Supplementary Materials

A Divergent Alkyne Diol Directs [2+2] Photoreactivity in the Solid State: Cocrystal, Supramolecular Catalysis, and Sublimation Effects

Shalisa M. Oburn, Jay Quentin, and Leonard R. MacGillivray^{1,*}

- ¹ Department of Chemistry, University of Iowa, Iowa City, IA, 52242, USA.
- * Correspondence: len-macgillivray@uiowa.edu

Contents:

Figure S1. 1H NMR (300 MHz, DMSO-d6) spectrum of cocrystal [(1,4-bd)·(4,4'-bpe)]n.

Figure S2. ¹H NMR (300 MHz, DMSO-*d*₆) spectrum of cocrystal [(**1,4-bd**)·(**4,4'-bpe**)]ⁿ following 55 h of UV-exposure.

Figure S3. 1H NMR (300 MHz, DMSO-d6) spectrum of isolated rctt-4,4'-tpcb from [(1,4-bd)·(4,4'-bpe)]n.

Figure S4. ¹H NMR (300 MHz, DMSO-d₆) spectrum of cocrystal [(1,4-bd)·(3,3'-bpe)]n.

Figure S5. 1H NMR (300 MHz, DMSO-d6) spectrum of [(1,4-bd)·(3,3'-bpe)]n following 23 h of UV-exposure.

Figure S6. 1H NMR (300 MHz, CDCl3) spectrum of isolated rctt-3,3'-tpcb from [(1,4-bd)·(3,3'-bpe)]n.

Figure S7. Powder X-ray diffractogram of (*rctt-3,3'-tpcb*)·(H₂O) (top, blue) compared to the simulated pattern generated from single-crystal X-ray data (bottom, black).

Figure S8. Powder X-ray diffractograms of [(**1,4-bd**)·(**4,4'-bpe**)]ⁿ generated through dry grinding (top, black) compared to simulated from single-crystal X-ray diffraction data (blue). Simulated patterns of pure **1,4-bd** and **4,4-bpe** reproduced from TELXAJ[1] and AZSTBB[2], respectively.

Figure S9. Powder X-ray diffractograms at 50% catalyst loading of **1,4-bd** to generate [(**1,4-bd**)·(**4,4'-bpe**)]_n (top, blue) compared to the simulated patters of **1,4-bd** (middle, black) and [(**1,4-bd**)·(**4,4'-bpe**)]_n (bottom, black). Simulated pattern of pure **1,4-bd** reproduced from TELXAJ[1]

Figure S10. ¹H NMR (300 MHz, DMSO-*d*₆) spectra monitoring the photoreactivity of [(**1,4-bd**)·(**4,4'-bpe**)]ⁿ at 20 mol. % catalyst loading of **1,4-bd** over 100 h of UV-exposure. Total UV-exposure time (t) indicated with each NMR.

Figure S11. Powder X-Ray diffractograms of solid-state catalysis experiments with 20 mol. % loading of **1,4-bd** with **4,4'-bpe**.

Figure S12. ¹H NMR (300 MHz, CDCl₃) spectrum of sublimed 1,4-bd.

Figure S1. ¹H NMR (300 MHz, DMSO-d6) spectrum of cocrystal [(1,4-bd)·(4,4'-bpe)]n.

Figure S2. ¹H NMR (300 MHz, DMSO- d_6) spectrum of cocrystal [(**1,4-bd**)·(**4,4'-bpe**)]_n following 55 h of UV-exposure.

Figure S3. ¹H NMR (300 MHz, DMSO-d6) spectrum of isolated rctt-4,4'-tpcb from [(1,4-bd)·(4,4'-bpe)]n.

Figure S4. ¹H NMR (300 MHz, DMSO-d6) spectrum of cocrystal [(1,4-bd)·(3,3'-bpe)]n.

Figure S5. ¹H NMR (300 MHz, DMSO-d₆) spectrum of [(1,4-bd)·(3,3'-bpe)]n following 23 h of UV-exposure.

Figure S6. ¹H NMR (300 MHz, CDCl₃) spectrum of isolated *rctt*-3,3'-tpcb from [(1,4-bd)·(3,3'-bpe)]_n.

Figure S7. Powder X-ray diffractogram of (*rctt-3,3'-tpcb*)·(H₂O) (top, blue) compared to the simulated pattern generated from single-crystal X-ray data (bottom, black).

Figure S8. Powder X-ray diffractograms of [(**1,4-bd**)·(**4,4'-bpe**)]ⁿ generated through dry grinding (top, black) compared to simulated from single-crystal X-ray diffraction data (blue). Simulated patterns of pure **1,4-bd** and **4,4-bpe** reproduced from TELXAJ[1] and AZSTBB[2], respectively.

Figure S9. Powder X-ray diffractograms at 50% catalyst loading of **1,4-bd** to generate [(**1,4-bd**)·(**4,4'-bpe**)]_n (top, blue) compared to the simulated patters of **1,4-bd** (middle, black) and [(**1,4-bd**)·(**4,4'-bpe**)]_n (bottom, black). Simulated pattern of pure **1,4-bd** reproduced from TELXAJ[1]

Figure S10. ¹H NMR (300 MHz, DMSO-*d*₆) spectra monitoring the photoreactivity of $[(1,4-bd)\cdot(4,4'-bpe)]_n$ at 20 mol. % catalyst loading of 1,4-bd over 100 h of UV-exposure. Total UV-exposure time (t) indicated with each NMR.

Figure S11. Powder X-Ray diffractograms of solid-state catalysis experiments with 20 mol. % loading of **1,4-bd** with **4,4'-bpe**.

Figure S12. ¹H NMR (300 MHz, CDCl₃) spectrum of sublimed 1,4-bd.

References

- 1. Steiner, T., 2-Butyne-1,4-diol. *Acta Crystallogr. Sec. C* **1996**, 52, (11), 2885-2887.
- 2. Vansant, J.; Smets, G.; Declercq, J. P.; Germain, G.; Van Meerssche, M., Azastilbenes. 1. Synthesis, characterization, and structure. J. Org. Chem. 1980, 45, (9), 1557-1565.