are available from the authors.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/acsami.5b02141
http://dx.doi.org/10.1016/j.polymdegradstab.2016.02.009
http://dx.doi.org/10.1080/00222338608063385
http://dx.doi.org/10.1021/ie502915t
http://dx.doi.org/10.1002/app.13044
http://dx.doi.org/10.1002/macp.201300219
http://dx.doi.org/10.1002/macp.201400545
http://dx.doi.org/10.1021/cm00010a021
http://dx.doi.org/10.1021/ic50178a081
http://dx.doi.org/10.1021/ma60041a007
http://dx.doi.org/10.1007/s10973-006-8257-z
http://dx.doi.org/10.1002/app.1985.070300302
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Synthesis and Characterization of CPZ 
	Textile Finishing and Characterization 
	Thermal Stability 
	Thermal Properties 
	Flame Test 
	Char Analysis 


	Materials and Methods 
	Textiles and Chemicals 
	Instrumentation 
	Synthesis and Characterization of Hexa (allylamino) Cyclotriphosphazene (CPZ) 
	UV Treatment and Characterization of the Modified Fabrics 
	Measuring of the Thermostability 
	Washing Resistance 
	Evaluation of the Flame Retardant Properties 

	Conclusions 
	
	References

